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Using image hierarchies for visual categorization has been shown to have a number of important benefits. Doing
so enables a significant gain in efficiency (e.g., logarithmic with the number of categories [16,12]) or the
construction of a more meaningful distance metric for image classification [17]. A critical question, however,
still remains controversial: would structuring data in a hierarchical sense also help classification accuracy? In
this paper we address this question and show that the hierarchical structure of a database can be indeed
successfully used to enhance classification accuracy using a sparse approximation framework. We propose a
new formulation for sparse approximation where the goal is to discover the sparsest path within the hierarchical
data structure that best represents the query object. Extensive quantitative and qualitative experimental
evaluation on a number of branches of the Imagenet database [7] as well as on the Caltech-256 [12] demonstrate
our theoretical claims and show that our approach produces better hierarchical categorization results than
competing techniques.

© 2013 Published by Elsevier B.V.
1. Introduction

Recent advances in computer vision and machine learning have
enabled thedesign of recognitionmethods that are capable of classifying
images into large number of visual categories (typically, hundreds)
[11,8,6,14]. In one of the current paradigms for image categorization,
image classes are organized in a flat structure and the problem is to
discover the class (among all those in the flat structure) that best
represents (in term of a distance function) the visual content of a
given query image.

Recently, researchers have explored the idea of organizing visual data
in a hierarchical structure rather than in a flat one. This paradigm
addresses some of the limitations of the flat structure: i) it allows for a
significant gain in efficiency, typically logarithmic with the number of
categories, as addressed by Marszalek and Schmid [16] and Griffin and
Perona [12]; ii) it enables the construction of amoremeaningful distance
metric for image classification; and iii) it echoes the way how humans
organize data, as addressed by Palmer [17]. However, a critical question
still remains controversial: would structuring data in hierarchical sense
also help classification accuracy? Up to date there is no definite answer
to that question. For instance, top-down classification schemes (applied
on hierarchical structures) proposed by Marszalek and Schmid [16] and
Griffin and Perona [12] have produced inconclusive evidence as for
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whether hierarchy has a beneficial effect on classification accuracy.
Classification methods based on Hierarchical Support Vector Machines
can be used to trade off accuracy against speed as in Griffin and Perona
[12] or employed to increase classification accuracy as originally pro-
posed by Tsochantaridis et al. [21] and utilized for image classification,
as suggested by Binder et al. [2]. Although [2] has shown promising
results, it is computationally very demanding as the number of categories
becomes larger than 30 ~ 50. Finally, methods based on combining
models from different levels of the hierarchy proposed by Zweig and
Weinshall [23] have also shown positive results but are yet to be
validated on deeper and larger hierarchical structures.

In this paper we attempt to address the issues discussed above and
show that the hierarchical structure of a database can be successfully
used to enhance classification accuracy using a sparse approximation
framework. The key idea is to introduce a distance function that takes
into account the hierarchical structure of the visual categories (Fig. 1)
and to identify two images to be similar if they share a similar path in
the hierarchy.We show that this distance function (or similaritymetric)
is equivalent to the Hamming Distance (HD) for vectors that encode the
hierarchy. This allows us to cast the categorization problemas the one of
discovering the category in the tree structure that has the smallest HD
from the query category label. We solve this problem via sparse appro-
ximation and introduce a new formulation of the sparse approximation
problemwhich we call hierarchical sparse approximation. In the typical
sparse approximation problems [22,5,20], a query image can be
identified as the sparsest representation over the set of training images,
as proposed by Wright et al. [22] or basis functions, as proposed by
Mairal et al. [15] for all object classes; that is, the sparsest solution is
one (or a combination of a few) image out of all possible images in the
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Fig. 1. (a) Organizing images in a hierarchical structure (tree) enablesmore descriptivemethods for characterizing images: the image of a dog can be described by class labels associated to
each node of the (green) path in the tree. (b) Misclassifying a dog with a cat is not as bad asmisclassifying a dog with a stapler. If data are organized in a tree, it is possible to relate object
classification errorswith objects with locations in the tree. For instance dog, cat and stapler categories are associatedwith the green, red and blue paths (respectively) in the tree. The error
in misclassifying a dog with a cat can be measured as the Hamming Distance (HD) between the corresponding paths. HD captures the similarity between two paths in the tree (see
Section 3 for details). The HD is 1 in this case. Note that misclassifying a dog with a stapler leads to a larger HD (that is, 5). (c) It is desirable to classify multiple objects at the same
time. If an image contains a dog, a human and a vacuum, our algorithm can discover three paths (green, orange and blue respectively) in the tree, one for each query object. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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dataset. We call this the flat sparse approximation problem. The key
novelty of our approach relies on the idea that the sparse representation
is not constructed over a flat structure of object classes (as in the classic
sparse sensing problem) but rather by enforcing that the solution must
be one (or a combination of a few) path out of all possible paths on a
given hierarchy of object classes (training set). Moreover, classification
accuracy is measured in hierarchical sense (that is, by considering the
HD between the query path and the ground truth one). Since our
method relies on the sparsity of the representation, our approach is
suitable for large scale classification problems; i.e., the conditions
underlying the sparsity assumptions are best verified when the dataset
is large and distribution of visual categories is diversified. In this work
we present sufficient conditions under which our hierarchical sparse
formulation can be used with success and small error bounds are
guaranteed. Furthermore, a crucial property of our classification
framework is that it is capable of classifying multiple object categories
at the same time if more than one (dominant) object appears in the
query image (Fig. 1 (c)).

