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ABSTRACT

The deployment of computer vision algorithms in mobile applica-
tions is growing at a rapid pace. A primary component of the com-
puter vision software pipeline is feature extraction, which identi-
fies and encodes relevant image features. We present an embedded
heterogeneous multicore design named EFFEX that incorporates
novel functional units and memory architecture support, making it
capable of increasing mobile vision performance while balancing
power and area. We demonstrate this architecture running three
common feature extraction algorithms, and show that it is capa-
ble of providing significant speedups at low cost. Our simulations
show a speedup of as much as 14 x for feature extraction with a
decrease in energy of 40x for memory accesses.

Categories and Subject Descriptors

C.1.4 [Processor Architectures]: Parallel Architectures—mobile
processors; 1.4.77 [Image Processing and Computer Vision]: Fea-
ture Measurement

General Terms
Design, Performance

Keywords

EFFEX, Heterogenous Architecture, Feature extraction

1. INTRODUCTION

The field of computer vision brings together image processing,
feature extraction, and machine learning to enable computer sys-
tems to understand and act upon image data. The number of com-
puter vision applications has been growing steadily as the underly-
ing algorithms have become more efficient and robust. Examples
of computer vision applications include augmented reality, vehicle
lane detection systems, and vision-based video game controllers.
Recently, the explosion of mobile applications has brought com-
puter vision applications to the mobile space as well. Applications
such as Google Goggles [7] and Layar [14] are starting to make
use of computer vision algorithms on mobile platforms; however,
the limited computational resources of mobile processors prohibits
the use of many techniques found in higher performance machines.
For example, the popular vision algorithm SIFT (Scale Invariant
Feature Transform) [15] can take over 53s to process a 1024x768
image on an embedded processor (ARM AS8) which is 34 x longer
than on a modern desktop machine (Intel Core 2 Quad).

A typical vision software pipeline, illustrated in Figure 1, takes
an image or video and distills the data down to key relevant in-
formation components called features. The features are then pro-
cessed, typically with machine learning algorithms, to gain seman-
tic and geometric information about objects in the scene, while
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Figure 1: Overview of Computer Vision Processing This figure shows
the typical flow of computer vision processing. The image on the left has
features extracted (blue dots in the right image), and the features are used
to understand the object (green box) and the scene in an iterative process.
In the end, the yellow box is found on the carpet in the scene.

identifying the objects’ type and location. Objects can be observed
over time to gain understanding of the context of the scene. Typi-
cally the process is iterative, once enough object and context under-
standing is gained, such information can be used to refine knowl-
edge of the scene.

Features within an image are identified by the feature extraction
algorithm, a principle component of the vision software pipeline.
A capable feature extraction algorithm must distill important im-
age information into scale, illumination, viewpoint, and rotation
invariant signatures, called feature descriptors. Feature descriptors
are vital to the algorithmic process of recognizing objects. For ex-
ample to recognize a car, the feature extraction algorithm could en-
able the identification of the wheels, side-mirrors, and windshields.
Given the relative location of these features in the image, a system
could then recognize that the scene contains a car. The "quality"
of any particular algorithm lies in its ability to consistently iden-
tify important features, regardless of changes in illumination, scale,
viewpoint, or rotation. In general, the more capable an algorithm
is at ignoring these changes, the more computationally expensive it
becomes. To demonstrate this tradeoff, the unsophisticated FAST
Corner Detector [20] executes in 13 ms for a 1024x768 image on a
desktop machine, but provides no robustness to changes in illumi-
nation, scale, or rotation. In contrast, the highly capable SIFT algo-
rithm, which is illumination, scale, viewpoint and rotation invari-
ant, processes the same image in 1920 ms, which is 147 x slower.

One method to address the performance issues of feature extrac-
tion on mobile embedded platforms is to utilize cloud computing
resources to perform vision computation. However, this approach
requires much more wireless bandwidth compared to a system with
a capable feature detector. For example, transmitting compressed
SIFT features would require about 84 kB for a large number of fea-
tures (over 1000) compared to 327 kB to send a compressed image.
Since existing wireless mediums are already straining to carry ex-
isting data [25], there is significant value to communication medi-
ums to perform feature extraction locally, even if cloud resources
are used to analyze the feature data.

