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Abstract. We consider inferring the future actions of people from a
still image or a short video clip. Predicting future actions before they
are actually executed is a critical ingredient for enabling us to effectively
interact with other humans on a daily basis. However, challenges are
two fold: First, we need to capture the subtle details inherent in human
movements that may imply a future action; second, predictions usually
should be carried out as quickly as possible in the social world, when
limited prior observations are available.

In this paper, we propose hierarchical movemes - a new representation
to describe human movements at multiple levels of granularities, rang-
ing from atomic movements (e.g. an open arm) to coarser movements
that cover a larger temporal extent. We develop a max-margin learn-
ing framework for future action prediction, integrating a collection of
moveme detectors in a hierarchical way. We validate our method on two
publicly available datasets and show that it achieves very promising per-
formance.

1 Introduction

Every day, humans are faced with numerous situations in which they must pre-
dict what actions other people are about to do in the near future. These predic-
tions are a critical ingredient for enabling us to effectively interact with other
humans on a daily basis. Consider the example shown in Fig. 1. When presented
with a short video clip or even a static image, we can easily predict what is
going to happen in the near future (e.g. the man and the woman are about to
hug). The ability of the human visual system to predict future actions is possibly
thanks to years of previous observations of interactions among humans.

Predicting the action of a person before it is actually executed has a wide
range of applications in autonomous robots, surveillance and health care. For
autonomous navigation, in order for an agent to safely and effectively operate
alongside humans, it is important for it to predict what people are about to do
next. This ability can enable the robot to plan ahead for reactive responses or
to avoid potential accidents. For example, if an autonomous agent observes a
person that is losing balance, then it is highly probable that s/he would fall. If
the vehicle can predict it, then it would stop and thus avoid an accident.

In this paper, we consider the problem of future action prediction in natu-
ral (non-staged) scenarios. Given a large collection of training videos containing
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Fig. 1. Future action prediction. Given a static image or a short video clip (left),
our goal is to infer the actions (as well as a sequence of movements) that are going to
happen in the near future. The key contribution of this paper is to unveil the subtle
details behind these movements and make correct action predictions.

human actions in the real world (e.g. TV series), we learn how human behaviors
tend to evolve dynamically in a short period of time. Our goal is to infer the
action that a person is going to perform next, from the observation of a short
video clip or even a single frame.

Compared to the well-studied human action recognition, there are two char-
acteristics of future action prediction: First, predicting future actions requires
identifying the fine-grained details inherent to the current observations that
would lead to a future action. For example, seeing a person with open arms
indicates that s/he is probably going to hug. Second, it is often the case that
future action prediction must be carried out with only the short-term obser-
vations of people in a short video clip or even a static image. It is important
for an autonomous robot to react to the environments (e.g. a person appearing
unexpectedly) as quickly as possible.

This paper introduces a new representation called hierarchical movemes,
which is able to capture the typical structure of human movements before an ac-
tion is executed. The term “moveme” was first introduced in the early work
of Bregler [1], which is used to represent the atomic component of human
movements, such as reaching and grabbing [1,5]. We generalize the notion of
“movemes” to capturing human movements at multiple levels of semantic and
temporal granularity, ranging from an atomic motion with consistent viewpoints
lasting a few frames, to larger motion segments covering more than one atomic
motion. In the extreme case, we have “movemes” depicting all possible move-
ments prior to an action. An example of hierarchical movemes representation is
shown in Fig. 2. Given a new image or a short video clip, we infer the action that
is going to happen using this hierarchical representation. In this paper, we focus
on modeling human movements before the action is actually executed. However,
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the representation is general and can be applied to recognizing observed actions
with complex structures.
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Fig. 2. An illustration of the hierarchical movemes representation. In this ex-
ample, the structure of human movements prior to “high five” is represented, from
coarse to fine. At the top level, movemes (coarse-level movemes) capture generic view-
point and pose characteristics of the future action we wish to predict (i.e. that take
place before the action we want to predict). At the second level, movemes (mid-level
movemes) capture viewpoint-specific but pose-generic characteristics of the future ac-
tion. At the lower level, movemes (fine-grained movemes) capture viewpoint-specific
AND pose-specific characteristics of the future action.

