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Abstract

We consider the problem of estimating the spatial layout
of an indoor scene from a monocular RGB image, modeled
as the projection of a 3D cuboid. Existing solutions to this
problem often rely strongly on hand-engineered features
and vanishing point detection, which are prone to failure in
the presence of clutter. In this paper, we present a method
that uses a fully convolutional neural network (FCNN) in
conjunction with a novel optimization framework for gener-
ating layout estimates. We demonstrate that our method is
robust in the presence of clutter and handles a wide range
of highly challenging scenes. We evaluate our method on
two standard benchmarks and show that it achieves state of
the art results, outperforming previous methods by a wide
margin.

1. Introduction

Consider the task of estimating the spatial layout of a
cluttered indoor scene (say, a messy classroom). Our goal
is to delineate the boundaries of the walls, ground, and ceil-
ing, as depicted in Fig. 1. These bounding surfaces are an
important source of information. For instance, objects in
the scene usually rest on the ground plane. Many objects,
like furniture, are also usually aligned with the walls. As a
consequence, these support surfaces are valuable for a wide
range of tasks such as indoor navigation, object detection,
and augmented reality. However, inferring the layout, par-
ticularly in the presence of a large amount of clutter, is a
challenging task. Indoor scenes have a high degree of intra-
class variance, and critical information required for infer-
ring the layout, such as room corners, is often occluded and
must be inferred indirectly.

There are works which approach the same problem given
either depth information (e.g. an RGBD frame) or a se-
quence of monocular images from which depth can be in-
ferred. For our work, we restrict the input to the most
general case: a single RGB image. Given this image, our
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Figure 1: An overview of our layout estimation pipeline.
Each heat map corresponds to one of the five layout labels
shown in the final output. They are color coded correspond-

ingly.



framework outputs the following: i) a dense per-pixel label-
ing of the input image (as shown in Fig. 1), and ii) a set of
corners that allows the layout to be approximated as the pro-
jection of a box. The classes in the dense labeling are drawn
from the following set: {Left Wall, Front Wall, Right Wall,
Ceiling, Ground}. The parameterization of the scene as a
box is described in further detail in Sec. 3.2.

Prior approaches to this problem usually follow a two-
stage process. First, a series of layout hypotheses are gen-
erated. Next, these are ranked to arrive at the final layout.
The first stage is usually accomplished by detecting three
orthogonal vanishing points in the scene, often guided by
low-level features such as edges. For instance, the influen-
tial work by Hedau et al. [6] generates layout candidates
by inferring vanishing points and then ranking them using a
structured SVM. Unfortunately, this first stage is highly sus-
ceptible to clutter and often fails to produce a sufficiently
accurate hypothesis. While subsequent works have pro-
posed improvements to the second stage of this process (i.e.,
ranking the layouts), they are undermined by the fragility of
the candidate generation.

Our method is motivated by the recent advances in se-
mantic segmentation using fully convolutional neural net-
works [11, 2, 23], since one can consider layout estima-
tion to be a special case of this problem. That said, con-
straints that are unique to layout estimation prevent a direct
application of the existing general purpose semantic seg-
mentation methods. For instance, the three potential wall
classes do not possess any characteristic appearance. Mul-
tiple sub-objects may be contained within their boundaries,
so color-consistency assumptions made by CRF methods
are not valid. Furthermore, there is an inherent ambiguity
with the semantic layout labels (described in further detail
in Sec. 3.4.5). This is in contrast to traditional semantic seg-
mentation problems where the labels are uniquely defined.

Our contributions are as follows:

e We demonstrate that fully convolutional neural net-
works can be effectively trained for generating a belief
map over our layout semantic classes.

e The FCNN output alone is insufficient as it does not
enforce geometric constraints and priors. We present a
framework that uses the FCNN output to produce ge-
ometrically consistent results by optimizing over the
space of plausible layouts.

Our approach is robust even when faced with a high de-
gree of clutter. We demonstrate state of the art results on
two datasets.