1.1 Our Contribution

In this paper, we present EFFEX, an embedded heterogenous
multicore processor specialized for fast and efficient feature ex-
traction. The design is targeted for energy-constrained embedded



environments, in particular mobile vision applications. It is an
application-specific design, but fully programmable, making it ap-
plicable to a wide variety of feature extraction algorithms. To demon-
strate the effectiveness of our design, we evaluate its performance
for three popular feature extraction algorithms: FAST [20], His-
togram of Gradients (HoG) [6], and SIFT [15]. Specifically, this
paper make three primary contributions:

e We perform a detailed analysis of the computational charac-
teristics of three popular feature extraction algorithms: FAST,
HoG, and SIFT. We identify key characteristics which moti-
vate our application-specific hardware design.

e We develop a heterogenous multicore architecture special-
ized for fast efficient feature extraction. The architecture in-
corporates a number of novel functional units that accelerate
common operations within feature extraction algorithms. We
introduce memory enhancements that exploit two-dimensional
spatial locality in feature extraction algorithms.

o Finally, we demonstrate the effectiveness of our design when
running three different feature extraction algorithms. The
EFFEX architecture is capable of high performance at low
cost in terms of silicon area and power.

2. RELATED WORK

Previous works have attempted to improve computer vision pro-
cessing performance with hardware optimizations. For example,
work by Wu attempted to use GPGPUs to increase the speed of
computer vision algorithms [26]. While GPGPUs provide large
speedups, their power usage, at 100s of watts, is too high for the
embedded computing space. Furthermore, GPGPUs, along with
embedded GPUs, lose valuable performance gains when there is
control divergence due to shared instruction fetch units. Our tech-
nique does not suffer from control divergence performance degra-
dation. There are also many computations, such as the summation
portion of the inner product, that do not map well onto a GPGPU
architecture.

Silpa describes a patch memory optimization for use in texture
memory in mobile GPUs to increase performance [22]. They eval-
uate using bulk texture transfer mechanisms, and supported these
operations with texture caching. Our technique takes the design to
a lower level and looks at increased hardware support.

Kodata developed an FPGA design focused on HoG [13]. Their
design showed excellent speedup, but their approach was solely
targeted at HoG. Our approach utilizes an application-specific pro-
cessor applicable to many computer vision problems, thus, we can
provide performance benefits to a wider range of algorithms. Other
hardware design efforts have also worked to speed up various as-
pects of computer vision algorithms, such as Skribanowitz [23],
Chang [5], and Qui [19], but similarly these efforts target a specific
algorithm and do not offer the programmable benefits of EFFEX.

Prengler developed a SIMD engine targeted to vision algorithms
with the capability to switch to MIMD processing [18]. Their tech-
nique reduces the large SIMD unit into many smaller SIMD units.
While effective, it suffered from poor performance due to branch
divergence, forcing expensive reconfigurations. In contrast, EF-
FEX does not require reconfiguration, and it benefits from special
functional units along with memory optimizations.

The IBM Cell processor [9] is a heterogeneous architecture with
some similarity to our proposed architecture. A major difference is
that the Cell uses full vector processors and a conventional memory
architecture. Our architecture focuses on specific vector reduction
operations where vector data is reduced to smaller summary data,
such as the inner product. This approach allows for smaller cores
with specific vector instructions which take less area and power
than a full vector processor. This also sets our approach apart from
general vector processors. Furthermore, we use a memory system
tuned specifically to vision algorithms.