2 Previous Work

Human action recognition is an extremely important research area in computer
vision, and has grown dramatically in the last decade. Recent research has
stepped past recognizing simple human actions, such as walking and standing
in constrained settings [19], and gradually moved towards understanding com-
plex actions in realistic video and still images collected from movies [11], TV
shows [14], sport games [10], internet [28], etc. These scenarios typically include
background clutter, occlusions, viewpoint changes, etc and have imposed sig-
nificant challenges on action recognition. In the video domain, bag-of-features
representations of local space-time features [22] have achieved impressive re-
sults. In the image domain, the contextual information such as attributes [28],
objects [27] and poses [25, 23] are jointly modeled with actions.
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Recent research in early event detection has attempted to expand the spec-
trum of human action recognition to actions in the future. Ryoo [18] addresses
the problem of early recognition of unfinished activities. Two variants of the
bag-of-words representations are introduced to handle the computational issues
of modeling how feature distributions change over time. Hoai and Torre [6] intro-
duces a structural SVM framework for early event detection. A slack-rescaling
approach is proposed to constrain the monotonicity among past, partial, com-
plete and future event. Our work differs from previous literatures on early event
detection in three aspects: 1) Our method is able to predict future actions from
any timestamp in a video. This is in sharp contrast to the early event detection
approaches that constrain the input to the “early stage of an action”. 2) Pre-
vious works typically require relatively long prior observations of actions, our
method can predict from a short video clip or even a static image. 3) We expand
the scope of action prediction from controlled lab settings (as in [18] and [6]) to
unconstrained “in-the-wild” footage.

The importance of future action prediction has been demonstrated recently
in robotic applications [24,9]. For example, Koppula and Saxena [9] address
the problem of anticipating future activities from RGB-D data by considering
human-object interactions. The method has been implemented into a real robotic
system to assist humans in daily tasks such as opening the fridge door and
refilling water glasses.

Predicting the future exists in other domains of computer vision. Most of
the works are focused on predicting (or forecasting) the future trajectories of
pedestrians [15, 7]. There are also literatures on predicting motion from still im-
ages [29]. Our work is philosophically similar to these, but we focus on predicting
motion patterns associated to semantically meaningful actions..

We highlight the main contributions of our paper. 1) We consider predict-
ing future actions from still images or short video clips in unconstrained data.
There is a body of work [18, 6] that considers early action prediction from stream
videos in constrained settings. This paper is the first that attempts to predict
future actions from a single frame in the challenging real-world scenarios. 2) We
introduce a novel representation called hierarchical movemes to capture multiple
levels of granularities in human movements. 3) We develop a max-margin learn-
ing framework that jointly learns the appearance models of different movemes,
as well as their relations. We demonstrate experimentally that this framework
is effective in future action prediction.

3 Hierarchical Movemes - A New Representation for
Actions in the Future

Modeling human actions is a very challenging problem in that: 1) Humans are
highly articulated objects; 2) Actions can be described at different levels of
semantic granularities, ranging from higher level actions, such as handshaking
and talking, to finer grained motions, such as reaching and grabbing. Traditional
action recognition methods usually focus on recognizing the higher level action
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classes. In action prediction, however, critical clues are usually hidden in finer
grained motions. For example, an open arm usually implies hugging, but “open
arm” is not necessarily an important class for action recognition.

In this paper, we propose a new representation called hierarchical movemes
for future action prediction. The hierarchy depicts human movements at multi-
ple levels of granularities from coarse to fine. An example of hierarchical moveme
representation is shown in Fig. 2. We start by describing the procedure of con-
structing the hierarchy.

