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Multimodal Video Indexing and Retrieval
Using Directed Information

Xu Chen, Alfred O. Hero, III, Fellow, IEEE, and Silvio Savarese

Abstract—We propose a novel framework for multimodal video
indexing and retrieval using shrinkage optimized directed infor-
mation assessment (SODA) as similarity measure. The directed
information (DI) is a variant of the classical mutual information
which attempts to capture the direction of information flow that
videos naturally possess. It is applied directly to the empirical
probability distributions of both audio-visual features over suc-
cessive frames. We utilize RASTA-PLP features for audio feature
representation and SIFT features for visual feature represen-
tation. We compute the joint probability density functions of
audio and visual features in order to fuse features from different
modalities. With SODA, we further estimate the DI in a manner
that is suitable for high dimensional features and small sample
size (large small ) between pairs of video-audio modalities.
We demonstrate the superiority of the SODA approach in video
indexing, retrieval, and activity recognition as compared to the
state-of-the-art methods such as hidden Markov models (HMM),
support vector machine (SVM), cross-media indexing space
(CMIS), and other noncausal divergence measures such as mutual
information (MI). We also demonstrate the success of SODA in
audio and video localization and indexing/retrieval of data with
missaligned modalities.

Index Terms—Audio-video pattern recognition, multimedia con-
tent retrieval, multimodal feature fusion, nonlinear information
flow, overfitting prevention, shrinkage optimization.

I. INTRODUCTION

I N large-scale video analysis, mutual dependency between
pairs of video documents is usually directed and asym-

metric: past events influence future events but not conversely.
This is mainly because purposeful human behavior generates
some of the most highly complex nonlinear patterns of directed
dependency. Moreover, the content of a video is intrinsically
multimodal including visual, auditory, and textual channels,
which provides different types of channels to convey the
meaning of multimedia information to users [31]. For example,
it would be difficult to reliably distinguish action movies from
detective movies if only the visual information is considered.
Combining evidence from multiple modalities for video in-
dexing and retrieval has been shown to improve the accuracy in
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several applications, including combining overlay text, motion,
and audio [7], [14]. To cater to these diverse challenges and
applications, model-free information theoretic approaches have
been previously proposed to discriminate complex human
activity patterns but have only had limited success. What is
needed is a different measure of information that is more
sensitive to strongly directed nonlinear dependencies in human
activity events with different modalities. This paper proposes
such a measure, directed information (DI), and introduces a
DI estimation approach, shrinkage optimized directed infor-
mation assessment (SODA), that is well suited to the high
dimensional setting of recognition, indexing, and retrieval
of human activity by fusing the information from different
modalities in a video document. Since a single modality does
not provide sufficient information for accurate indexing, the
DI estimator is adapted to fusion of features from the multiple
modalities. The DI is conceptually straightforward, is of low
implementation complexity, and is optimal in the mean-square
sense over the class of regularized DI estimators. The DI
reduces to the log of Granger’s pairwise causality measure
under the assumptions that the multivariate video features
are stationary and Gaussian. Furthermore, our experiments
demonstrate that the performance of the fusion algorithm based
on DI on indexing/retrieval tasks and activity recognition tasks
is superior to previously proposed methods based on hidden
Markov models, (symmetric) mutual information, cross-media
indexing space, and SIFT-bag kernels.

The proposed SODA approach is a natural evolution of pre-
vious information theoretic approaches to video event analysis.
Zhou et al. [38] proposed the Kullback-Leibler divergence as a
similarity measure between SIFT features for video event anal-
ysis. The work [19] by Liu and Shah applied Shannon’s mutual
information (MI) to human action recognition in videos. The
work [7] by Fisher and Darrell utilizes mutual information be-
tween pairs of audio and video signals for cross-modal audio
and video localization. Sun and Hoogs [33] utilized compound
disjoint information as a metric for image comparison. How-
ever, the similarity measures used by these methods do not ex-
ploit the transactional nature of human behavior: people’s cur-
rent behavior is affected by what they have observed in the past
[8]. The proposed SODA approach is specifically designed to
exploit this directionality in information flow under a minimum
of model assumptions.