2. Related Work

The problem, as stated in Sec. 1, was introduced by
Hedau et al. in [6]. Their method first estimates three or-
thogonal vanishing points by clustering line segments in the

scene. These are then used for generating candidate box
layouts that are ranked using a structured regressor. Unlike
our approach, this method requires the clutter to be explic-
itly modeled. Earlier work in this area by Stella et al. [19]
approached this problem by grouping edges into lines and
quadrilaterals and finally depth ordered planes.

In [20], Wang et al. model cluttered scenes using latent
variables, eliminating the need for labeled clutter. Extend-
ing upon this work in [17], Schwing et al. improve the
efficiency of learning and inference by demonstrating the
decomposition of higher-order potentials. In a subsequent
work [16], Schwing et al. propose a branch and bound based
method for jointly inferring both the layout and the objects
present the scene. While they demonstrate that their method
is guaranteed to retrieve the global optimum of the joint
problem, their approach is not robust to occlusions.

Pero et al., in [14] and [13], investigate generative ap-
proaches for solving layout estimation. Inference is per-
formed using Markov Chain Monte Carlo sampling. By in-
corporating the geometry of the objects in the scene, their
method achieves competitive performance.

A number of works consider a restricted or special vari-
ant of this problem. For instance, Liu ef al. [10] generate the
room layout given the floor plan. Similarly, [7] assumes that
multiple images of the scene are available, allowing them
to recover structure from motion. This 3D information is
then incorporated into an MRF-based inference framework.
In [1], Chao et al. restrict themselves to scenes containing
people. They use the people detected in the scene to reason
about support surfaces and combine it with the vanishing
point based approach of [0] to arrive at the room layout.

More recently, Mallya and Lazebnik [12] used FCNN
for the task, similar to ours. However, while we use an
FCNN for directly predicting per-pixel semantic labels,
their method uses it solely for generating an intermediate
feature they refer to as “informative edges”. These infor-
mative edges are then integrated into a more conventional
pipeline, where layout hypotheses are generated and ranked
using a method similar to the one used in [6]. Their re-
sults do not improve significantly upon those achieved by
Schwing et al.

3. Method
3.1. Overview

Given an RGB image I with dimensions w X h, our
framework produces two outputs:

1. L, aw x h single channel image that maps each pixel
in the input image, L;;, to a label in the output image

L;; € {Left, Front, Right, Ceiling, Ground}.

2. The box layout parameters, as described in Sec. 3.2.



Figure 2: Given a w X h x 3 input RGB image (shown on
the left), our neural network outputs a w x h x 5 belief map,
where each of the 5 slices can be interpreted as a classifica-
tion map for a specific label. For instance, the slice shown
on the right corresponds to the ground plane label.

The pipeline is described broadly in Fig. 1. The estima-
tion of L begins by feeding I into the fully convolutional
neural network described in Sec. 3.3. The normalized out-
put of this network is a w x h x 5 multidimensional array
T which can be interpreted as:

T® =Pr(L; = k| I) Vke{l,..,5} (1)
where T(*) is the k™ channel of the multidimensional array
T. This “belief map” is then used as the input to our opti-
mization framework which searches for the maximum like-
lihood layout estimate that fits our box parameterization.

3.2. Modeling the Layout

Most works in this area [0, 17, 20], including ours, as-
sume that the room conforms to the so-called “Manhattan
world assumption” [3] that is based on the observation that
man-made constructs tend to be composed of orthogonal
and parallel planes. This naturally leads to representing in-
door scenes by cuboids. The layout of an indoor scene in an
image is then the projection of a cuboid.

Hedau [6] and Wang [20] describe how such a cuboid can
be modeled using rays emanating from mutually orthogo-
nal vanishing points. The projection of such a cuboid can
be modeled using four rays and a vanishing point [20], as
described in Fig. 3. Our parameterization of this model is
7 = (I1, 2, 3, 4, v), where [; is the equation of the i*" line
and v is the vanishing point.