We have carried out extensive quantitative and qualitative
experimental evaluation on a number of branches of the Imagenet
database [7] as well as Caltech-256 [11]. Each branch comprises
hundreds of visual categories organized in the hierarchical structure.
All the experiments demonstrate that our hierarchical approximation
framework yields much better hierarchical classification accuracy over
flat sparse approximation. Evaluation was carried out by comparing
average precision measured in terms of HD as well as by measuring
the actual classification accuracy at each level of the hierarchy. Our
method achieves a performance increase ranging from 5% to 10% for
the most critical levels of the hierarchy. Additional experiments on
multi-category classification also show very promising results.

The rest of this paper is organized as follows. In Section 2, we will
briefly review how sparse approximation can be applied to image
classification problem. The formal definition of hierarchical classification
and our proposed embedding is provided in Section 3. A number of
experiments are carried out to validate our scheme in Section 4. Finally,
we summarize our work in Section 5.

2. Image classification using sparse approximation

In this section, we describe our image representation and introduce
the basic formulation of the flat image classification problem based on
sparse approximation. We assume a database of images is available.
Furthermore,we assume that such a database comprises a large number
of categories and each category has a large number of image instances.
We assume that each image has a dominant object instance with
some level of background clutter as in Caltech-256 [11] or the ImageNet
[7]. In classification, we assume that the query image (with unknown
category label) contains one (or multiple) dominant object(s) whose
category label is represented by the dataset. Of course, the query object
instance itself is not necessarily included in the dataset. The class-
ification problemcan be solved by seeking, among all the images (object
instances) in the database, the one that is closest to the query object(s).
The category such image belongs to is the classification result. If the
query image contains multiple dominant objects, the classifier must
returnmultiple category labels associated to all of the dominant objects
in the query image.

2.1. Object representation and distance function

Assessing whether an image is “close” to another one relies on the
construction of a distance function which depends on the way how
the visual content of an image is represented. Following a common
representation used in computer vision, we describe an image using a
normalized histogram of codewords (i.e., the bag of words represen-
tation, also named BOW) [6] or, equivalently, a histogram capturing a
spatial pyramid of codewords [14,10]. In either cases, we denote such
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Fig. 2. (left) An example of a reconstruction of m̂s . In this example, m̂s has only two non-zero coefficients and x−Hsm̂sk k2 ¼ 0:58. (right) Histogram of the number of categories that
provided more sparse and accurate representations than the true category for 512 trials.
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histogram by a vector x. Codewords are drawn from a learnt dictionary
of vector quantized features as described in [6,14,10]. The size of the
dictionary is denoted by K. Thus x is a column vector of size K, if we
use a simple histogram of codewords to represent the image. Notice
that other types of representations are also possible. The similarity
between two images represented by xi and xj can be measured by
computing the ln norm distance between xi and xj, where n can be 0, 1,
etc. Similar images will have small distances.