3. FEATURE EXTRACTION ALGORITHMS

A typical feature extraction algorithm, as illustrated in Figure 2,
is composed of five steps. The first step is to preprocess the image,

an operation which typically serves to accentuate the intensity dis-
continuities (i.e., object boundaries) by, for example, eliminating
the DC components (mean values) of the image. The second step
scans the processed image for potential feature point locations; the
specifics of this phase are highly dependent on the underlying al-
gorithm. The third step of feature extraction works to filter out
weak or poorly represented features through, for example, sorting
the features found based on a key characteristic and then dropping
the non-prominent results. The second and third steps implement
a process typically called feature point localization. Once feature
points are localized, the fourth step computes the feature descrip-
tor. A feature descriptor is a compact representation of an image
feature that encodes key algorithm-specific image characteristics,
such as variations of pixel intensity values (gradients). The feature
descriptor implements the illumination, scale, and rotation invari-
ance supported by a particular algorithm. The fifth and final step
of feature extraction performs another filter pass on the processed
feature descriptors based on location constraints.
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Figure 2: Overview of Feature Extraction This figure shows the general
steps involved in feature extraction. The first three steps of the process
locate feature points. The final two steps create feature vectors.

The quality of a feature extraction algorithm is evaluated on four
major invariance characteristics: illumination, scale, viewpoint, and
rotation. A very capable feature extraction algorithm will produce
feature sets for an image that are nearly identical, despite changes
in lighting, object position or camera position. In this work we fo-
cus on FAST [20], HoG [6], and SIFT [15]. These algorithms repre-
sent a wide trade-off of quality and performance, ranging from the
high-speed low-quality FAST algorithm to the very high-quality
and expensive SIFT algorithm. In addition, these algorithms are
widely representative of the type of operations that are typically
found in feature extraction algorithms.

3.1 Algorithm Performance Analysis

We analyzed the execution of the FAST, HoG and SIFT feature
extraction algorithms to determine how their execution might ben-
efit from hardware support. We instrumented a single-threaded ver-
sion of each algorithm and profiled their execution.

FAST corner detection is designed to quickly locate corners in
an image for position tracking [20]. It is the least computation-
ally intensive and the least robust of the algorithms we examine.
The FAST feature matching degrades when the scene is subject to
changes in illumination, object position or camera location and im-
age noise. As seen in Figure 3, the majority of time in the FAST
algorithm is spent performing feature point localization. The algo-
rithm locates corners by comparing a single pixel to the 16 pixels
around it. To perform this comparison, the target pixel and sur-
rounding pixels must be fetched from memory, and then the target
pixel must be compared to all the pixels in the enclosing circle.
The descriptor is made by concatenating the pixel intensities of the
16 surrounding pixels. Speeding up these comparisons, through a
combination of functional unit and thread-level parallelism, greatly
improves the performance of FAST.

HoG is commonly used for human or object detection [6]. The
HoG algorithm is more computationally intensive than FAST, be-
cause it provides some illumination and rotation invariance. Fig-
ure 3 shows that HoG spends a significant amount of time perform-
ing feature localization and descriptor building. The descriptor is
built using the histogram of the gradients of pixel intensities within
a region, which are subsequently normalized. The major opera-
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Figure 3: Feature Extraction Execution Time Distribution FAST
spends most of the time locating the features using a comparison of a center
pixel value to other pixels that form a circle around it. HoG spends most of
the time localizing which involves building the descriptor for comparison.
SIFT spends a large amount of time building the descriptor which involves
gradient computations and binning.

tions for this phase of HoG computation are the fetching of image
data from memory and the calculation of histograms using inte-
gral images [24]. This phase of the HoG algorithm utilizes a slid-
ing window of computation in which each window is independent.
Consequently, much parallelism is available to exploit. The second
major time component is preprocessing, which for HoG is compu-
tation of the integral image. This is comprised mainly of memory
operations, the computation of the image gradient, and finally the
histogram binning of gradient values based on direction. More ef-
ficient computation of these components, through functional unit
support and thread-level parallelism, significantly speeds up pro-
cessing.