3.1 Hierarchy Construction

During training, we assume that we are given a collection of videos annotated
with bounding boxes around the true locations of the people in each frame,
tracks associated with each person across frames, action and viewpoint labels
for each frame. We use the tracks associated with each person in the training
videos to construct the hierarchy. We truncate the tracks that contain an action
of interest (e.g. handshake, hug, kiss), such that the last frame of each track is
right before the starting point of the action we want to predict. This allows our
learning algorithm to only focus on modeling people’s movements before actions
are executed. See Fig. 3 for an example.

Future vandshz I Action starts

Track 2 I
Future action: handshake

Truncation
Pose: face left une

Fig. 3. Example of annotations for training [14]. Annotations include bounding
boxes around the true locations of the people in each frame, tracks associated with
each person across frames, action and viewpoint labels for each frame. We truncate
the tracks associated with each person, such that the last frame of each track is right
before the starting point of the action we want to predict. We define the starting point
of an action according to the annotation of the dataset [14]. For example, persons are
labeled as “handshake” when their hands touch each other.

We construct a 3-layer “moveme” hierarchy to capture human movements at
different levels of semantic and temporal granularity. An example hierarchy is
shown in Fig. 2. At the top level, movemes (which we call coarse-level movemes)
capture generic viewpoint and pose characteristics of the future action we wish
to predict (using frames that take place before the action we want to predict).
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For example, in Fig. 2, this layer captures a collection of generic human move-
ments that lead to the action “high five” in the near future. At the second
level, movemes (which we call mid-level movemes) capture viewpoint-specific
but pose-generic characteristics of the future action. For example, Fig. 2 shows
two movemes in the second layer that are associated to movements observed
from the “right” viewpoint, the other from the “left” respectively. At the lower
level, movemes (which we call fine-grained movemes) capture viewpoint-specific
and pose-specific characteristics of the future action. For example, in Fig. 2, the
second fine-grained moveme in the third layer represents movements observed
from the right and correspond to a pose configuration where arms are raised.

In training, the labels (including actions and viewpoints) for the coarse-level
and mid-level movemes are given, while the fine-grained movemes are automat-
ically discovered from the training data. In the following, we will introduce how
to discover the fine-grained movemes via discriminative temporal clustering. An
overview of the clustering process is shown in Fig. 4.

Fine-Grained moveme discovery. Given “mid-level movemes” that corre-
spond to movements of people with consistent viewpoints, our goal is to partition
the examples in each mid-level moveme into multiple “fine-grained movemes”,
each corresponding to a specific human pose type (e.g. raise hand, reach, etc.).
The intuition is that, though consistent in viewpoint, the mid-level movemes
still cannot capture the level of details that are typically important for inferring
the future actions, particularly when only a single frame or a short video clip is
available. We propose to use fine-grained movemes to capture these human pose
types (or atomic motions).

Fig. 4 shows an example of a mid-level moveme that contains two motion
segments of persons with the same viewpoint, before the starting point of the
action (high five). To avoid the confusion of terminology, we will use “motion
segment” to denote the track associated with a person truncated at the starting
point of the action we wish to predict, and “atomic motion segment” for the
consecutive frames of a person which share a similar pose type, as shown in
Fig. 4.

Our algorithm for discovering the fine-grained movemes consists of two steps:
First, we cluster the frames in each person’s motion segment independently. The
goal is to find the atomic motion segments of each person which share a similar
pose type. Second, we merge the different person’s atomic motion segments that
correspond to the same pose type into a fine-grained moveme. In this way, a
fine-grained moveme contains multiple persons with consistent atomic motions
(pose type). These two steps are explained in details below.