2.2. Model matrix

Let us stack all the histograms of images in the database as columns
of thematrixH. Thus,Hwill be K×N, whereN is the number of images in
the dataset. We call this matrix H the flat model matrix. Under the
assumption that the database is sufficiently large, any query image can
be represented as a superposition of one or more images in the training
data with small error e such that x=Hm+e. Note that N×1 vectorm is
called the mixing vector and consists of a few non-zero entries asso-
ciated to the images in the database that contribute to represent the
query image by superposition. Note that the error e captures back-
ground clutter and the intra-class variability. A similar representation
was introduced in [22] andwas shown to be suitable for face recognition
problems.

We argue that is also a reasonable model for the generic object
classification problem. As long as the training set is large enough the
image representation will yield satisfactorily discriminative features
for classifying object classes as demonstrated in [11,14]. In order to
further justify the model, we show empirical evidence that mixing
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Fig. 3. Visualization of the embedding. (a) Examples of T and T′. (b,c) As a result of the embeddi
entry corresponding to image 13, the embeddedℓ shows non-zero entries corresponding to im
root from image 13.
vectors m are both fairly sparse and concentrated using a number of
datasets in the following Section 2.2.1.

2.2.1. Empirical evidence for sparse approximation
In this section, we provide empirical evidence of the assumption that

a query image x can be both sparsely and accurately represented by a few
linear combinations of BOW descriptors of the same category. The
following experimental evaluation is carried out by using the hierarchical
Caltech-256 dataset with ‘dog’ category. See Section 4 for more details
about the structure of this dataset. Let us denote the K×N matrix Hs as
the matrix that is formed by taking the columns in H that correspond
to the same category as x. Thus, N is the number of images in a category.
Note that, K=4200 and N=30 for this particular dataset and also that
K N N. Then, we empirically show that x= Hsms + e has a solution m̂s

that is sparse and gives a small approximation error x−Hm̂sk k2.
To compute m̂s for a given x we solve,

min
ms

x−Hsmsk k2 þ λkmsk1;

which is also known as the least absolute shrinkage and selection
operator (LASSO) [19]. The first term of the cost function ensures that
the approximation error is small and the second term ensures that the
solution is sparse. Fig. 2 shows an example of a plot of m̂s obtained by
solving the above minimization problem. We can see that m̂s is indeed
sparse with only two non-zero coefficients and has a small approxi-
mation error of 0.58.

In order to demonstrate that such behavior is common across most
queries x, we repeat the above for 512 queries x that belong to different
C
1

7 9

18

3

E
1 3 4 6 7 9 10 1314 18
0 0 0 0 0 0 0 1 0 0

A C D
1 0 1

B E
01

1 3 4 6 7 9 10 13 14 18
m 0 0 0 0 0 0 0 1 0 0

(c)

ng E, the flat mixingmatrixm is mapped intoℓ. In this example, whenm shows a nonzero
age 13 as well as to its ancestors categories (nodes) A, B and D. These are on the path to the
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categories and evaluate how sparse and accurate the solutions are by

computing m̂s
�� ��

1

m̂s
�� ��

2

and x−Hsm̂sk k2 , respectively. We note that 1≤ msk k1
msk k2≤ffiffiffiffiffiffi

30
p

and the closer this fraction is to 1 the sparser the m̂s and vice

versa. The average value of m̂s
�� ��

1

m̂s
�� ��

2

and x−Hsm̂sk k2 for a large number of

trials are 2.41 and 0.52, respectively, which show that x can indeed be
sparsely and accurately represented by the columns of the same category.

Next we show that for a large number of queries, x is best
represented by the columns of the same category than by those of
other categories. In the Caltech-256 dataset there are in total 256
categories. For each query x, we solve the above minimization problem
for all 256 categories, where each category has a different Hs that is
constructed by taking the appropriate columns in H. Then for all 256

solutions, we evaluate m̂s
�� ��

1

m̂s
�� ��

2

and x−Hsm̂sk k2 as a measure of sparsity

and accuracy. To assess whether or not x is better represented by the
columns of the true category, we compute how many other categories
resulted in a representation m̂s that gave 10% better performance in
terms of the two measures simultaneously. We repeat this procedure
for 512 different query images that belong to different categories and
plot in Fig. 2 the histogram of the number of categories that resulted
in a better representation than the true category. Out of 512 trials for
exactly327 query images, the true categorywas able to better represent
x than others. This and the fact that this histogram exhibits a high
concentration close to zero shows that for most queries, the true
category provides more sparse and accurate representations than
other categories.