Given 7, we can partition an image into polygonal re-
gions as follows:

e The intersections of the lines I; give us four vertices
p;. The polygon described by these four vertices cor-
responds to one of the walls.

e The intersections of the rays starting at v passing
through p; with the bounds of the image give us four

Figure 3:

The layout parametrized using four lines,
(l1,12,13,14), and a vanishing point, v, as described in
Sec. 3.2.

more vertices, e;. We can now describe four additional
polygons defined by (p;, €;, €;+1, pi+1) (Where the in-
dex additions are modulo 4). These correspond to two
additional walls, the ceiling, and the ground.

The vertices p; and e; may lie outside the bounds of the
image, in which case the corresponding polygons are either
clipped or absent entirely. We also define a deterministic
labeling for these polygons. The top and bottom polygon
are free from ambiguity and always labeled as “ceiling” and
“ground”. The polygons corresponding to the walls are la-
beled left to right as (left, front, right). If only two walls are
visible, they are always labeled (left, right). If only a single
wall is visible, it is labeled as “front™.

3.3. Belief Map Estimation via FCNN

Deep convolutional neural networks (CNN) have
achieved state-of-the-art performance for various vision
tasks like image classification and object detection. Re-
cently, they have been adapted for the task of semantic seg-
mentation with great success. Nearly all top methods on the
PASCAL VOC segmentation challenge [4] are now based
on CNNs. The hierarchical and convolutional nature of
these networks is particularly well suited for layout segmen-
tation. Global context cues and low-level features learned
from the data can be fused in a pipeline that is trained from
end-to-end.

Our CNN uses the architecture proposed by Chen et
al. in [2], which is a variant commonly referred to as a
fully convolutional neural network (FCNN). Most common
CNN architectures used for image classification, such as
AlexNet [9] and its variants, incorporate fully-connected
terminal layers that accept fixed-sized inputs and produce
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Figure 4: The fully convolutional network architecture used for our layout estimation. It is based on the “LargeFOV” variant
described in [2], which in turn is based on the VGG16 architecture proposed by Simonyan and Zisserman in [ 18] .

Each convolution layer depicted in this figure is followed by a rectified linear unit (ReLU), excluding the final one (layer 1V).
During training, dropout regularization is applied to layers U and V.

non-spatial outputs. In [1 1], Long et al. observe that these
fully-connected layers can be viewed as convolutions with
kernels that cover their entire input regions. Thus, they can
be re-cast into convolutional layers which perform sliding-
window style dense predictions. This conversion also re-
moves the fixed-size constraint previously imposed by the
fully connected layers, thereby allowing the new networks
to operate on images of arbitrary dimensions.

One caveat here is that the initial network produces dense
classification maps at a lower resolution than the original
image. For instance, the network proposed by Long et al.
produces an output that is subsampled by a factor of 32.
They compensate for this by learning an upsampling filter,
implemented as a deconvolutional layer in the network. In
contrast, our network produces an output that is subsampled
by only a factor of 8. As a result, simple bilinear interpo-
lation can be used to efficiently upsample the classification
map.

We finetune a model pretrained on the PASCAL VOC
2012 dataset. The weights for the 21-way PASCAL VOC
classifier layer (corresponding to layer W shown in Fig. 4)
are discarded and replaced with a randomly initialized 5-
way classifier layer. Since our belief map before interpola-
tion is subsampled by a factor of 8, the ground truth labels
are similarly subsampled. The loss function is then formu-
lated as the sum of cross entropy terms for each spatial po-
sition in this subsampled output. The network is trained
using stochastic gradient descent with momentum for 8000
iterations. Chen et al. describe an efficient method for per-
forming convolution with “holes” [2] - a technique adopted
from the wavelet community. We use their implementation
of this algorithm within the Caffe framework [&] to train our
network.