STEP 1. We develop a discriminative temporal clustering based method
for finding the atomic motion segments for each person independently. Given
all of the frames in a person’s track prior to the action we want to predict,
we cluster them based on appearance. These clusters will correspond to certain
pose types. Every frame of the person is represented by a rigid HOG template.
Instead of using the high-dimensional HOG representation for clustering, we
train an exemplar SVM [13, 20] for each person example, and use the detection
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Fig. 4. Discovering fine-grained movemes. The figure illustrates how to discover
the fine-grained movemes from the mid-level movemes. First, we cluster the frames
in each person’s motion segment to find the atomic motion segment of each person,
which share a similar pose type. Then we merge the different person’s atomic motion
segments that correspond to the same pose type into a fine-grained moveme.

score of each example to create a K x K similarity matrix. The (7, ) entry in the
similarity matrix is the detection score of running the i-th detector on the j-th
example. Once we have the similarity matrix, we cluster the frames of the person
using a recently proposed temporal clustering algorithm [4]. We use a dynamic
time warping (DTW) kernel to achieve the invariance of temporal order, i.e. each
cluster contains the atomic segment of the person with consecutive frames with
the same order of the original sequence, as shown in Fig. 4.

STEP 2. The second step of our algorithm is to merge the atomic motion
segments that correspond to the same pose type into a fine-grained moveme. For
example, in Fig. 4, each of the discovered atomic motion segments correspond
to a pose type of the human movement. Both of the atomic motion segments
in the bottom left of Fig. 4 correspond to the first pose type, while the ones in
the bottom right correspond to the second pose type. Atomic motion segments
corresponding to the same pose type are merged into a fine-grained moveme.
Thus each fine-grained moveme represents a particular pose type (e.g. raise hand,
reach, etc.). We consider at most 3 pose types for each motion segment.

3.2 Learning a Collection of Moveme Classifiers

Given a hierarchy of movemes, we learn a classifier for each moveme in the
hierarchy. Our goal is to predict future actions based on a single frame or a short
video clip. Thus for each moveme, we learn two classifiers, based on appearance
(HOG) and motion cues (HOF and MBH [22]), respectively. When the input is a
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single frame, we only consider classifiers trained with appearance features, while
the input is a video clip, we consider both.

A coarse-level moveme models generic pose and viewpoint characteristics of
certain action that is about to take place. Each motion segment within a moveme
is associated to the same future action label. We compute feature descriptors for
persons at each frame and train a multi-class SVM on top of the feature rep-
resentations. The learned SVM weights tells how likely the person will perform
each action in the near future.

A mid-level moveme models viewpoint-specific but pose-generic characteris-
tics of the future action. Each motion segment within a moveme is associated to
the same viewpoint and future action label. For each moveme, we use all per-
son bounding boxes that correspond to the moveme as positive examples, and
random patches as negative examples. We then train a linear SVM for detecting
the presence of the moveme.

A fine-grained moveme models viewpoint-specific and pose-specific charac-
teristics of the future action. Each atomic motion segment within a moveme is
associated with the fine-grained moveme label automatically discovered in the
discriminative clustering process. We use the same strategy as defined above
for training the fine-grained moveme classifiers. Examples of movemes and their
corresponding templates are shown in Fig. 5.

Level 2: Mid-Level movemes Level 3: Fine-Grained movemes

Fig. 5. Averaged images and moveme templates. We visualize the learned tem-
plates of the mid-level movemes and the fine-grained movemes in the hierarchy for
hug (first row) and handshake (second row). For each template, we show the images
averaged over all examples that belong to the same moveme.

4 Model

We introduce a model that is able to combine information across different movemes
in a structured hierarchical way. It performs future action prediction and explic-
itly models the relations between movemes in different layers. Moreover, the
model implicitly performs viewpoint prediction and temporal localization of the
input frame (or short video clip) w.r.t. the start point of the action.
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4.1 Model Formulation

The input to our learning module is a set of N video frames and short clips of
persons. Each person example X is associated with labels corresponding to one
branch of the movemes hierarchy: Y = {y;}~ ;, where L is the total number of
levels of the hierarchy (we set it to 3) and y; is the index of the correspond-
ing moveme at level i. For example, y; corresponds to the future action label, y,
corresponds to the label of a future action with a particular viewpoint (e.g. hand-
shake while facing to left) and ys corresponds to the fine-grained moveme label
that is automatically discovered by our clustering algorithm.

