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Abstract

This paper proposes an automated method for monitor-
ing changes of 3D building elements using unordered photo
collections as well as Building Information Models (BIM)
that pertain information about geometry and relationships
of elements. This task is particularly challenging as ex-
isting construction photographs are taken under different
lighting and viewpoint conditions, are uncalibrated and ex-
tremely cluttered by equipment and people. Given a set of
these images, our system first uses structure-from-motion,
multi-view stereo, and voxel coloring algorithms to cali-
brate cameras, reconstruct the construction scene, quan-
tize the scene into voxels and traverse and label the vox-
els for observed occupancy. The BIM is subsequently fused
into the observed scene by a registration-step and voxels
are traversed and labeled for expected visibility. Next, a
machine learning scheme built upon a Bayesian model is
proposed that automatically detects and tracks building ele-
ments in presence of occlusions. Finally, the system enables
the expected and reconstructed elements to be explored with
an interactive, image-based 3D viewer where construction
progress deviations are automatically color-coded over the
BIM. We present promising results on several challenging
construction photo collections under different lighting con-
ditions and sever occlusions.

1. Introduction
Accurate and efficient monitoring of building compo-

nents that are under construction or for a building that is
damaged by a disaster (during disaster rescue operations)
is an important research problem. It directly supports con-
struction control decision making [2], [3], [11], disaster re-
sponse operations [19] and has applications in autonomous
robotics [15]. Current monitoring methods include man-
ual data collection and extensive data extraction from con-
struction drawings and work schedules (i.e., sequence of ac-
tivities through which building is constructed). There is a
need for a systematic method to automatically track build-
ing structure changes, allowing data to be collected easily
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Figure 1. An overview of the proposed progress monitoring.

and at almost no cost, processing automatically and report-
ing back in a format useful for all project participants.

Nowadays, cheap and high resolution digital cameras,
low cost memory and increasing bandwidth capacity have
enabled capturing and sharing construction photographs on
a truly massive scale. For example, on a 200,000 sq.ft.
building project, an average of 500 photos/day is collected
by construction professionals. The availability of such rich
imagery - which captures dynamic construction scenes from
almost every conceivable viewing position and angle at
minimal cost - may enable geometrical reconstruction of
building sites at high resolution. In the meantime, Build-
ing Information Models (BIM) are also increasingly gaining
attention as binding components of construction contracts.
These models are formed similar in shape to conventional
CAD models, yet contain semantics about structural geome-
tries and their spatial and material properties [7]. They can
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Figure 2. Monitoring and progress visibility.

also be linked with schedules, cost and health monitoring
information, forming sequential models that allow expected
construction or pre-disaster structure to be analyzed in 4D
(3D + time), and monetary savings of an automatic process
to be realized. Application of 4D BIM for the purpose of
progress monitoring is desirable since: (1) these models
(from now on, we will call them as as-planned models) link
3D model of the scene with spatial structural attributes as
well as temporal construction schedule (how buildings are
expected to be constructed) and form proper baselines for
measuring expected progress; (2) if linked with unordered
photo collections, these models integrate both expected and
actual progress perspectives and enable automated measure-
ment and visualization of progress deviations.

Nonetheless, automated linking of unordered photo col-
lections with as-planned models is challenging. First, such
imagery is unordered, uncalibrated, with widely unpre-
dictable and uncontrolled lighting conditions. Second, vis-
ibility order and occlusions need to be considered for
successful alignment. In particular one needs to account
for two types of occlusions: (1) Static occlusions: self-
occlusions caused by progress itself (e.g., a façade blocking
observation of elements at interior) or occlusions caused by
temporary structures (e.g., scaffolding or temporary tent-
ing); and (2) Dynamic Occlusions: rapid movements of
construction machinery and workers during the time pho-
tographs are taken. Developing computer vision techniques
that can effectively work with such imagery to monitor
building element changes has been a major challenge.