SODA fuses audio-visual signals by estimation of the joint
probability distribution of audio and visual features. Thus,
our SODA estimator is completely data-driven: different from
event and activity recognition approaches based on key regions
detection [15], Markov chains [13], graphical model-based
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Fig. 1. Block diagram of shrinkage optimized directed information (SODA) for fusion of audio and visual features for video indexing.

Fig. 2. Visual illustration of the process of fusing audio and visual features where the visual features are obtained from a visual codebook using bag of words
(BOW) based on SIFT features. The joint probability density functions which define DI are estimated from multidimensional histograms computed from these
cubes obtained from audio features and visual features by counting the number of instances (black square in the figure) falling into each subcube.

learning [22], or fusion algorithms based on semantic features
[12], it relies solely on a nonparametric regularized estimate
of the joint probability distribution. Like other nonparametric
approaches to indexing/retrieval and event recognition [19],
[25], [34], [37], [38], it differs from other model-based methods
for multimodal integration such as hidden Markov models
(HMM) [14], [26], [36]. Using TRECVID 2010 human activity
video databases, our experiments show that SODA performs
indexing and retrieval significantly better than SVM [18] and
MI [19] approaches. We also show that SODA outperforms
HMM models for activity recognition.

As an analog of Shannon’s MI, the DI was initially introduced
by Massey in 1990 [21] as a variant of mutual information that
can account for feedback in communication channels. The DI
has been applied to the analysis of gene influence networks [28].
As far as we know, this paper represents the first application of
DI to multimodal video indexing and retrieval. Due to the in-
trinsic complexity of audio and visual features and high dimen-
sionality of the joint feature distribution, the implementation of
the DI for fusion of audio and visual features is a challenging
problem. In particular, as explained below, a standard empirical
implementation of DI estimator suffers from severe overfitting
errors. We minimize these overfitting errors with a novel esti-
mator regularization technique.

Similar to MI, DI is a function of the time-aggregated feature
densities extracted from a pair of sequences shown in Fig. 1. We
use the popular relative spectra transform-perceptual linear pre-
diction (RASTA-PLP) for speech feature representation [10],
[11] due to their superiority in smoothing over short-term noise

variations. We utilize SIFT features for visual feature represen-
tation [20], due to their invariance to image scale, rotation, and
other effects, and the bag of visual words (BOW) model [24]
for representing image content in each frame. Implementing
DI requires estimates of the joint distribution of the merged
RASTA-PLP and bag of words based on SIFT features. Fig. 2
illustrates the details of the feature fusion. To estimate these
high dimensional feature distributions, we apply James-Stein
shrinkage regularization methods. Shrinkage estimators reduce
mean-squared error (MSE) by shrinking the histogram towards
a target, e.g., a uniform distribution. Such a shrinkage approach
was adopted by Hauser and Strimmer [9] for entropy estima-
tion. We extend this approach to DI, obtaining an asymptotic
expression for the MSE, and use this expression to compute an
optimal shrinkage coefficient. The extension is nontrivial since
it requires an approximation to the bias and variance of the more
complicated directed information function.

It is helpful to note that our proposed SODA has advantages
over the classical Granger measures of causal influence between
two random processes [2], [16], [27]. Different from SODA,
Granger causality [16] tends to capture causal influence by com-
puting the residual prediction errors of two linear predictors:
one utilizes the previous samples of both processes and an-
other utilizes only the previous samples of one of the processes.
The original Granger causality measure [16] was limited to sta-
tionary Gaussian time series. These assumptions are slackened
in later versions. However, due to nonstationarity and nonlin-
earity of the dependency structure of interesting human activi-
ties, classical Granger measures are suboptimal. Our SODA ap-
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proach can be viewed as an optimized nonparametric and non-
linear extension of parametric and linear Granger measures of
causality. SODA accounts for nonlinear dependencies while re-
ducing to the classical Granger measure in the case that the pro-
cesses are jointly Gaussian.