Our scoring function for labeling an example X with movemes Y is written

as:
L

L—-1
BX,Y) =D ) &(X,y)+ > By C(Wiry5) (1)
=1

i=1

Unary model a; (X, y;): This potential function captures the compatibility
between the example X and the moveme y;. We use ¢(X,y;) to denote response
of running the moveme classifier of y; on the person example X. If X corresponds
to a person track over a short clip, then we take the max response of the moveme
classifier over all frames on the track. To learn biases between different movemes,
we append a constant 1 to the end of each response.

Pairwise model 5;_ ,yiﬂl/)(yi, y;): This potential function captures the compat-
ibility between a pair of movemes located across different levels of the hierarchy.
We write ¥(y;,y;) = 1 if the movemes y; and y; are connected by an edge in
the hierarchy, and —oo otherwise. This means we exclude the co-occurrence of
certain pairs of movemes: e.g. a person can not be described by movemes cor-
responds to the prior observation of different actions at the same time. Here
Byi,yir. is a model parameter that favors certain pair of movemes to be chosen
for a person.

4.2 Inference

For an example X that corresponds to a person in a single frame or over a
short video clip, our inference corresponds to solving the following optimization
problem: Y = argmaxy,.i—1,.. P(X,Y). For the example X, the inference is
on a chain structure where we jointly infer moveme labels at all levels together.
This is a simple exact inference and we solve it using Belief Propagation. The
moveme at the top layer of the hierarchy y; corresponds to the future action
label of the person. Our inference procedure also returns other more detailed
predictions of the person (e.g. viewpoint, temporal state) through movemes at
the other layers of the hierarchy (latent variables in our model) {y;}Z,.

4.3 Learning

Given a collection of training examples in the form of {X™ Y™} | we learn
the model parameters 6 that tend to correctly predict the future action labels.
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We formulate this as follows:

mm ||9H2+CZ§n

0,60 2

GTQ(Xn’Yn) - oTé(Xn’Y*) > A (y?ay;t) - £7L7vna (2)

where A (y7, yi,t) is a loss function measuring the cost incurred by predicting y;
when the ground truth is y7'. Since our goal is to predict the future action labels,
we only penalize the incorrect predictions of the future action label, rather than
movemes in other layers of the hierarchy. A standard loss function of Structural
SVM is the 0 — 1 loss which equally penalizes all incorrect predictions at any
time prior to the future action. However, this is inadequate for the task of future
action prediction, since prediction from a frame at a long time before the start
point of an action is obviously more difficult than from those at a few frames
before the action is happening. If we treated them equally in training, then the
learned decision boundaries might become unreliable.

Here we introduce a new loss function that depends on the temporal distance
to the future action: A (y7,y7,t) = 1 — pt if y1 # y;, and 0 otherwise. If the
example is in a sequence that does not contain any action of interest, we simply
use the 0 — 1 loss. Here t € (0, 7] is the temporal distance to the starting point
of the action we wish to predict, and ¢ = 0 corresponds to the first frame of the
action, 7' is the maximum number of frames before the action that we consider.
u € (0,1/T] is a tunable parameter. In this case, incorrect prediction from frames
longer before the action is happening receives less penalties.

The optimization problem of Eq. 2 is convex and many well-tuned solvers
can be applied to solve this problem. Here we use the bundle optimization solver
in [2].

5 Experiments

Our goal is to test the performance of the proposed method on future action
prediction in the challenging real world scenarios. At that end, we choose a very
challenging dataset collected from TV shows [14], which include actions that
we typically perform at a daily basis. We show that our method significantly
outperforms baselines in future action prediction when the input is only a single
frame or a short video clip.