In this paper, we introduce a new approach for monitor-
ing building elements from unordered photographs based on
a priori (as-planned models). First using Structure-from-
Motion (SfM), scene point cloud is reconstructed and im-
ages are automatically calibrated (from now on, we will
call it as-built). Subsequently the as-built is registered
over the as-planned model and improved by Multi-View
Stereo (MVS). At this stage a new voxel coloring and la-

beling algorithm is used to generate a volumetric recon-
struction, labeling different areas according to visual con-
sistent observations. Same labeling process is conducted on
the as-planned model to identify occupied and visible areas
expected to be monitored. Finally a Bayesian probabilis-
tic model is introduced to automatically monitor changes
and assess progress of as-planned elements (as construc-
tion site evolves in time) by comparing measurements with
dynamic thresholds learned through a Support Vector Ma-
chine (SVM) classifier. The algorithm automatically ac-
counts for occlusions and recognizes if building elements
are missing because of occlusions or because of changes.
This makes our model to be the first probabilistic model
for progress monitoring and visualization of deviations that
incorporates both as-planned models and unordered daily
photographs in a principled way. Fig. 1 shows an overview
of the proposed progress monitoring. Unlike other meth-
ods that focus on application of laser scanners [2, 3, 8]
or time-lapse photography [11, 14, 27, 17], our model is
able to use existing information without adding burden of
explicit data collection on Architecture/ Engineering/ Con-
struction (AEC) professionals and reports competitive ac-
curacies in monitoring progress compared to [2, 14, 17]
especially in presence of occlusion in observations. Fig. 2
highlights technical challenges of a vision-based building
tracking system under which changes in elements need to
be detected.

1.1. Related work

The proposed algorithm in this work, builds upon a set
of SfM algorithms where the objective is to reconstruct the
scene without any strong prior [1, 4, 5, 20, 10, 21, 23,
24, 26]. In some of these techniques such as Zebedin et
al. [26], aerial images are used for reconstructing build-
ing models. In others such as Agarwal et al. [1] entire city
is sparsely reconstructed from unordered photographs col-
lected from Internet, or as in Cornelis et al. [4], and Polle-
feys et al. [20] building façades are reconstructed from car-
mounted videos. Our work in volumetric reconstruction of
the scene is closest to Furukawa et al. [10] However, com-
pared to [10], our images are widely distributed in the scene
as the focus is to use existing images that are of immediate
importance to AEC professionals. Therefore they may not
have enough overlap for Multi View Stereo reconstruction.
In addition, we do not assume building interiors are pre-
dominantly piece-wise planar surfaces as during construc-
tion, building elements may have different shapes/forms.
Finally, the quality of reconstruction is not the focus, rather
we focus on detecting changes in elements and the scene
given partial occlusions.

Unlike other semi-automated building monitoring meth-
ods that focus on application of laser scanners [2, 3, 8]
or time-lapse photography [11], [14, 27, 17], our model is
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Figure 3. An overview of data and process.

able to use existing information without adding burden of
explicit data collection and reports competitive accuracies
compared to [2, 14, 17] especially in presence of occlu-
sions.

2. Overview of tracking and analysis
As shown in Fig. 3, our work is based on application

of construction imagery, as-planned models and sched-
ules to automatically monitor progress of building elements
and generate a D4AR (4 Dimensional Augmented Reality)
model for visualizing progress deviations. Using SfM tech-
niques, first we generate a 3D as-built point cloud. Sub-
sequently the as-planned model is superimposed with the
as-built model. The Euclidean point cloud as well as the
camera parameters are fed into MVS algorithm [10]. The
results are fed into a new voxel coloring algorithm devel-
oped in this research to get a dense reconstruction of the
as-built site and label scene for as-built occupancy. Using
a similarly structured voxel coloring algorithm, as-planned
scene voxels are labeled for occupancy and visibility. The
labeled as-built and as-planned spaces are fed into a novel
Bayesian model and monitored by dynamically classifying
the results through a Support Vector Machine (SVM) clas-
sifier. Finally, detected as-built along with camera config-
urations, plus 4D as-planned model are fed into the D4AR
viewer to visualize as-built, as-planned and progress devia-
tions in an integrated fashion. In the following, the SfM and
other steps for progress monitoring are presented.