We show experimental results on the TRECVID 2010 video
databases that demonstrate the capabilities of SODA for ac-
tivity recognition, indexing and retrieval, and video-audio tem-
poral and spatial localization. Specifically we show: 1) Use of
SODA as a video indexing/retrieval similarity measure results
in at least 7% improvement in precision-recall performance as
compared to unregularized DI, PCA regularized DI, MI, SVM,
and cross-media indexing as measured by the area under the
curve (AUC) of the precision-recall curve. 2) By plotting the
evolution of the DI over time, we can accurately localize the
emergence of strongly causal interactions between activities in
a pair of videos. The DI’s activity recognition performance is
as good as or better than HMM-based fusing algorithms for
audio-visual features whose emission probabilities are imple-
mented with Kernel Density estimates (KDE) or Gaussian mix-
ture models (GMM). 3) SODA improves in terms of average
precision by more than 8% compared to MI when used for spa-
tial temporal similarities in localizing audio and video signals.

II. RELATED WORK

Extensive research efforts have been invested in multimodal
video indexing and retrieval problems. Early work on multi-
modal video indexing used SVM and HMM approaches to mul-
timodal video indexing [14], [18]. The authors in [14] propose
different methods for integrating audio and visual information
for video classification of TV programs based on HMM. In
[18], text features from closed-captions and visual features from
images are combined to classify broadcast news videos using
meta-classification via SVM. Recently, Snoek and Worring [32]
proposed the time interval multimedia event (TIME) framework
as a robust approach for classification of semantic events in mul-
timodal video documents. The representation used in TIME ex-
tends the Allen temporal interval relations [1] and allows for
proper inclusion of context and synchronization of the heteroge-
neous information sources involved in multimodal video anal-
ysis. More recently, the authors in [35] and [39] used semantic
correlations among multimedia objects of different modalities
for cross-media indexing. In cross-media indexing and retrieval,
the query examples and retrieval results need not be of the same
media type. For example, users can query images by submitting
either an audio example or an image example in cross media re-
trieval systems. In [39], a correlation graph is built for the media
objects of different modalities and a scoring technique is uti-
lized for retrieval. In [35], for each query, the optimal dimension
of cross-media indexing space (CMIS) is automatically deter-
mined from training data and the cross-media retrieval is per-
formed on a per-query basis. In [29], Rasiwasia et al. resolved
the problem of jointly modeling the text and image components
of multimedia documents. Correlations between the two com-
ponents are learned using canonical correlation analysis and ab-
straction is achieved by representing text and images at a more
general, semantic level. It is shown in [29] that accounting for

both crossmodal correlations and semantic abstraction improve
retrieval accuracy. Unlike the above papers, this paper uses a
generalized measure of correlation, the directed information,
between multimodal (audio and video) data streams to achieve
better classification and retrieval performance.

III. PROBLEM FORMULATION

Here we propose a DI estimator that is specifically adapted
to video and audio sources. Given discrete features and ,
we use the multidimensional histogram for the fusion of SIFT
and RASTA-PLP features. Continuous features are discretized
by quantization over a codebook. The dimension of the joint
feature distribution must be sufficiently large to adequately rep-
resent inter-frame object interactions as well as capture the vari-
ability of appearance and audio across videos within the same
class [23]. This high dimension would lead to high variance DI
estimates unless adequate countermeasures are taken. We pro-
pose using an optimal regularized DI estimation strategy to con-
trol estimator variance.

The feature fusion is implemented for BOW based on SIFT
and RASTA-PLP features in each video frame as shown in
Fig. 2. For a single frame, the codebook has an alphabet of
symbols corresponding to quantization cells
(classes) . The codebook produces the th symbol

when the feature lies in quantization cell , .
For a video sequence , the code-
book for the joint feature distribution has output levels in

and quantization cells . For
a particular frame sequence , let there be i.i.d. feature
realizations and let denote the histogram of
these realizations over the respective quantization cells. Then

is multinomial distributed with probability mass function

where is a vector of class proba-
bilities and , .