2.3. Classification

Clearly m contains the information that allows us to estimate the
class label of the query image. Therefore, the classification problem
(what is the object class?) is recast into the problem of estimating the
vector m (where is a non-zero entry?). Furthermore, this formulation
allows us to discover multiple dominant object categories in the
image. Suppose the image contains three objects as in Fig. 1 (c), then
the query image may be expressed as a superposition of s=3 training
histograms and the non-zero entries of m will return the 3 classes
appearing in x (i.e., dog, human and vacuum). Solving m is challenging
because the system is under-determined (N≫ K) and has an infinite
number of solutions. Because we postulate or seek an s-sparse mixing
vector m, we can formulate this problem as a sparse approximation
problem and seek to find the sparsest solution that best approximates
(in ‘0 error) the observed instance. Notice that the pseudo-norm
|| · ||0 counts the number of non-zero entries in a vector.

Problem 0. min‖m‖0 subject to ‖Hm− x‖2≤ �.

Unfortunately, the above problem is an NP-hard problem in general
(given an arbitrarymatrixH and an arbitrary vector x).We can, however,
solve this problem in polynomial time with appropriate geometric
assumptions on H; if the maximum entry of the matrix |H⁎H-I|, or the
coherence1 μ(H), of thematrix is small, then there are several algorithmic
solutions. Let us assume for now that the training set contains the query
image x. As proposed by [4,22], one method is to observe that Problem 0
is an optimization problem with a non-convex objective function and
that a convex relaxation of this problem yields a problem which can be
solved efficiently with standard optimization techniques [5],

Problem 1. min ‖m‖1 subject to ‖Hm− x‖2≤ �.

A second algorithmic approach is to use a greedy algorithm, one that
identifies image instances iteratively, such as Orthogonal Matching
1 An equivalent definition of μ(H) is the maximum dot-product of different columns of
H, μ(H)=maxi ≠ j| bHi,Hj N |.
Pursuit (OMP). See [20] and the references therein for details on this
algorithm. In Section 4.3we show that the coherence between individual
images decreases as a function of their hierarchical distance; thus, while
the overall coherence μ(H) is high, with high probability, the coherence
between any two images is quite small and OMP can distinguish among
these images and choose a representation close to the ground truth.

3. Hierarchical classification with sparse approximation

While the model x=Hm+ e is reasonable and empirical evidence
suggests that it is fairly accurate, it fails to take into account any
hierarchical information amongst the classes. Furthermore, the error
metrics for typical sparse approximation algorithms [20,18] do not
take into account structural relationships amongst the columns of H.
Indeed, a small error in the mixing vector m̂s−mk k2 or in the
reconstruction of the observation x does not necessarily guarantee
hierarchical similarity between m̂ and m. For instance, suppose the
ground truth label of a query image is “dog”. Assume two possible
classification results are generated: “stapler” and“cat”. These two results
would be associated to the same flat classification error m̂−mk k2 if the
model in x=Hm+ e were employed, whereas the classification error
associated to “cat” would be smaller than that associated to “stapler” if
the error function was defined in hierarchical sense (Fig. 1).

In this section, we assume that object categories are structured in a
(rooted, labeled, recursive) tree T that reflects the semantic (parental)
relationships amongobject categories. Note that each node of T contains
all of the images representative of the visual category label associated to
that node. A schematic illustration of such data structure is given in
Figs. 1 and 3. We define T′, the data structure induced by the semantic
tree, that contains two types of nodes, category labels and individual
column vectors of H (images) (Fig. 3). It encodes the semantic relation-
ship amongst the categories and the assignment of columns of H to
those categories, but, unlike the tree T, both categories and individual
columns of H make up the nodes. A key contribution of our work is to
introduce a suitable encoding matrix E that embeds the flat model
matrix H into a hierarchical (tree) model matrix Φ and to show that
the resulting hierarchical sparse approximation is solvable and
appropriate for classification.