3. As-built and alignment with as-planned
First, similar to [23], a point cloud is automatically re-

constructed from a set of images. This module consists of
the following steps: (1) Analyzing images and extracting
SIFT feature points [16]; (2) Matching features across the
set of images [12]; (3) Find an initial solution for the 3D
locations of these features, calibrating cameras for an initial
pair and reconstructing the rest of the observed scene plus
estimating motion of the cameras based on bundle adjust-
ment [18, 25] and finally (4) Registering point clouds that
are generated from each photo collection to build a 4D as-

built model. In our case, there is no need to infer temporal
order as in [21]. Rather that information is automatically ex-
tracted from EXIF tag of JPEG images. Yet, for as-built re-
construction, we only use images collected in one day (since
construction may significantly change how the site looks
like at different days). We analyzed performance of this
reconstruction module on two sets of 112 and 160 images
that are collected in two different weeks on a Residence
Hall (RH) construction project. In both cases, field engi-
neer causally took images within a few minutes. Fig. 4a–b
represents reconstructed sparse scene from the same image
subset and illustrate registered cameras in the D4AR virtual
environment. Once a camera is visited, camera frustum is
textured with the image so user can interactively zoom-in
and visually acquire information on progress, quality, and
safety as well as workspace logistics. Fig. 4c shows lo-
cation of a camera frustum; 4d shows the site through the
camera; and 4e demonstrates the image textured on cam-
era’s viewing plane.

To align as-built point cloud with the as-planned model,
transformation between these two Cartesian coordinate sys-
tems needs to be found. In this case, given an as-built point
cloud that is reconstructed from photos collected at a time
(t), we use the as-planned model that is updated up to time
(t′) (t′≤t);i.e., the as-planned model shows progress up to
time (t′). The alignment transformation can be formed as
a rigid-body motion and hence can be decomposed into ro-
tation and translation. However in SfM, the reconstruction
can be up to an unknown uniform scale. To solve this trans-
formation with uniform scale (7 DOF), we need at least 3
corresponding points. These points could be surveying con-
trol points or a set of points that represent geospatial loca-
tion of the site. In our case, a user selects these points from
corners of the walls and columns as their detection and cor-
respondence is visually easier. Let there be n corresponding
points from as-planned and as-built models for registration.
We denote the two coordinate system points by rp,i and rb,i,
respectively, where i is the number of corresponding points
which ranges from 1 to n, rp,i and rb,i be the Cartesian coor-
dinates of as-planned and as-built models respectively. We
look for transformation of the form:

rp = sR(rb) + T (1)

where s is a uniform scale factor, T is the translational offset
and R(rb) is the rotated version of the as-built model. This
can be formulated as:

n∑
i=1

∥ei∥2 =
n∑

i=1

∥ri,p − sR(ri,b)− T∥2 (2)

We follow Horn [13] to get a closed-form solution to the
least square problem of absolute orientation. In our system,
this procedure needs to be done only once to have the ini-
tial point cloud registered to the 3D model. From then after,



Figure 4. (a) Synthetic view of the reconstructed as-built; (b) Five
camera frustra representing location/orientation of the superinten-
dent when photographs were taken; (c) One camera frustum is
rendered and its location/orientation is visualized; (d) The as-built
point-cloud observed through same camera frustum; and (e) cam-
era frustum textured visualizing 3D point-cloud and photograph.