The proposed method is generic and will not lose the discriminative power

in classifying videos containing activities at relatively early stage or even the
fully observed activities. We also evaluate our method on the UT-Interaction
benchmark dataset [18]. We show that our method achieves state-of-the-art per-
formance in early activity prediction.
Implementation details. In all experiments, the penalty parameter C of the
Structured SVM objective (Eq. 2) is set to 1 for both our method and the
baselines. The codebook size for the dense trajectory descriptors [22] is set to
2000 for TV Interaction dataset and 800 for UT Interaction dataset.
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5.1 TV Human Interaction Dataset

This dataset consists of 300 video clips collected from over 20 different TV shows.
It contains five action classes: handshake, high five, hug, kiss and none. The class
“none” represents all other more general actions such as walking and standing.
Annotations are provided for every frame of the videos, including the upper body
bounding boxes, discrete head orientations and action labels for each person.

We use the training/testing split provided along with the dataset. For train-

ing, we sample a collection of frames and short clips from all of the videos in the
training set, which contains more than 25,000 person examples. This ensures
that the system has “seen” a large number of videos on human actions before
making a prediction. In testing, the experiments were conducted with different
settings on the lengths of the input video clips as well as their temporal distances
to the start point of the action we wish to predict (see below for details). In the
most challenging scenario, we predict future actions from a static video frame.
Baselines. We compare our method agains the following baselines: 1) SIFT
flow [12]. Given a testing image, it first finds the nearest neighbor from the
training data using the SIFT flow algorithm, which matches densely sampled
SIFT features between the two images, while preserving spatial discontinuities.
The future action label of the matched training image is directly transferred to
the testing image. 2) Dense flow [22]. We apply one of the state-of-the-art action
recognition methods for future action prediction. The model is trained with video
clips containing fully executed actions and tested for future action prediction. A
linear SVM is used. 3) Our model with only the top most layer (“1-Layer”). 4)
Our model with the top two layers (“2-Layer”).
Results. We evaluate the performances when the input is a single image or a
short video clip of four different lengths (1,3,5,7 frames). All of the videos in
this dataset have the same frame rate of 24 fps. Thus the longest video clip we
provide at testing (7 frames) is less than 0.3 s, making the problem of future
action prediction very challenging. Note that the input clip of length 1 denotes
that we use a single frame as input, but with both shape and motion features.

We only use the shape feature (HOG) to represent the person when the input
is a single image, and use both shape (HOG) and motion features (the dense
trajectory descriptors [22]) when the input is a video clip. We set the trajectory
length to 5 frames. Note that for each frame, the trajectories are computed
using the feature points sampled from the five-frame temporal segment before
the current frame. This guarantees that we don’t have access to any future
information in feature computation.

In order to test the methods’ ability in predicting future actions at different
stages, we measure the performances with 5 different temporal stage settings,
from —20 to 0, with a step size of 5. The numbers denote the temporal distance
(in frames) from the input image to the start point of the action. For example,
the methods’ performances at a temporal stage —20 describe the classification
accuracies given all of the testing frames within 20 frames before the start point
of the action we wish to predict. The temporal stage of 0 indicates all testing
images are taken within 5 frames after the start point of the action, making the
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Fig. 6. Future action prediction accuracies. We evaluate performances when a
static frame (a) or a short video clip (b)-(e) is available. The X axis corresponds to
the temporal stages of the input frames, while the Y axis corresponds to the mean-per
class accuracies. The red curve denotes our method, green for using the first two layers
of the moveme hierarchy, blue for using the first layer, black for Dense flow [22] and
magenta for SIFT flow [12]. (f) shows the accuracies for each action class given a single
frame using the full model. HS and HF denote handshake and high five respectively.

ET)
temporal stage

Fig. 7. Future action prediction visualizations. We show predictions of our
method at different temporal stages before the action is executed (in yellow). For
example, t = —15 in the first image denotes that the image is taken 15 frames before
the action (handshake) starts. Correct predictions are shown in green and incorrect
predictions in red. The last row shows examples of failure.
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problem a conventional action classification problem. The comparative results
are shown in Fig. 6. Our method outperforms all of the baselines at all different
temporal settings. It is interesting to see that there is a notable performance
increase of our full model as well as the 2-Layer moveme model, starting from
10 (around 0.5 s) before the action is executed. This is because the fine-grained
appearance and motion that characterize the actions tend to appear around 10
frames before the action starts. This can be verified by the visualization of our
predictions shown in Fig. 7.