SIFT is a feature extraction algorithm widely used for object
recognition [15]. It is the most computationally expensive and
algorithmically complex of the feature extraction algorithms we
examine, but it provides a high level of invariance to most scene
changes. Figure 3 shows that the largest component of time is
spent in feature descriptor building. This portion of the algorithm
involves computing and binning the gradient directions in a region
around the feature point, normalizing the feature descriptor, and ac-
cessing pixel memory. The operations in this phase are performed
on each feature point and benefit from specialized hardware. The
second largest component of SIFT is the feature point localization.
This portion is dominated by compare and memory operations to
locate the feature points. There are also 3D curve fitting and gra-
dient operations to provide sub-pixel accuracy and filter weaker re-
sponses, respectively. This phase of SIFT provides ample thread-
level parallelism. The preprocessing step, the third most expensive
component in SIFT, involves iterative blurring of the image which
is a convolution operation. The convolution requires multiplying a
region of the image by coefficients and summing the result, opera-
tions which can benefit from specialized functional unit support.

4. PROPOSED ARCHITECTURE

To meet the needs of feature extraction in the embedded space,
a number of design criteria exist. First, the design must run feature
extraction algorithms efficiently, as close to real-time analysis of
high-resolution images as possible. To this end, we seek to exploit
the ample explicit parallelism in these algorithms, plus employ the
latency reduction capabilities of specialized functional units and
memory architectures. Second, efficient execution of feature ex-
traction algorithms must be possible at low power and area cost,
as the mobile space predominantly relies on low-cost untethered
platforms using batteries. To meet these challenging criteria, we
employ many computational resources with a simple energy-frugal
design, to lower overall power demands. Finally, the design must
be able to run a variety of feature extraction algorithms to accom-
modate the fast-moving pace of feature extraction algorithm devel-
opment. To serve this demand, we employ an application-specific
processor design, aimed at providing efficient execution of feature
extraction algorithms across a wide range of applications.

4.1 Support for Heterogenous Parallelism
All of the feature extraction algorithms that we studied demon-
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Figure 4: EFFEX Architecture This shows the overall EFFEX embed-
ded architecture. There is one complex core surrounded by multiple simple
cores on a mesh network. Each core has application-specific functional
units and a patch memory architecture.

strated a dichotomy of internal algorithmic styles. At a high level,
the algorithms are quite complex, with significant control-oriented
code that displayed many irregular branching patterns, but with a
large amount of the workhorse computation that exhibited repeti-
tive patterns for feature point localization. Given these contrast-
ing code styles, we employ a heterogeneous multicore architecture.
The EFFEX high-level architecture is illustrated in Figure 4. Our
architecture has a single complex superscalar core, coupled with a
variable number of simple single-issue cores. The complex core
is used to perform high-level tasks that require complex decision
making while the simple cores plow through the vast amount of
simple repetitive tasks that often require unpredictable control flow
using specialized vector instruction units. Since the simple cores
require only a fraction of the area of the complex core, this hetero-
geneous multicore design approach yields significant performance
per unit area for feature extraction algorithms.

The image under analysis is shared among all of the processing
units, and each simple core must have local memory to store in-
termediate results. For our design we use an uncached distributed
shared memory in a NUMA mesh [10]. The feature extraction al-
gorithms have a large amount of parallelism and little communi-
cation demands between the worker threads: the shared memory
is primarily used to hold the image under analysis, plus work re-
quests sent by the complex core to the simple core. Additionally,
the simple cores return computed feature descriptors to the com-
plex core through the shared memory. As such, we rely on explicit
inter-processor communication through shared memory. Synchro-
nization between the cores is implemented with barriers that reside
in the shared memory.

4.2 Functional Units for Feature Extraction

Our analysis of the three feature extraction algorithms revealed
three application-specific functional units that could be used to ac-
celerate their execution. These functional units are useful across a
broad array of feature extraction algorithms. In general, the func-
tional units provide vector reduction instructions for the cores. Ev-
ery core has one of the following functional units.