we only need to register the point clouds that are generated
from new images to the underlying point cloud. For this
purpose, we use a set of images that are showing part of the
scene which is not significantly changed from one-day to
another. For this dataset we use an ICP algorithm that can
solve for scale as well (Du et al. [6]). This method automat-
ically finds a random set of points from each point cloud
and automatically aligns the new point cloud to the former
one, in turn having the new point cloud registered with the
as-planned model. This allows 4D as-built point clouds to
be generated wherein user can navigate the as-built scene
both spatially and chronologically. The 4D as-built regis-
tered with the 4D as-planned model allows expected and
the actual schedule of the project to be compared as well.
Fig. 5 shows 3 snapshots from the RH project. In Fig. 5a
and b two separately reconstructed point clouds are shown
while in Fig. 5c the two point clouds are registered and vi-
sualized together. In cases (a) and (b), reconstructions are
based on 112 and 160 images collected from outside of the
basement. Table 1 reports high accuracies, though the accu-
racy is not sensitive to how the control points are selected.
Since usually more than the minimum number of control
points (3) is selected, user selection error is minimized.

In order to detect progress, we first discretize the inte-
grated as-built and as-planned scene Ω into a finite set of
opaque voxels (volume element in space) along dominant
Euclidean axes wherein each voxel (v) occupies a finite ho-
mogeneous volume of the scene (δxδyδz) and has a consis-
tent visual appearance. This approach allows us to reason
about progress in small elements within the space. In our
model, voxels are assumed to be equilateral; therefore reso-
lution of the voxel grid is determined by δ. Given an image

Figure 5. Registration of two as-built point-clouds (a) and (b).
The violet point-cloud belongs to 08/20/08 (from 112 images -
a) while the orange point-cloud belongs to 08/27/08 dataset (from
160 images- b) (Images best seen in Color).

Πi, proji(v) is used to denote voxel reprojection (in form of
a set of pixels) over image i and is measured as:

∋ k = 1, 2...8 → [u, v, 1]′k = Ki[Ri|Ti][x, y, z, 1]
′
k (3)

wherein k is index of voxel corners, Ki is the intrinsic pa-
rameters, Ri,Ti represent camera rotation and translation.
Since we analyze all images within the SfM step, intrinsic/
extrinsic parameters for all cameras are known at this stage.

3.1. Voxel traversing and labeling

The next step is to traverse the scene and assign two sets
of labels (as-built, as-planned) as well as a color to each
voxel. This step allows expected and actual progress in
each voxel to be sensed. It is critical to traverse the voxels
in a certain order otherwise the reconstruction will not be
unique. In order to address this issue, we introduce an ordi-
nal visibility constraint similar to Seitz and Dyer [22] allow-
ing certain invariant voxels whose colorings are uniquely
defined to be found. Rather than only using this constraint
to address uniqueness of the solution, in our approach we
find areas within the space that are occupied and visible.
First we transform the integrated scene to a new coordinate
system wherein the axes are aligned with the dominant axes
of the as-planned site. This will minimize the search, since
we only reason about where progress is expected to be ob-
served. Then we start traversing the scene from the closest
voxel to the camera convex hull in a plane normal to the
convex hull and eventually in a front-to-back order (Fig. 6).
As we march, we verify visibility constraint and for every
voxel, define two sets of labels l(vi,j,k): (1) As-built and (2)
As-planned labels.

As-built labeling: We first check if a voxel already con-
tains reconstructed SIFT/MVS points. We label that voxel
as Occupied (Ob), have that voxel reprojected back on all
images that observe it (3) and mark the reprojected pix-
els in a marking-board. Next, if a voxel does not contain
SIFT/MVS points (more often the case), we check for vi-
sual consistency. In such cases if voxel reprojections on
the image-set do not overlap with marked pixels (i.e., is not
fully occluded from all images), and it contains part of the



as-planned + as-built (a) as-planned + as-built (b) as-built models (a)&(b)
Image Size 2144×1424 2573×1709 –

Number of corresp. Points 7 9 Randomly chosen by ICP
emm 0.20 mm 0.65 mm 0.43 mm

Table 1. Registration error measured on reconstructions shown in Figure 4.