5.2 UT Interaction Dataset

The proposed hierarchical moveme representation is generic and captures the
“multi-modality” nature of human movements. Thus its application domain is
not limited to future action prediction, but also other aspects of human activity
understanding, such as early action prediction and action recognition.

We validate the proposed method on the UT-Interaction benchmark dataset [17].
The dataset contains a total of 120 videos of 6 classes of human interactions (e.g.
handshake, hug and kick). In order for a fair comparison with other reported
numbers on this dataset, we follow the experiment settings as in [18]: we evaluate
the proposed method on both Set #1 and Set #2 of UT-Interaction (segmented
version), and use leave-one-sequence-out cross validation for measuring the per-
formances. We run the person detector and tracker provided by [21] to obtain
person tracks in the video sequences.
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H 1 Dynamic Bow
—8— rtegral Bow
SYM

08 : [iXi] Bayesian
—8—gp-sym
o7 B : 07| == yoting B s

== O ur method
Dynamic BoW
03 : —8— tegral Bow
SYM
Bayesian

accuracy
accuracy

i i i H i i i H i i
01 02 03 04 05 06 07 08 [k} 1 0.1 02 03 04 0s 06 07 08 [k} 1
video ohservation ratio video ohservation ratio

(a) (b)

Fig. 8. Early action prediction accuracies. The comparisons of the proposed model
and all other methods (reported in [18]) on the UT-Interaction dataset.

Fig. 8 compares our model with existing methods on early activity prediction.
Following [18], we tested our full model using 10 different observation ratios.
Our method significantly outperforms all other methods on both # Set 1 and #
Set 2 of UT-Interaction. Table 1 compares results of our method with leading

! More visualizations are available at our website http://cs.stanford.edu/~taranlan.
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approaches on the UT-Interaction dataset. Our method achieves state-of-the-art
in terms of predicting activities at a relatively early stage, accessing only the first
50% of the testing video. An average classification accuracy of 83.1% is achieved,
which is nearly 10% better than the current best result [16] on this benchmark.
For action recognition, our number is slightly lower than state of the art [30],
we think it is for two reasons: 1) our method is designed for prediction from a
single frame or short video clip, so we don’t model the temporal relations across
frames over relatively long video sequences. 2) The use of linear versus complex
kernels.

Methods Accuracy w. half videos|Accuracy w. full videos
Our model 83.1% 88.4%
Ryoo [18] (Avg.) 61.8% 76.7%
Ryoo [18] (Best) 70% 85%
Cuboid+SVMs [3] (Ave.) 25.3% 78%
Cuboid+SVMs [3] (Best) 31.7% 85%
BP+SVM [18] (Avg.) 57.7% 75.9%
BDP+SVM [18] (Best) 65% 83.3%
Raptis & Sigal [16] 73.3% 93.3%
Yao et al. [26] - 88%
Vahdat et al. [21] - 93.3%
Zhang et al. [30] - 95%
Kong et al. [§] - 88.3

Table 1. Performance comparisons on UT Interaction # 1. Table compares
classification accuracies of our approach and the previous approaches; leading approach
is in bold. The second and third columns report the accuracies using the first half and
the entire video, respectively. Our method achieves state-of-the-art in recognition at
an early stage when only the first half of the video is available, and outperforms the
current best result [16] by nearly 10%.

6 Conclusions

We have presented hierarchical movemes - a new representation for predicting
future action from still images or short video clips in unconstrained data. Differ-
ent movemes in our representation capture human movements at different levels
of granularity. Movemes are organized in a structured hierarchical model and
the model parameters are learned in a max-margin framework. Qur experiments
demonstrate that our model is effective in capturing the fine-grained details that
are necessary for future action prediction. In addition, the model is generally ap-
plicable to other aspects of human activity understanding: the proposed model
outperforms multiple state-of-the-art methods in early action prediction on a
benchmark dataset.
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