One-to-many Compare Unit Searching for the feature point lo-
cations typically involves a large number of compares between a
pixel location and its neighbors. For example, SIFT compares a im-
age pyramid pixel value to its immediate neighbors’ values while
FAST compares a center pixel value to surrounding pixels. The
one-to-many compare (OTM) unit, illustrated in Figure 5, signif-
icantly speeds up this processing by performing the comparisons
in parallel through the use of an instruction extension. The one-to-
many compare unit takes a primary operand and compares it against
16 other values in a single operation. The unit returns the total
number of values that are less than (or greater than) the instruc-
tion operand along with a basic result that is one if all compares
are true, zero otherwise. The unit can also be used for histogram
binning by comparing a value to the limits of the histogram bins.
This makes the output equal to the number of the histogram bin.



The one-to-many compare unit is loaded with image data using a
single bulk load operation from patch memory (see Section 4.3),
which takes approximately 9 cycles. The comparisons complete in
32 additional cycles. All together, a one-to-many comparison is 3.5
times faster with the specialized functional unit support, compared
to executing the necessary operations on an typical ARM A8 core
running at the same clock speed.
Original Code (112 cycles): Optimized Code (32 cycles):

result = 1; count = 0; accum =__otmCmp(x,y,currentVale, 16)

testVal = pixel[x]ly];

for(int i = 0; i<16; i++){

if(testVal < currentVal[0]){

result = result & 1;
count++;

else
result&=0;

} r{ Compare Val 1
Full Result Reg
o g
y—( - Compare Val 2 Basic
Result

( >\ Reg
NIV |

L V— CompareVaI 16

Value Under Test

Figure 5: One-to-Many Compare and Binning Unit This functional
unit is used frequently in SIFT and FAST. It can be used for comparing
one pixel to many others all at once. It has fast access to patch memory,
allowing multiple values to be retrieved and compared quickly. It can also
be used for efficiently computing histogram bins.

Convolution MAC The second specialized functional unit is a
convolution multiply accumulate (CMAC) unit. The CMAC unit
takes two floating vectors and performs an inner product operation
on them, as shown in Figure 6. This operation is performed in
SIFT and HoG for image preprocessing and for vector normaliza-
tion. The vectors are loaded using a bulk load from patch memory
which takes 36 cycles for two 32-entry vectors. Once the vectors
are loaded the CMAC unit can complete a convolution step in 6 cy-
cles. This is up to 96 times faster than an ARM A8 running at the
same clock speed as EFFEX.

Original Code (576 cycles):
for(int i = 0; i<32; i++){
val = kernelfi] * pixelPtr[i];
accum +=val;

Optimized Code (6 cycles):
accum =__cmac(x,y,kernel,32)

0] A[1] 1] A[31] B[31]

Lo elle
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Figure 6: Convolution MAC Unit This unit is a MAC that takes vectors
from patch memory and implements fast convolutions. This unit is used in
SIFT for preprocessing and HoG for vector normalization.

Gradient Unit Both SIFT and HoG have many image gradient
computations while building the feature descriptors. We have in-
cluded the gradient functional unit, illustrated in Figure 7, to speed
up this computation. This functional unit computes the gradient
of an image patch using a Prewitt version of the Sobel convolu-
tion kernel [3]. The unit operates on single-precision floating point
data, and it is able to compute the gradient in both the x and y di-
rections at the same time. The gradient unit uses patch memory to
quickly load pixel operands from memory based on a pixel address
operand for the gradient instruction. The gradient unit is able to
perform both the = and y gradient operation for a 323 pixel patch
in 33 cycles which is a speedup of 3.57 over an execution on an
ARM A8 processor running at the same clock speed.

4.3 Patch Memory Architecture for Fast Pixel
Access

Feature extraction algorithms generally inspect 2D regions of an
image, leading to high spatial locality in accesses. However, this

Original Code (118 cycles):
GradientX = Image[x+1][y+1]-Image[x-1][y+1];
GradientX += Image[x+1][y]-Image[x-1][y];
GradientX += Image[x+1][y-1]-Image[x-1]J{y-1];
GradientY = Image[x+1][y+1]-image[x-1]fy-1];
GradientY += Image(x]j[y+1]-lmage[x][y-1];
GradientY += Image(x-1][y+1]-Image[x-1]{y-1];

Alx+1,y+1) Alx-1,y+1) Gx | Alx+1ly+1) | A(x+1ly-1) Gy
o W =

Optimized Code (33 cycles):
__gradient(x,y)
GradientX = Gx;
GradientY = Gy;

+ .