3.1. Hierarchical embedding

The encoding matrix E is constructed so as to map the mixing vector
m into an embedded mixing vector ‘ = Em, whose non-zero entries
correspond to the paths in T′ from the image to the root of the tree
(Fig. 3). More concretely, for C object categories along with N images,
we define E to be the (N+ C) × N matrix that embeds a column of H
and its path to the root in the tree T′. Without loss of generality, we can
permute the rows of E so that E has the following structure E= [I LT]T

where I is the N × N identity matrix and the C × N matrix L consists of
the hierarchical labels of each image. Each row of L corresponds to a
category and each column to a training image; Li,j=1 if category i is on
the path to the root from training image j. Each row encodes which
training images are descendants of category j. Note that the length of ‘
isN+C. If we denote E† the pseudo-inverse of E, thenwe defineΦ=HE†.

3.2. Hierarchical sparse approximation

The hierarchical embedding allows to reformulate Problem 1 as a
hierarchical sparse approximation problem and find a solution for ‘

given x:

Problem 2. min ‘k k1 subject to Φ‘−xk k2≤�

Unlike the original sparse approximation problem, in this problem,
the sparsity pattern of the vector ‘ is constrained to lie on a single
path (or subtree) of the tree T′. While the embedding Em= ‘ increases
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the number of non-zeros in ‘ (as compared to that ofm), it also enforces
amodel that these non-zero entries must follow; theymust lie on paths
from individual columns of H to the root of the tree T′. Because the
sparsity of ‘ follows a model and Φ has more columns than rows, this
problem has the structure of a model-based compressive sensing
problem [1].

Problem 2 can be solved efficiently by a greedy algorithm called TREE-

OMP [13], which is a special case of the more general algorithm MODEL-

COSAMP [1], assuming that Φ satisfies a geometric condition, referred to
as model-Restricted Isometry Property (model RIP). (See Algorithm 1)
TREE-OMP is similar to the OMP algorithm with the additional step that
for all non-zero components in the vector ‘, the algorithm enforces
that all the components that correspond to ancestors in the tree
are non-zero. This constraint guarantees that the estimated solution ‘̂

corresponds to one (or more) physical path(s) in the tree.
3.3. Theoretical analysis

In this subsection, we show that the hierarchical embedding in
Section 3 produces a matrix Φ that, on average, satisfies the model RIP.
We also show that ‘̂, the output of TREE-OMP, is close to the ground truth
embedded vector ‘= Em not only in l2 error, but, more importantly, in
HD. These results are summarized in the following theorem. Moreover
these results enable the construction of a classification algorithm that
we call SPARSE PATH SELECTION (SPS) (see Algorithm 2).
2 In practice, the assignment of labels to training images is deterministic and we have
more descendant images for a category the higher in the tree it is. The indexing of the
columns is, however, arbitrary so we can order them at random initially and fixed
throughout the remainder of the algorithm. A more realistic model is to change the
probability p as a function of the depth of the category in the tree. The root has p = 1
and a deep category has p close to 0.
Theorem1. Given a normalized test image x (‖x‖2=1) which is sd-sparse
with background “noise” n, we can solve Φ‘ ¼ xþ n for the embedded
mixing vector ‘with TREE-OMP. After TN log(sd) iterations, the output vector
‘̂ has at most Td non-zero entries and satisfies

‘−‘̂
��� ���

2
≤2−T þ C nk k2:

In addition, if the noise nk k2≤
ffiffiffiffiffiffi
Td

p
η−2−T
� �

is small enough compared to

a learnt threshold η (See SPS algorithm), then HD ‘̂; ‘
� �

¼ 0 ; i.e., we

correctly identify all the categories on the ground-truth hierarchical path.

Proof. First, we note that the embedded vector ‘=Em follows amodel-
sparse pattern as defined in [1].

Lemma1. If m is a s-sparse vector, then ‘=Emhas a sparse tree structure;
that is, it encodes a rooted tree with s leaves.

Proof. From [1], a signal model Mk is the union of mk canonical k-
dimensional subspaces Mk ¼ ∪mk

m¼1χm where each k-dimensional

subspace χm ¼ y yj jΩc
m
¼ 0

n o
contains all signals y with support in Ωm.

The model Mk is defined by the set of possible k-sparse supports Ω1;…

;Ωmk and, if we restrict ourselves to those sets that are defined by a
rooted tree structure, we have a model-sparse signal. Our embedding,
by construction, yields such a vector ‘; it is model k ≤ sd sparse
(where d is the depth of the tree T′).

Lemma 2. The matrix Φ is well-approximated by an iid (sub-)Gaussian
random matrix.