We consider two multimodal video sequences and
with and frames, respectively. Denote by

and the audio and
visual feature variables extracted from the th frames of and

, respectively, where the audio-visual feature is obtained by
estimating the joint distribution of the audio and visual features.
Define and for
audio features. and
for visual features. Further define and

for fused features. The MI between and
is

where

is the joint distribution for fusion of the audio and video
features for both the sequences and , and

and are
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joint distributions of audio-visual features for each sequence.
The time-aligned DI from to is a nonsymmetric general-
ization of the MI defined as [21]

(1)

where , is the con-
ditional MI between and given the past

(2)

and denotes the conditional distribution of random
variable given random variable . An equivalent represen-
tation of DI (1) is in terms of conditional entropies

which implies that the DI is the cumulative reduction in un-
certainty of frame when the past frames of are
supplemented by information about the past and present frames

of . Using the equivalent representation of DI (1) in
terms of unconditional entropy

(3)

the DI can be computed explicitly from the entropy expression
for a multinomial random variable over classes with class
probabilities

with representing one of the four vectors
, or . To

estimate the DI in (3), the vector of multinomial parameters
must be empirically estimated from the audio and video

sequences. However, due to the large size of the codebook, the
multidimensional joint feature histograms are high dimensional
and the number of unknown parameters exceeds the
number of feature instances . A plug-in maximum likelihood
(ML) estimator for in the expression (3) will therefore suffer
severely from high variance due to this high dimensional DI.
Specifically, given realizations of the audio-visual
feature vector , the ML estimator of
the th class probability is ,

. Since , most ’s will be
equal to zero, leading to overfitting error.

To mitigate high variance, we apply a James-Stein shrinkage
approach. A related approach was adopted in [9] for entropy and
MI estimation, which is based on shrinking the ML estimator of

towards a target distribution as

(4)

where is a shrinkage coefficient. The James-Stein
plug-in entropy estimator is defined as

(5)

The corresponding plug-in estimator for DI is simply

, where is selected to optimize
DI performance. The oracle value of minimizes estimator
MSE:

(6)

The oracle SODA estimator is . The MSE
in (6) can be decomposed as .
The theoretical expressions for bias and variance, given Propo-
sitions 1 and 2 in the Appendix, will be used to determine the
relationship between MSE and the shrinkage coefficient . The
oracle can then be calculated by minimizing

over , where expressions
for are given in Propositions 1 and 2. The oracle
shrinkage parameter is determined by applying a gradient
descent algorithm to numerically minimize the MSE. It can be
shown that the oracle shrinkage parameter in (6) converges
to 0 with increasing numbers of samples . As is customary in
James-Stein approaches, an empirical estimate of the oracle
is obtained by replacing each of the terms with
their empirical maximum likelihood estimates. We call this em-
pirical estimator of the optimal shrinkage parameter.

IV. IMPLEMENTATION OF SODA INDEXING/RETRIEVAL

AND RECOGNITION ALGORITHM

A simple flow chart of our implementation of SODA for
indexing and retrieval is shown in Fig. 1. For both indexing,
retrieval and recognition, we estimate the DI by James Stein
plug-in estimation as follows. The pairwise DI, defined in (3),
is estimated using the shrinkage estimator (4) of the multi-
nomial probabilities, where the optimal shrinkage parameter
(6) is selected to minimize the asymptotic expression for the
MSE, represented as the sum of the square of the asymptotic
bias and the asymptotic variance given in Proposition 2 in
the Appendix. The nearest neighbor algorithm is applied to a
symmetricized version of the DI similarity measure to index
the video database. Indexing refers to organization of the video
corpus according to the nearest neighbor graph over videos
using the DI as a pairwise video distance. For retrieval, reverse
nearest neighbors are used to find and rank the closest matches
to a query. Precision is the fraction of retrieved instances that
are relevant, while recall is the fraction of relevant instances
that are retrieved. Once the DI optimal shrinkage parameter
has been determined, the local DI is defined similarly to the
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DI except that, for a pair of videos and , the videos are
time shifted and windowed prior to computing the DI via (3).
Specifically, let , be the
respective time shift parameters, where is
the sliding window width, and denoted by , the time
shifted videos. Then the local DI, , defines a
surface over and the summation indices in (3) range over
smaller sets of time samples. We use the peaks of the local
DI surface to detect and localize common activity in the pair of
videos. As a quantitative measure, we will assign a p-value to
the MI and DI. The p-value is defined as the critical threshold
that would lead to the rejection of the null hypothesis [4]. The
test statistic is computed as

(7)

where is the time index in the video sequence. In this work,
we utilize both of central limit theorem relying on Proposition
2 and bootstrap resampling to calculated p-values, where the
Proposition 2 is presented in the appendix and the overall boot-
strap based test procedure is as follows.