Alx+1,y) A(x-1,y) A(X:Kﬂ) Alx,y-1)
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Figure 7: Gradient Unit This unit uses access to patch memory to
quickly compute the gradient at a pixel location. This unit computes the
x and y gradient at the same time. This unit is used frequently in SIFT and
HoG. It is a small SIMD engine interfaced to patch memory architecture.

spatial locality is relative to the 2D space of pixel locations. The
traditional approach of a scan-line ordered layout of pixels in mem-
ory, as illustrated in the left image of Figure 8, is an inefficient way
to store pixel data. Access to pixel data in scan line order results in
image data residing in multiple DRAM rows which leads to long
latencies and wasted energy.
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=

PRI
SIISITIISIT IS SIS
IR

Figure 8: Patch Memory Access Pattern This figure illustrates the stor-
age of image data in traditional DRAM (left) and our patch based DRAM
(right). Each color/pattern is a different DRAM row containing data. In tra-
ditional DRAM storage, a single sliding window will access a large number
of different DRAM rows, while in patch-based memory the window only
accesses at most four DRAM rows for a reasonably sized window.

The patch memory architecture is a memory system design that
combines hardware and software optimizations to significantly speed
up access to pixel data. Software is optimized to store pixel data
in region-order. In our design regions are defined as small two-
dimensional patches of pixels that are n pixels wide by m pixels
high which fit evenly within a single DRAM row, resulting in the
memory layout shown in the right image of Figure 8. Any access to
a single memory patch typically only requires reading one DRAM
row, and subsequent reads of nearby patches can often be serviced
out of the DRAM row buffer. When the region accessed spans the
boundaries of the region-ordered memory, multiple DRAM rows
may need to be accessed. As such, multiple DRAM row buffers
(four in our design) are desired to ensure that data is quickly avail-
able.

Image data access requires translation of the pixel location to
a memory address, an operation typically performed in software.
Calculating addresses in patch memory requires a similar amount
of computation. Given the high frequency and irregularity of pixel
accesses in feature extraction, we provide special patch memory
instructions and hardware support to convert an integer (x, y) pixel
address quickly into its corresponding patch memory address, as
illustrated in Figure 9. The specialized address generation unit
checks if subsequent accesses are in the same memory patch, and in
this case omits an unnecessary recomputation of the pixel address.

5. PERFORMANCE ANALYSIS
5.1 EFFEX Performance Model

We simulated our system using a technique similar to Graphite [17].
‘We modeled the EFFEX architecture using an ARM A8 like custom
model for the complex cores, and an ARM A5 (with floating point)
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pixelVal = ImagePtr+ y*stepwidth*4+x*4 pixelVal = __patchMem(x.y)
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Figure 9: Patch Memory Address Computation This figure shows
the logic required to compute the patch memory DRAM address based on
the pixel x and y coordinates. Using this address computation method the
memory can automatically place the data in the optimal access pattern for

many of the feature extraction algorithms.
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model for the simple cores, all running at 1 GHz. Each simulated
processor contained a CMAC, OTM compare unit, and Gradient
Unit along with a patch memory controller. The memory system
was modeled such that each core had a local cached private mem-
ory and uncached access to the main shared memory. The intercon-
nect between the cores was modeled as a mesh network. Table 1
lists the basic configuration parameters.