Proof. Wemodel2 the label matrix L as an iid random Bernoulli matrix;
each entry Li,j=1 with probability p and 0 with probability 1-p. Let

eE ¼ 1
2 I eLTh iT

where eLi; j ¼ 1
Cp 1−pð Þ Lj;i−p

� �
is a centered version of the transpose of L.

Observe that, on average, eE ¼ E†, as

E eLL� �
j;l

� �
¼ E

XC
k¼1

eL j;kLk;l

 !
¼
XC
k¼1

1
Cp 1−pð ÞE Lk; j−p

� �
E Lk;l
� �

¼ 0

and

E eLL� �
j; j

� �
¼ E 1

Cp 1−pð Þ
XC
k¼1

Lk; j−p
� �

Lk; j
� � !

¼ 1
Cp 1−pð Þ

XC
k¼1

p 1−pð Þ ¼ 1:

Then, on average,

Φ ¼ HeE ¼ 1
2 H HeLTh iT

and the entries in the columns corresponding to the HeL block are

HeL� �
j;l
¼
XN
k¼1

Hj;k
eLk;l ¼XN

k¼1

Hj;k
1

Cp 1−pð Þ Lk;l−p
� �

approximately iid Gaussian random variables as they are (large) sums
of bounded random variables with mean 0.

This analysis describes the average behavior ofΦ only. Any instance
of E† has non-zero entries in the off-diagonal terms. These entries are
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also bounded random variables, and, hence, the product Φ = HE†

consists of entries that are approximately Gaussian random variables.
From Lemma 1 and 2, we can conclude thatΦ satisfies a model-RIP

property [3]. Furthermore, we can use the result in [1] to conclude
that after T iterations of TREE-OMP, the output ‘̂ contains at most Td

non-zero entries and satisfies ‘−‘̂
��� ���

2
≤2−T þ C nk k2 . While the l2

distance between two vectors is meaningful, it does not tell us how
close the path(s) corresponding to the vector ‘̂ are compared to the
ground-truth vector ‘, it conflates the paths with the coefficients on
those paths. The error bound tells us what the average error in ‘̂ is

and, as long as it is below our learned threshold, 1ffiffiffiffi
Td

p 2−T þ nk k2
� �

bη ,

we will not introduce spurious nodes in the path nor miss them and

hence, HD ‘̂; ‘
� �

¼ 0.
3.4. Sparse path selection algorithm (SPS)

After solving Problem 2, we obtain an estimate of the path ‘ in the
hierarchical database associated to the query image. However, ‘ cannot
be used directly for image classification. Ideally, the sparsest solution of
Problem 2 should return a vector of “1” and “0” where the non-zero
elements in ‘ allow to estimate the category labels of the query object
as well as its parents. Unfortunately, this is not always the case and
values between “0” and “1” can be also found because of the estimation
noise. To solve this issue, we perform a post processing step. The idea
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Fig. 5. TheQQ-plot can be used to verify that thematrixФ obtained from embedding the Caltech
an iid randomGaussian matrix. The plot on the left is the QQ-plot for the original matrixH; the
Gaussian random matrix than H is, although somewhat skewed compared to the normal.
is to introduce a threshold η and interpret it as a positive response
any value that is above η (and as negative response, otherwise).
Finding this threshold, however, is not trivial as it may vary with
different datasets. Thus, in our experiments, we propose to
automatically learn these thresholds using a binary MAP estimator
trained using a validation set. Such evaluation set is then removed
from the dataset so as to avoid contamination during testing. Our
entire classification scheme is summarized in the Algorithm 2. We
call this algorithm SPS.
3.5. Classifying multiple categories

As discussed in the previous sections, if the input vector x describes
an image comprised of s categories, the mixing vector m is an s-sparse
vector and the corresponding embedded mixing vector ‘ defines a
subtree composed of s paths. Each of these paths is associated to one
of the categories in x. (Fig. 1) Thus, solving Problem 2 and obtaining
an estimate m̂ of m allows us to simultaneously discover the presence
of multiple categories in the image. Even if this appears to be an
appealing property, one critical question must be addressed. How
many categories s can we simultaneously handle until the conditions
(i.e. sparsity, etc.) underlying the solution of Problem 2 are violated?
The bounds in [1] suggest that we need at least O(sd) rows in the
histograms, where d is depth of hierarchical tree and Section 4.7 gives
some empirical evidence thatmultiple category classification is possible
with these algorithms.
−0.05 0 0.05
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