Figure 6. A representation of the as-built site and camera config-
urations; Reprojections of the voxel are shown on camera frusta 1
and 2. Masking for camera-1 is also shown on the left side. In this
case voxel is detected as Occupied; therefore all pixels belonging
to reprojection of the voxel on all images are marked “1”.

as-built scene (without considering noise or quantization ef-
fects), it needs to have equal radiance reprojections. In pres-
ence of these effects, we evaluate correlation of pixel colors
to quantify voxel consistency:

λv =
(n− 1)SD2

σ2
≤ thresh (4)

Where SD is the standard deviation of color values, and
σ2 is the accuracy of irradiance measurement (sensor color
measurement error), and finally n is number of all images
that observe the voxel. If λv is less than a maximum al-
lowable correlation error (thresh), we label that voxel as vi-
sually consistent (Ob) and have that reprojected on all ob-
serving images and mark their reprojections accordingly. In
our experiments there is a minimum allowable number of
reprojected pixels for each voxel from all images (20 pix-
els). If consistency is not satisfied or the voxel does not
contain SIFT/MVS 3D points, we label the voxel as Empty
(Eb) and finally if the minimum allowable number of pix-
els is not satisfied, it means the voxel is occluded from all
views and we denote that voxel as Blocked (Bb). In our
experiments we have chosen thresh by analyzing complete-
ness vs. accuracy for as-built reconstruction. This process
will have two significant outputs: (1) Labeling all voxels in
as-built as [Ob | Eb | Bb], allowing reasoning to be made
in presence of both static and dynamic occlusions; and (2)
creating as-built range images. Fig. 7a shows a plan-view
of voxel labeling while in 7b reprojected voxel is marked
on the image. In 7c unchanged vs. progress observation
concept is visualized.

As-planned labeling: The as-planned model by itself
accounts for static occlusions, though by placing the non-
overlapping areas of the as-built scene (e.g., equipment,
temporary structures) over the as-planned, we induce dy-
namic occlusions to the model. Now we march the scene in
a similar fashion to the as-built. This time, if an as-planned
element has at least one of its corners inside a voxel, we
label that as Occupied [Op]. Subsequently we will have
a voxel reprojected back on all images that observe that
voxel and mark reprojections. In case of non-overlapping
as-planned and as-built areas, we check the consistency
from the as-built marking and have visually consistent vox-
els reprojected back on all images for marking pixels. This
allows us to track occlusions since if the reprojections con-
tain the minimum unmarked pixels, we can label the voxel
as Visible [Vb]. In our model, all labels are independent and
are marked with binary values (1 or 0). Image boards are
also marked so that if a pixel is observed, the pixel is la-
beled with 1 and if not observed, remains as 0 (See Fig. 6).
Such labeling allows reliable reasoning about progress in
partially visible areas.

3.2. Probabilistic progress detection and discrimi­
native learning

Now that the scene is labeled for occupancy, visibility
and occlusion, we can formulate progress (observation per
expected as-planned element i) as a binary value (Ei): Ei

=1 if progress is detected and Ei = 0 if not. First, we break
the as-planned model into independent elements given the
desirable level of detail for monitoring. Let’s look into the
example of an exterior brick wall in Fig. 7c. In this case we
first check for observation of each expected building ele-
ments associated with a construction activity (each element
i as Ei). Let’s assume that each element Ei associated with
this activity consists of n voxels. We introduce a set of prob-
ability events: Within a given volume in the scene (ωi): Let
η be the event of observing an occupied as-built element,
θp be the event of observing as-planned element, and θT be
the event that an as-planned element is occupied. We define
probability of observing progress for element Ei associated
with a given schedule activity as a conditional probability:

P (ηi|θiT ) =
P (θiT |ηi)P (ηi)

P (θiT )
(5)

Where P(θiT |ηi) is probability of observing expected as-
planned element given some evidence of occupancy; P(ηi)
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Figure 7. (a) Plan view of as-built voxel coloring; (b) image mark-
ing for C1 - Projection of (v) is marked as occupied. (c) progress
vs. unchanged observations.