We modeled shared and local memory using a custom memory
simulator with support for 16 pixel by 16 pixel patch memory in the
local memories, and a traditional row-oriented DRAM architecture
for the main shared memory. Power estimates for the memory sys-
tem were implemented using activity counters, similar to the ap-
proach in Wattch [4]. To gauge power and area estimates for the
application-specific functional units, they were synthesized from
Verilog using Synopsys synthesis tools for a 65 nm process node.
The CMAC unit is based on the work in [12]. The area overhead
of the EFFEX cores can be seen in Table 2. The base complex and
simple core areas and power were based on [2] and [1], respec-
tively. For comparison, we modeled an embedded GPGPU simi-
lar to the PowerVR SGX family [16] with an 8-thread embedded
GPGPU (2 sets of 4 threads) running at 110 MHz.

Table 1: EFFEX Configuration
Configuration

Feature

Core Clocks: 1 GHz
Complex Core: 32 bit RISC in-order
2-way superscalar

Complex Pipeline: 13-Stage

Complex Local Cache: 32k instr. and data
256k unified L2

Simple Core: 32 bit RISC in-order

Simple Pipeline: 8-Stage, single issue

Simple Local Cache: 16k instr. and data

Local Memory Clock: 1GHz

Local Memory Size: 16MB

Shared Memory Clock: 500MHz

Complex Core Shared Mem. Size: 64MB
Simple Core Shared Mem. Size: 24MB

Total Shared Memory Size: 256MB
Memory Bus Width: 128 bits
Processor Interconnect: Mesh

Table 2: Area estimates for the EFFEX 9-core processor These esti-
mates assume a 65 nm silicon process.

Module |Area (mm?2)
One-to-many Compare 0.0023
Gradient Unit 0.0034
Convolution MAC 0.5400
Total for functional units per core 0.5457
Complex Core 4.0000
Simple Core 0.8600
Total for 9 Core EFFEX 15.8000
SIMD Complex core w/o EFFEX 6.0000
Normal Complex core w/Embedded GPGPU 16.5000

5.2 Benchmarks

The computer vision algorithms analyzed were the FAST, HoG,
and SIFT feature extraction algorithms. The base implementations
for SIFT, HoG and FAST are from [11], [8], and [21], respectively.
We modified the algorithms to expose explicit parallelism for our
heterogeneous multicore. For test inputs, we randomly selected fif-
teen 1024x768 images as a data set. The algorithms were compiled
for Linux using the GNU GCC compiler set to maximum optimiza-
tion. All GPGPUs used the CUDA SIFT implementation from [26].

The algorithms were transformed into multithreaded versions by
splitting the algorithms into phases at logical serialization points.
Within a phase the image processing was split into regions, and
each thread performed computation on a separate region. Each
thread was assigned to a different core with synchronization per-
formed using barriers in shared memory.

We simulated all the algorithms running on: i) a single complex
core without EFFEX functional units, ii) a complex core with EF-
FEX functional units, and iii) an EFFEX with a complex core and
a variable number of simple cores. We also ran the SIFT algorithm
on i) a 65 nm 1.2 GHz NVIDIA GTX260, ii) a 45 nm 2.67 GHz
Intel Core 2 Quad Q8300 with 8 GB of RAM and iii) a simulated
110 MHz embedded GPGPU. We simulated the embedded GPGPU
with the aid of an NVIDIA GT210.

5.3 Simulation Results

Figure 10 shows the speedup that EFFEX achieves over a sin-
gle complex core lacking SIMD and the EFFEX enhancements.
The plot shows that EFFEX is capable of achieving a significant
speedup over a basic embedded processor. It also shows that for
SIFT and FAST, adding 4-way 32 bit floating point SIMD instruc-
tions to EFFEX has negligible impact on the speedup. The speedup
in HoG increases more with SIMD because SIMD instructions speed
up a portion of the algorithm that the EFFEX enhancements do not.
This shows that EFFEX can extract enough parallelism that there is
typically not much need for SIMD. In the remaining experiments
EFFEX is configured without SIMD support.
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Figure 10: 9-Core EFFEX Speedup The left graph shows the speedup
of a 9-Core EFFEX configuration without general SIMD support for three
algorithms versus a single complex core without EFFEX enhancements.
The graph on the right shows the same comparison but for a 9-Core EFFEX
with general SIMD instruction support as well.