3.4. Refinement
3.4.1 The Problem

Given the CNN output T, a straightforward way to obtain
a labeling is to simply pick the label with the highest score
for each pixel:

{ (k)

L= argm}ngiﬂ Viell,..,wl,j€[l,...h] (2)

However, note that there are no guarantees that this lay-
out will be consistent with the model described in Sec. 3.2.
Indeed, the wall/ground/ceiling intersections in L are al-
ways “wavy” curves (rather than straight lines), and often
contain multiple disjoint connected components per label.
This is because our CNN does not enforce any smoothness
or geometric constraints. A common solution used in gen-
eral semantic segmentation is to refine the output using a
CRF. These usually use the CNN output as the unary po-
tentials and define a pairwise potential over color intensi-
ties [2]. However, we found these CRF based methods to
perform poorly in the presence of clutter, where they tend
to segment along the clutter boundaries that occlude the true
wall/ground/ceiling intersection.

3.4.2 Overview of our Approach

Given the neural network output T, we want to obtain the
refined box layout, 7%, and the corresponding label-map,
L*. Let f be a function that maps a layout (parametrized as
described in Sec. 3.2) to a label-map. Then, we have:

L* = f(77) 3)

For any given layout, we define the following scoring
metric:

1 .
SL=fn)|T)=2> T3 @
4,7

We now pose the refinement process as the following op-
timization problem:

7" = argmax S (f(r) | T) )

This involves ten degrees of freedom: two for each of the
four lines, and two for the vanishing point. While search-
ing over the entire space of layouts is intractable, we can
initialize the search very close to the solution using L. Fur-
thermore, we can use geometric priors to aggressively prune
the search space.

3.4.3 Preprocessing

We use L (as defined in Eq. 2) for initialization and deter-
mining which planes are not visible in the scene. An issue



here is that L may contain spurious regions. In particular, it
often includes spurious front wall regions (not surprisingly,
given the ambiguity described in Sec. 3.4.5). Furthermore,
there may be multiple disjoint components per label.

We address the multiple disjoint components by prun-
ing all but the largest connected component for each label.
The presence of potentially spurious regions is addressed
by considering two candidates in parallel: one with these
regions pruned, and another with them preserved. The can-
didate with the highest score is selected at the end of the
optimization. In practice, we found that it is sufficient to
restrict this pruning to just the front wall. The “holes” in
labeling created by pruning are filled in using a k-nearest
neighbor classifier.

3.4.4 Initialization

Given a preprocessed L, we can produce an initial estimate
of the four lines /; in 7 by detecting the wall/ceiling/ground
boundaries. We do this by considering each relevant pair of
labels (say, ground and front wall) and treating it as a bi-
nary classification problem. The corresponding line is then
obtained using logistic regression.

3.4.5 Optimization

Algorithm 1: Layout Optimization

Input: T // The output of our CNN
(l1,l2,l3,l4) // Initialization

Output: Layout T = (ll, lg, lg, l4, ’U)

repeat

foreach Candidate vanishing point p do

evaluate S (7 = (I1,l2,13,04,p) | T)

if Score Improved then

| vi=p
end

end

foreach i € (1...4) do

foreach Candidate line [ do
evaluate S (7 = (I1,...l...,l4,v) | T)
if Score Improved then
‘ lz =1
end
end

end
until Score did not improve

Given an input image, I, so far we have described how
to obtain:

e A “belief map” T using our neural network

e A scoring function S that can be used for comparing
layouts

e An initial layout estimate 7y

To obtain the final layout, 7%, we use an iterative refine-
ment process. Our optimization algorithm, described in al-
gorithm 1, is reminiscent of coordinate ascent. It greedily
optimizes each parameter in 7 sequentially, and repeats un-
til no further improvements in the score can be obtained.

Sampling vanishing points: We start with the vanish-
ing point, v € T, since our initialization only provides us
estimates for the four lines. While we could have used L to
provide an initial estimate for v, we found that directly us-
ing grid search works better in practice. The feasible region
for v is the polygon described by the vertices (p1, p2, ps, pa)
as shown in Fig. 3. We evenly sample a grid within this re-
gion to generate candidates for v. For each candidate van-
ishing point, we compute the score using S and update our
parameters if the score improves.

Sampling lines: Next, each line, I; € 7, is sequen-
tially optimized. The search space for each line is the local
neighborhood around the current estimate. Let (z1, y1) and
(z2,y2) be the intersections of [; with the image bounds.
We evenly sample two sets of points centered about (1, y1)
and (x2,y2) along the image boundary. Our search space
for [; is then the cartesian product of these two sets.