probability of observing expected as-built element (a func-
tion of confidence in coloring the voxel; occupancy within
element belonging to expected as-built) and P(θiT ) proba-
bility of observing expected progress. Each element is com-
puted as follows:

For as-built:

P (θiT |ηi) = [
ΣOb

ΣOb +ΣEb
]θp (6)

For the as-planned:

P (θip) = [
ΣVp

ΣOp
]θi

p
(7)

P (θiT ) = (
t

d
)V (8)

here P(θiT ) is the probability of expecting progress (per-
centage of visibility from the camera set), d is the total
duration of construction activity, and t represents the tth
day within this duration (d) and finally V is the volume of
expected as-built element. We use P(ηi|θiT ) to estimate
progress with a threshold Γi. Choosing an optimal value
for the threshold for each element is problematic. For ex-
ample given a 10% visibility [P(θip)] and 25% complete-
ness of reconstruction P(θiT ),P(ηi|θiT ) may be susceptible
to reconstruction noise/inaccuracy. Therefore it may not be
reported as detected. This selection is particularly difficult,
because (1) to achieve a desired accuracy, for different ele-
ment types/ materials, different thresh needs to be used; (2)
Progress monitoring task is subjective by nature and needs
an expert’s opinion as to whether it has taken place or not.
Thus we use a machine learning model to estimate such dy-
namic thresholds in a principled way. We express Γi as:
Γi = f(θp(t), P (η|θT ), t/d, T i,Ψ(t), δ, thresh, ϵReg, ϵRec)

(9)
where t is construction activity duration from t=0 to d, T i

is the element type (e.g., column, beam), Ψ(t) is the visual
appearance of the element i’s surface (e.g., concrete, steel),
δ voxel resolution, thresh the voxel consistency threshold
and finally ϵReg and ϵRec are the accuracy in registration of
as-planned model over point cloud and the accuracy of un-
derlying reconstruction algorithms. As shown in Table 1,

we assume there is minimal error in registration and the
underlying mechanisms of as-built reconstruction. Γi can
be learned by casting the problem into linear classification
problem. That is by learning the hyper-plane that separates
the two classes in a multi-dimensional feature space. The
feature space is defined by P(ηi|θiT ), θp(t), t/d, Ti, Ψ(t),
δ, and thresh. The two classes are Ei=1 and Ei=0. The
optimal hyper-plane can be learned in a supervised fashion
using a linear SVM (Fan et al. [9]). Once the classifier is
learned, given a new omeasurement of progress P(ηi|θiT )
along with the measured features (θp(t), t/d, Ti, Ψ(t), δ and
thresh) we can establish whether progress has occurred or
not by feeding observation into the classifier and retaining
the output.

4. Experiments and results
In order to validate our proposed reconstruction pipeline

as well as automated progress detection over arbitrary set of
daily photographs and in presence of occlusions, we con-
ducted experiments on three different image collections.
These datasets were collected under different viewpoints
and lighting conditions and were used for evaluating this
task. These datasets, which include 152 and 255 building
elements repesectively, are two sets of 112 and 160 images
from RH project (RH#1 and RH#2) and a set of 288 im-
ages from a Student Dining (SD) construction project. The
images are all taken at the basement level of project while
significant occlusion is observed in both RH cases as the im-
ages were not taken from inside the basement area. Rather
they were all taken along a side walk of the project (See
Fig. 4-b). We synthetically reduced the resolution of these
images to 2MPixel to test robustness of our approach to
the image resolution. We initially set voxel resolution to 1

5
ft (0.06m). Fig. 8(a1 to 4) illustrates the results of dense
reconstruction for RH presented in Fig. 5b and (a5 to 8)
present the results for SD project.