Figure 11 demonstrates that as the number of simple cores in-
creases, so does the performance of EFFEX. It can be seen that at
around 4 total cores the EFFEX solution begins to outperform the
embedded GPGPU. This is due primarily to the efficiency of the
vector reduction operations that EFFEX performs, which run much
less efficiently on the embedded GPGPU.
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Figure 11: Scalability for SIFT Running on EFFEX This graph shows
the scalability of the EFFEX cores running SIFT when compared to a com-
plex embedded core (without EFFEX enhancements) and an embedded
GPGPU.

The 9-Core EFFEX solution has slightly less area than a typ-



ical embedded core combined with an embedded GPGPU; how-
ever, Figure 11 confirms that the EFFEX solution has higher per-
formance. EFFEX maintains higher performance due to the ability
that each core can take a divergent control path without hinder-
ing the performance of another core and due to the tighter inter-
processor integration afforded by EFFEX.

The performance-cost benefits of EFFEX versus other comput-
ing solutions can be seen in Figure 12. This plot shows the per-
formance of the various designs (in frames processed per second)
per unit of cost (either silicon area or power). Clearly the EFFEX
solution is capable of providing a higher performance per unit cost
than other solutions, making the EFFEX design particularly attrac-
tive for cost sensitive embedded targets. This result is due primarily
to the efficiency of the vector reduction instructions and the patch
based memory. We found that the patch memory architecture al-
lows for a decrease in the total number of cycles while also de-
creasing the total energy. For example for a run of FAST the num-
ber of memory cycles decreased from 39 million to 937 thousand
while the energy went from 6 J to 12 mJ. This provides a significant
performance boost at very low cost.
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Figure 12: EFFEX Normalized Performance Running SIFT This
graph shows the normalized performance of EFFEX when compared to
other computing solutions. EFFEX outperforms embedded single cores,
embedded GPGPUs, desktop CPUs, and desktop GPUs when the perfor-
mance is normalized by cost. The performance here is measured by the
number of 1024x768 frames processed per second.

Figure 13 shows a Pareto chart comparison of various computing
solutions using the metrics of execution time per frame and over-
all cost (area * power). In the Pareto chart, better designs are in
the lower left of the chart, as these designs have faster frame rates
and lower overall cost. Area * power is used for the x axis be-
cause it captures two key cost factors into a single metric. The
figure shows that while the embedded solutions are not as fast as
the desktop GPU and CPU, they are far less expensive in terms of
cost. Furthermore, a 9-core EFFEX is cost effective and has the
fastest frame rate for the embedded solutions.
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Figure 13: Performance versus Overall Cost Running SIFT This
graph shows the performance and area and power cost for various com-
puting solutions. The cost is measured in area * power on the x axis while
execution time is along the y axis. In this study the desktop CPU and GPU
are faster but their power and area make them unattractive for the embed-
ded space. In the embedded space, the 9-core EFFEX has the highest frame
rate, making it a very a cost-effective solution.

6. CONCLUSIONS

We have analyzed the execution characteristics of three common
feature extraction algorithms: FAST, HoG, and SIFT. Using this
analysis, we presented EFFEX, an efficient heterogeneous multi-
core architecture that utilizes specialized functional units and an

optimized memory architecture to significantly speedup feature ex-
traction algorithms on embedded mobile platforms. We presented
three specialized functional units in our design, including a one-to-
many compare, convolution and gradient functional units that can
take advantage of our patch memory architecture. Our application-
specific heterogenous multicore is capable of improving the perfor-
mance of embedded feature extraction by over 14x in some cases.
We have shown that our architecture is more cost effective than a
wide range of alternative design solutions, and it effectively exe-
cutes a wide variety of feature extraction algorithms.

We are currently pursuing multiple future directions for this work.
We are working to expand EFFEX’s coverage of computer vision
algorithms to include the machine learning based algorithms used
to analyze extracted features. We are also investigating multiple
techniques to further improve pixel memory performance.
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