N
or

m
al

 d
is

tr
ib

ut
io

n 
sa

m
pl

es

Φ matrix samples

-256 dataset is consistentwith our theoretical observation thatФ iswell-approximated by
plot on the right is the QQ-plot for thematrixФ. Observe thatФ is more consistent with a
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4. Experiments

In this section, we present quantitative and qualitative experimental
results to validate our theoretical claims. We test our algorithm using
different hierarchical databases. These are: i) 3 branches of the
ImageNet [7] each comprising hundreds of categories; ii) The
hierarchical Caltech-256 dataset [12]. We use different metrics to
evaluate the performances of our algorithm: i) Overall average
Hamming Distance (HD); ii) Average classification accuracy for each
levels of the hierarchy. We benchmark our results using competitive
classification methods SRC, the sparse approximation technique
introduced by [22]. Our experiments include classification of a single
dominant object category as well as multiple categories. In each of the
single category classification experiments we used 16 patches on a
grid with step 8 pixels to generate SIFT descriptors. BOW histograms
are constructed using 500 codewords generated from K-means
clustering. Finally, we used SPH (Spatial Pyramid Histogram) up to the
resolution level 4 to represent each image. In each experiment we
sample (at most) 100 images for each node of the working database
and use these for learning (i.e. to build the H matrix). Forexample, for
the domestic Animal sub-tree of ImageNet, we collected about 21,000
images for training. We sample an additional 10 images per node for
testing. This way, testing images are guaranteed to be different from
those in the training set.

4.1. ImageNet subsets

ImageNet [7] is a hierarchical image databasewith 10million images
and over 10,000 categories. It organizes different classes of images
according to the WordNet [9] structure, and “IS-A” relationship exists
between parents and children. Images are collected for leaf nodes as
well as internal nodes. In consequence, a test image can be chosen either
from an internal node or froma leaf node. In the experiments,we used 2
different branches from the ImageNet: Domestic Animals and Fruits.
These subsets are chosen so as to observe the effect of different dataset
sizes (48, 21, 320 respectively) and structures (domestic animal is a
deeper tree than fruits) on the classification results. The hierarchical
structure of both subsets extensively diverge; for example, for ‘domestic
animals’ subset, it splits from 1 to 5 in the first level, and then splits into
18 in the second level.

4.2. Hierarchical Caltech-256

The Caltech-256 is rearranged in a hierarchy according to best
matches in the WordNet. In this Hierarchical Caltech-256, all images
are associated to a leaf node, hence there are no images in the internal
nodes.

4.3. Dataset coherence properties

In this subsection, we analyze the coherence properties of different
subsets of the datasets. We do not necessarily use all instances of
every category but instead we pick two instances uniformly at random
to obtain a statistical perspective on the coherence values of the derived
H matrices.

Experimental results show that if we use all object instances, the
matrix H is quite coherent and that the value of μ(H) is close to 1. A
straightforward application of the previous theoretical results would
suggest that neither the greedy algorithm nor the convex relaxation is
appropriate for identifying a single instance of an object category. Notice
that the case of multiple categories would be even more problematic.
These theoretical results are, however, too pessimistic and do not
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explain all of our empirical observations.3 We note that if we choose
two objects independently and uniformly at random from the learned
database, the coherence between these two objects decreases as a
function of their distance in the hierarchical tree.
3 In our experimental results, we can see that a sparse representation that does not take
into account any structure amongst the instances is surprisingly successful, albeit far from
the best solution.
Fig. 4 shows the relationship between the coherence of two
objects (on average for objects chosen uniformly at random) and
their distance (path length) in the hierarchical tree for the ImageNet
dataset. This analysis suggests that instances of the same object
category are similar while instances of different categories
are, with high probability, dissimilar. Instead of tweaking the
parameters of the “flat” sparse approximation in hopes of a small
improvement, we should search for a sparse approximation that
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takes into account the hierarchical structure amongst the objects
(and their categories).