Handling label ambiguity: There is an inherent ambi-
guity in the semantic layout labels as demonstrated in Fig. 5.
Indeed, our network often has trouble emitting a consis-
tent label when faced with such a scenario. In such cases,
the probability is split between the labels “front” and either
“left” or “right” as the case may be. Our existing scoring
function does not take this issue into account. Therefore,
for this special case, we formulate a modified scoring func-
tion as follows:

S = max (S(L/), S(L)) (6)

where L’ is the labeling obtained by replacing all occur-
rences of the label “front” with either “left” or “right”. This
allows our optimization algorithm to commit to a label with-
out being unfairly penalized. Note that this modified scor-
ing function is only used when our optimizer is considering
a “two-wall” layout scenario as determined during initial-
ization. For a single-wall or three-wall case, the ambiguity
issue does not apply.

4. Experimental Evaluation

4.1. Dataset

We train our network on the Large-scale Scene Under-
standing Challenge (LSUN) room layout dataset [21], a di-
verse collection of indoor scenes with layouts that can be
approximated as boxes. It consists of 4000 training, 394
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Figure 5: There is an inherent ambiguity in semantically
labeling layouts. Two plausible labelings are shown above.
A human may reasonably label the wall behind the bed as
“front”, whereas a labeling that enforces consistency based
on left-to-right ordering may classify it as “right”.

validation, and 1000 testing images. While these images
have a wide range of resolutions, we rescale them anisotrop-
ically to 321 x 321 pixels using bicubic interpolation. The
ground truth images are relabeled to be consistent with the
ordering described in Sec 3.2.

We also test on the dataset published by Hedau et al. [6].
This consists of 209 training and 104 testing images. We do
not use the training images.

4.2. Accuracy

We evaluate our performance by measuring two standard
metrics:

1. The pixelwise accuracy between the layout and the
ground truth, averaged across all images.

2. The corner error. This is the error in the position of
the visible vertices p; and e; (as shown in Fig. 3), nor-
malized by the image diagonal and averaged across all
images.

We use the LSUN room layout challenge toolkit scripts to
evaluate these. The toolkit addresses the labeling ambigu-
ity problem by treating it as a bipartite matching problem,
solved using the Hungarian algorithm, that maximizes the
consistency of the estimated labels with the ground truth.

Our performance on both datasets are summarized in Ta-
bles 1 and 2. Our approach outperforms all prior methods
and achieves state-of-the-art results.

4.3. Efficiency

The CNN used in our implementation can process 8
frames per second on an Nvidia Titan X. For optimization,
we use a step size of 4 pixels for sampling lines and a grid of
200 vanishing points. With these parameters, the optimiza-
tion procedure takes approximately 30 seconds per frame.
The current single-threaded implementation is not tuned

Method Pixel Error

Hedau et al. (2009) [6] 21.20
Del Pero et al. (2012) [14] 16.30
Gupta et al. (2010) [5] 16.20
Zhao et al. (2013) [22] 14.50
Ramalingam et al. (2013) [15] 13.34
Mallya et al. (2015) [12] 12.83
Schwing et al. (2012) [17] 12.8
Del Pero et al. (2013) [13] 12.7
DeLay 9.73

Table 1: Performance on the Hedau [6] dataset

Method Corner Error Pixel Error
Hedau et al. (2009) [6] 15.48 24.23
Mallya et al. (2015) [12] 11.02 16.71
DeLay 8.20 10.63

Table 2: Performance on the LSUN [21] dataset

for performance, and significant improvements should be
achievable (for instance, by parallelizing the sampling loops
and utilizing SIMD operations).

5. Qualitative Analysis

We analyze the qualitative performance of our layout es-
timator on a collection of scenes sampled from the LSUN
validation set. We split our analysis into two broad themes:
1) scenarios where our estimator performs well and demon-
strates unique strengths of our approach, and ii) scenarios
that demonstrate potential weaknesses of our framework
and provide insight into future avenues for improvement.