1) Repeat the following procedure times
:

• Generate resampled (with replacement) versions of the
times series , denoted by , , respectively.

• Compute the statistic
.

2) Construct an empirical cumulative distribution function
(CDF) from these bootstrapped sample statistics, as

,
where is an indicator random variable on its argument .

3) Compute the true detection statistic (on the original time
series) and its corresponding p-value

under the empirical null distribution
.

This can be applied to each peak in Fig. 4 to specify the
p-value.

V. EXPERIMENTAL RESULTS

In this section, we provide results illustrating the potential of
SODA for indexing/retrieval, activity recognition, and audio and
video localization using public-domain human activity video
databases. We first illustrate the DI’s capability to detect and lo-
calize common activity in pairs of videos (Figs. 6 and 5), pairs
of audio and video sequences (Fig. 4 and Table I), and quantify
its activity recognition performance relative to HMM activity
recognition methods (Table II). We then give quantitative results
demonstrating that the proposed SODA indexing and retrieval
method has improved precision/recall performance as compared
to other methods including indexing/retrieval algorithms imple-
mented with MI, Granger causality, cross media indexing space
[35], SIFT-bag kernels [38], and SVM (Fig. 7 and Table III).

TRECVID database used in experiments: To illustrate and
compare these methods, we use the TRECVID 2010 corpus
for our experiment. The activity-annotated video dataset con-
tains video clips of human activities including: people walking;
meeting with others; talking; entering and exiting shops; playing

ballgames. A total of 6320 video sequences from 85 different
events were used in the following experiments. Each video se-
quence contained 350 video frames on average. Whenever we
report performance comparisons in the following experiments,
half of the videos were randomly selected for training and cross-
validation and the remainder were used for testing.

Feature fusion: For audio features, perceptual linear pre-
diction (PLP) is a technique of warping spectra to minimize
the differences between speakers while preserving the impor-
tant speech information [10]. RASTA is a separate technique
that applies a band-pass filter to each frequency subband so as
to smooth over short-term noise variations and to mitigate ef-
fects of static spectral coloration in the speech channel [11]. The
output of RASTA-PLP audio feature extraction is a 39 by fea-
ture matrix where is determined by the length of audio sig-
nals and is selected to be 350 in our experiment. The visual fea-
tures are obtained from a visual codebook using BOW. The vi-
sual codebook is constructed using the k-means algorithm [24],
which is used to quantize the SIFT features into codewords (with

ranging from 300 to 800 clusters). The codebook is estimated
using a training set of videos in the database. In the implemen-
tation, we have 500 codewords for SIFT features due to its best
recognition performance. Thus, for frames, we have a cube
for joint feature representation with size , where
here is 350. The joint probability density functions which
define DI and local DI are estimated from multidimensional
histograms computed by counting the number of observed in-
stances in the frames occurring in each cube.

Investigation of competing algorithms: We compare the ac-
tivity recognition performance of DI with that of an HMM pro-
posed for video classification with integration of multimodal
features in [14]. A discrete HMM is characterized by

, where is the state transition probability matrix,
is the observation symbol probability matrix, and is the initial
state distribution. We first train , where is
the number of classes and here . For each observation se-
quence , we compute and the classification is based
on the maximum likelihood of . In [14], by assuming
that features are independent of each other, they train an HMM
for the audio and visual modalities separately. The observed se-
quences of different features are applied into the corresponding
HMM. The final observation probability is computed as

(8)

where . is the state
transition probability matrix for audio features and is for
visual features. Similar notations are used for . Specif-
ically, for the GMM given 1039 training video sequences, we
implement the HMM by estimating the emission probability of
the distribution of audio or visual features with GMM. We then
implement the Baum-Welch algorithm with 50 iterations to es-
timate the parameters of the GMM model governing frames in
each activity class. For a test video, activity is detected and clas-
sified using maximum likelihood. In the more recent work of
[26], non-parametric kernel density estimation (KDE) is used to
estimate emission probability and the authors demonstrate im-
provement over parametric Gaussian mixture models for action
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recognition. We therefore also compare with HMM using KDE
estimates of emission probability.