In practice, our data are not randomly generated. To test whether or
not our data are consistent with our theoretical analysis, we show in
Fig. 5 a QQ-plot, which shows a similarity between two probability
distributions, for both a normal distribution and the entries of the
matrices H (left) and Φ (right), respectively. Specifically, if samples
are concentrated at diagonal lines, two distributions are similar. Thus,
the plots show that theΦ distribution is closer to a normal distribution
thanH is but somewhatmore skewed to negative values as compared to
a normal distribution.

4.4. Benchmarks

The sparse approximation technique introduced by [22] (SRC) is
used. We use Problem 1 (Section 2) to find the solution m via sparse
approximation (similarly to [22]). We use the post-processing
procedure in [22] to estimate the final class label. Notice that this
method does not exploit the hierarchical structure of the database and
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Fig. 10. Numerical results showing how accurately the algorithm is capable to retrieve multipl
database; we point out that in all the other classification experiments presented in this pape
histograms, and the goal is retrieve the ground truth paths given x. In this experiment, in order
noise on topof query image so as tohave SNRdB from3 to 10. As expected retrieval performance
interesting as it can be related with our theoretical findings.
“sees” the database as flat. Notice that SRC returns a single class label
(not a path in the tree) which can be used to form the mixing vector
mSRC. In order to compare SRC results with ours, we embed m into its
corresponding path ‘SRC = EmSRC. Notice that classifying ‘ correctly is
as challenging as classifyingm correctly sincewe don't know in advance
the depth of the ground truth path.

4.5. Hierarchical similarity verification

In this section, we show classification results in terms of HD (which
is a natural distance function to compare the similarity of two paths in a
tree). Thus, if the ground truth path and the estimated path are similar,
the HD will be small. In Fig. 6 we show average HD between ground
truth paths and estimated path for all our testing images using our
approach (SPS). In the same figure we also report the HD distance
between ground truth path and path estimated by SRC (i.e., ‘SRC). Note
that the HD associated to our approach is systematically smaller for all
the datasets. This result supports our argument that the proposed
framework yields smaller HD bounds. Also, notice that when the
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e images at the same time (in this case we assume query images are also contained in the
r, test images are not contained in the database). Here x is a superposition of (up to) 10
to simulate the effect of background clutter and intra-class variability, we added Gaussian
s decrease as the number of categories increases, or the noise ratio increases. This analysis is
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hierarchical structure is relatively flat, the effect of encoding (and thus
the advantage from our framework) becomes less significant (Fig. 8).

4.6. Effect on different hierarchy levels

HD returns a global measurement of path similarity regardless of the
level and position in the tree. In this experiment we explore the
performance of our framework at different levels of the tree. Fig. 7
plots the accuracy versus the levels of the hierarchy for different
datasets (see caption for details). Notice that the root node is always
classified correctly. As we go down toward the bottom of the tree, the
likelihood of classifying nodes correctly becomes smaller and smaller.
Also, note that this graph is always monotonically decreasing because
whenever the estimation of the child category is correct, parent
category estimation is correct too. When the hierarchical level is low,
the performance of our SPS is similar to SRC. Interestingly, the plot
shows that two algorithms yield equivalent performances in classifying
images belonging to the leaf nodes. However, when the hierarchical
level increases the gap between our SPS and SRC becomes much larger.
This demonstrates the ability of our method to yield higher rates in
classifying ancestors of the query object category. Anecdotal examples
of paths returned by our SPS algorithm compared with those returned
by SRC are shown in Fig. 5. Note that estimated parent nodes returned
by SRC are much less accurate than those returned by SPS. Paths are
reported in text format.

4.7. Multiple category classification

We report anecdotal examples demonstrating that our framework is
able to classify images containing multiple categories. Assuming that
there is no noise from background clutters, the histogram representing
the query image can be expressed as a superimposition of multiple
object category histograms (See examples in Fig. 9). So, as discussed
in the technical section, our SPS method will return multiple paths — a
path for each of category in the query image. Examples in Fig. 9 show
some successful cases. Paths are reported in text format. The numerical
results showing how accurately the algorithm is capable of retrieving
multiple categories are shown in the Fig. 10.

5. Conclusion

In this work, we introduced a novel framework for hierarchical
classification using a new formulation of the sparse approximation
problem. We demonstrated, for the first time (up to our knowledge),
that the hierarchical structure of a large and complex database
can be indeed successfully used to enhance classification accuracy.
Experimental results on several large scale dataset were used to
support our claims.
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