Fig. 6 shows a collection of scenes where our estimator
produces layouts that closely match the human-annotated
ground truths. Fig. 6a shows the robustness of our estimator
to a high degree of clutter. The ground plane’s intersections
with the walls are completely occluded by the table. The
decorative fixture near the ceiling not only occludes the top
corner but also includes multiple strong edges that can be
easily confused for wall/ceiling intersections. Despite these
challenges, our framework produces a highly accurate esti-
mate. Fig. 6f shows a scene with illumination variation and
nearly uniform wall, ground, and ceiling colors with almost
no discernible edges at their intersections. Such scenes are
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Figure 6: Our results on the LSUN validation set. The first row shows the input images. The second row depicts L, the most
probable label per pixel before optimization. The third row comprises our final layout estimate L*. The fourth row is the
ground truth, while the fifth is our estimate superimposed on the input image. A detailed analysis of these images is provided

in Sec. 5.

particularly challenging for methods that rely on low-level
features and color consistency. However, our method is able
to recover the layout almost perfectly. Fig. 6e shows an ex-
ample where the Manhattan world assumption is violated.
Our estimate, however, degrades gracefully. Arguably, it is
no less valid than the provided ground truth image, which
also attempts to fit a boxy layout to the non-conforming
scene.

Fig. 6d and 6c¢ show the effectiveness of our optimiza-
tion procedure, and demonstrate that simply trusting the
CNN output is insufficient. Directly using the estimate L
produces garbled results with inconsistencies like multiple
disjoint components for a single label and oddly shaped

boundaries. However, our optimizer is able to successfully
recover the layout. It also shows the labeling ambiguity is-
sue we described in Sec. 3.4.5. Observe that the CNN’s
confidence is split over the front and right wall classes in the
ambiguous region. However, our modified scoring function
is able to successfully handle this case.

In Fig. 7, we explore some of the scenarios where our
estimator fails to produce results that agree with the human
annotations. Fig. 7a is an interesting case where our esti-
mate predicts a left wall that is absent from the ground truth.
A closer observation of the image reveals that there is in-
deed a left wall present (this scene also violates the Manhat-
tan assumption). Fig. 7c shows a scenario where our CNN



Figure 7: A set of challenging cases where our estimator’s
results do not match the human-annotated ground truths.
The first column is the input image, the second is L, the
third is our final layout estimate L*, while the fourth is the

ground truth.

produces a reasonably accurate output, but our optimizer
incorrectly prunes the front wall as a spurious region. Oc-
casionally, we encounter cases where the CNN predictions
differ so drastically from the ground truth that the optimizer
fails to provide any improvements. Such a case is shown in
Fig. 7d where the presence of a strong color change in the
wall causes our network to consider it as a separate wall.
In Fig. 7b, we demonstrate a “semantic failure”. The lower
half of the scene is dominated by a bed. It is geometrically
consistent with the notion of a ground plane, but not seman-
tically.

Observing the results above, a few patterns emerge that
lend themselves to future improvements. For instance, the
CNN output suggests that the Manhattan world assumption
is not strictly necessary. The issue with the bed in Fig. 7b
illustrates the importance of incorporating broader seman-
tics into the room layout estimation problem. A promising
approach here would be to train a CNN for performing joint
segmentation of both layout and object classes.

Figure 8: Further examples that demonstrate our estimator’s
performance on the LSUN validation set. Column 2 is our
estimate, while column 3 is the ground truth.

6. Conclusion

In this paper, we presented a framework for estimating
layouts for indoor scenes from a single monocular image.
We demonstrated that a fully convolutional neural network
can be adapted to estimate layout labels directly from RGB
images. However, as our results show, this output alone
is insufficient as the neural network does not enforce geo-
metric consistency. To address this issue, we presented a
novel optimization framework that refines the neural net-
work output to produce valid layouts. Our method is robust
to clutter and works on a wide range of challenging scenes,
achieving state-of-the-art results on two leading room lay-
out datasets and outperforming prior methods by a large
margin.
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