The indexing/retrieval performance of the DI will be com-
pared to that of our implementations of three state-of-the art ap-
proaches [18], [35], [38]. In [18], they investigate a meta-clas-
sification combination strategy using support vector machine.
Compared with a probability-based combination strategy like
our work, the meta-classifiers learn the weights for different
classifiers. Our SVM implementation is based on libsvm and
we use C-SVM with a radial basis function kernel [5]. In [35],
the semantic correlations among multimedia objects of different
modalities are learned. Then the heterogeneous multimedia ob-
jects are analyzed in the form of multimedia document (MMD)
and indexing is performed in the cross-media indexing space. In
[38], the Kullback-Leibler divergence was used as a similarity
measure between SIFT features for video event analysis. We
also compare the DI measure to the standard Granger causality
measure, implemented with Ledoit-Wolf covariance shrinkage
[17] to control excessive MSE. Finally, to show the advantage of
shrinkage estimation for stably estimating the DI, we compare
to a version of DI that uses PCA instead of shrinkage. PCA can
be interpreted as a form of regularization that uses hard thresh-
olding instead of shrinkage.

A. Multimodal Activity Recognition and Localization

Audio and video localization: In multimodal video activity
recognition, we need to first solve the correspondences between
audio and video data. We demonstrate the application of SODA
for audio and video localization. Namely, given the dataset with
different speech signals and video signals, SODA is capable of
determining the spatial and temporal correspondence between
the speech signals and video signals by calculating the directed
information between the pairs of speech signal and video sig-
nals. In the work by Fisher and Darrell [7], they proposed an ap-
proach based on maximum mutual information for cross-modal
correspondence detection. They utilize the mutual information
and regularization terms as follows:

(9)
where the last term derives from the output energy constraint
and is the average autocorrelation function (taken over
all images in the sequences); and are projection func-
tions mapping the audio and video signals into low dimensional
spaces; and , , and are scalar weighting terms. Different
from [7], we define our localization criterion with SODA as

(10)

We evaluate the audio and video localization with 570 speech
signals and the corresponding video signals for people talking.
We compare the performance with mutual information de-
scribed in [7] and show the results as a confusion matrix in
Table I, where the left value in the elements of confusion matrix
represents the accuracy of DI-based localization and the right
represents the accuracy of MI-based localization. As shown in
Table I, the temporal localization accuracy with DI consistently
outperforms the MI-based localization, which demonstrates the
competitive performance of SODA for temporal localization.

Fig. 3. Visual illustration of audio and video temporal localization, where
SODA is able to localize the time of two people talking in two video sequences.
AUTHOR: PLEASE CITE FIG. IN BODY OF PAPER.

We achieve more than 8% average precision compared to
maximum mutual information as shown in Table I. To imple-
ment spatial localization, we first localize objects in the video
frames using the method of object detection and mode learning
described in [6]. The detection method uses strong low-level
features based on histograms of oriented gradients (HOG) and
efficient matching algorithms for deformable part-based models
(pictorial structures). Here the localized objects are people.
Using SODA, we calculated the directed information between
the visual features in the bounding boxes and audio features.
As shown in Fig. 4, the top row presents four frames from a
video sequence with two speakers in the TRECVID dataset. In
the first and the fourth frames, the man is speaking, while in the
second and third frames, the woman is speaking. The measure
using the p-value for SODA shown in the bottom row for each
frame correctly detects who is speaking and demonstrates the
superiority over the MI-based method by Fisher et al. [7].

Activity recognition and localization: In Table II, we com-
pare the activity recognition performance of DI to that of the
HMM implemented with GMM (first row of table) and KDE
emission probability estimates. For purposes of comparison,
we evaluated performance on the same set of videos as in the
TRECVID 2010 that were used in the experiments of [14] and
[26]. Video is digitized at 10 frames per second and at 240 by
180 pixels per frame and audio is sampled at 22.05 KHz and
16 bits per sample. The table indicates DI outperforms HMM
in terms of activity recognition. This improvement might be
attributed to the presence of model mismatch and bias in the
HMM model as contrasted to the more robust behavior of the
proposed model-free shrinkage DI approach.