4.1. Comparison of detection accuracy

In our experiments, we analyze performance by (1) Re-
call: The fraction of truly recognized as-planned elements
relevant to the total number of elements . (2) Precision:
The fraction of truly recognized as-planned elements rele-
vant to the total number of elements that are recognized with
progress. In our approach, the SVM kernel machine classi-
fies progress with a binary value (progress/no progress). We
trained the SVM model over RH#1 112 images which have
significant occlusion. The hyper-plane dynamically learned
though experiments reports that if the expected observable
area is less than 20% of the the as-planned element and
the volumetric reconstruction is only able to reconstruct the
expected areas up to 50%, this element should not be recog-
nized. The performance of training is cross-checked by ask-
ing two field engineers and a superintendent to label training
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Figure 8. (a1 – 4) Dense as-built reconstruction for RH as in Fig.4-b; (a4-8) Dense as-built reconstruction for SD; (b-1 to 3) Progress
deviations for RH color-coded and visualized in the D4AR environment. (c1 & 2) False Positive – the formwork should not be detected as
evidence of progress. (c3 & 4) False alarm – the wall should be detected for progress though it is severely occluded.

classification results. The accuracy of training was experi-
enced to be 87.50%. We tested performance of the classifier
on RH2 160 and SD 288 image collections. It is noted that
the datasets used for the experiments are from actual con-
struction image photo collections which makes their appli-
cation very appealing for training and testing purposes. The
results of average accuracy for our experimental datasets are
presented in Table 2. We also studied the relationship be-
tween expected/observable progress. As shown false pos-
itives mostly fall under 20% visibility (Fig. 9c). We also
studied how occlusion is affecting the accuracy. The results
are showcased in Fig. 9d and it indicates that although we
use severly occluded images, yet our SVM model is result-
ing in high precisions.

Project # of elements # of images accuracy
RH1 152 112 87.50%
RH2 152 160 82.89%
SD 255 288 91.05%

Table 2. Avg accuracy of SVM detection for testing samples.

We also studied precision-recall and TP/FP. Fig. 9a-b il-
lustrate experimental results. The precision is promising
and shows our approach is not sensitive to formation of the
hyper-plane. Finally we represent changed/unchanged ele-
ments with red/green. Fig. 8(b-1 to 3) shows the result of
our progress detection for RH#2 dataset. The behind and
on-schedule elements are color-coded with red and green
accordingly. For those elements that progress is not re-
ported, we color them in gray. Fig. 8(c-1 to 4) show exam-

ples of false positive and false alarms in our detection. As
observed in Fig. 8(c-3/4), since our model does not contain
appearance information (e.g., operational details), concrete
form is falsely detected as finish of a concrete element. In
Fig. 8(c-1/2) highlighted wall should be detected, but due to
occlusions it is not properly reconstructed and consequently
not detected.

5. Conclusions and summary

A method for progress monitoring using site images and
4D as-planned models is presented. In our approach, im-
ages are widely distributed, yet robustly generate dense
point clouds. The initial point cloud is registered with other
point clouds as well as the as-planned model, generating an
integrated 4D as-built and as-planned model. Our as-built
and as-planned voxel coloring demonstrates high accuracy
in labeling construction scenes for occupancy and visibil-
ity. The SVM model shows promising results in detecting
progress. Application of our system is observed to mini-
mize the time required for as-built data collection and as-
planned data extraction; removing subjectivity of progress
detection through a systematic detection; and finally in-
teractive visualization to minimize the time required for
progress coordination leading to a better decision-making
for project control. We need to conduct more conclusive
experiments on the dense reconstruction and progress detec-
tion (especially at building interiors). We also need to incor-
porate visual appearance information [P(ηi)] (As in Fig. 8c-
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Figure 9. (a) Precision-Recall graph; (b) True-Positive/False-
Positive graph; (c) Expected progress vs. Expected observable
regions for RH #1 testing dataset; (d) Accuracy of detection vs. %
of occlusion.

3) to consider element surface appearance in progress mon-
itoring.
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