We next show an anecdotal result suggesting that local DI
is capable of identifying common activities in a pair of videos.
Typically, the local DI with fusion of visual and audio features
further improves the true positives and reduces the false alarm
compared to the DI approach using only visual features. We
selected two videos from the TRECVID 2010 dataset: “Two
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TABLE I
CONFUSION MATRIX FOR AUDIO-VIDEO LOCALIZATION FOR TRECVID 2010 DATASET WITH DI AND MI, WHERE

THE COLUMNS INDICATE WHICH AUDIO SEQUENCE WAS USED WHILE THE ROWS INDICATE WHICH VIDEO

SEQUENCE WAS USED. CLASSIFICATION IS PERFORMED USING A NEAREST NEIGHBOR CLASSIFIER

Fig. 4. Top row presents four frames from a video sequence with two speakers
in TRECVID dataset. In the first and the fourth frames, the man is speaking,
while in the second and third frames, the woman is speaking. The consistency
measure using SODA shown in the bottom row for each frame correctly detects
who is speaking and demonstrates the superiority over the MI-based method
by Fisher et al. [7], where the vertical axis represents the p-values. The corre-
sponding p-values are annotated at the top of the histograms.

TABLE II
COMPARISONS OF AVERAGE PRECISION (AP) FOR SODA AND HIDDEN

MARKOV MODEL (HMM) WITH GAUSSIAN MIXTURE MODEL (GMM) (� IS

THE NUMBER OF COMPONENTS) AND KERNEL DENSITY ESTIMATION (KDE)
FOR VIDEO RETRIEVAL IN TRECVID 2010 DATABASE

people enter, meet and talk to each other” in different loca-
tions, denoted as and . The local DI from to was
rendered as a surface over , as explained above, and the
peaks on this surface were used to detect and localize common
activities, i.e., activities in that were predictive of activities
in . The local MI is defined similarly to the local DI. The
bubbles (dots) in Fig. 5 occur at the peaks of the log ratio of
pairwise DI and MI, and the size of each bubble is proportional
to the magnitude of the log-ratio of the associated peak. The
figure shows that the DI peaks occur at frames containing strong
common activities and are higher than the MI at those locations.
Moreover, as shown in the figure, by fusion, we remove three
false positives by incorporating the audio signals (red bounding
boxes on the left panel). We strengthen most of the true posi-
tives by providing lower p-values with fusion (gray bounding

Fig. 5. Bubble graph of log ratio of peak values for local DI (left) with only
visual features and (right) with fusion in ���� ��� � between videos
� and � . Here the axes range over � and � , which represent time shift pa-
rameters of the respective video frames, and the sliding window width is � � �
frames. The size of the bubble is proportional to the log ratio of peak values
of DI and MI. Each of the bubbles is annotated by a particular activity and its
p-value. The improvement of p-values with fusion is shown by gray bounding
boxes. The removal of false positives is highlighted by red bounding boxes on
the left panel. The improvement of miss detections is highlighted by the green
bounding box on the right panel.

boxes). In addition, with fusion, we recover one of the miss de-
tections (green bounding boxes on the right panel). For instance,
the peak labeled with reliability value 0.068 in the left figure
disappears in the right figure by adding audio features, it can
be mainly attributed to the fact that audio features have fewer
false alarms and are very helpful for removing false positives.
In the video and audio source, it corresponds to the event that
two people walk through but they did not greet and talk to each
other. Only using visual features is insufficient to discriminate
between two people simple walking past each other versus ex-
changing a greeting. By adding audio signals, the false alarm
is significantly reduced. The peak labeled with p-value 0.031 in
the left figure is significantly reduced to 0.012 by the addition
of audio features in the right figure.

As shown in Fig. 5, the DI detects that the human activity with
strongest interactions is “Meeting”, corresponding to the highest
log ratio (largest bubbles). Lower peaks occurred at other times
of common activity such as “Leaving,” “Walking”. The indi-
cated p-values of DI peaks, computed using the central limit the-
orem for shrinkage DI, Prop. 2., suggest a high level of statistical
significance of these peaks. Using corrected BH procedure with
central limit theorem approximation to p-values [3] applied to
pairs of video sequences shown in Fig. 5 for DI when is equal
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TABLE III
COMPARISON OF AVERAGE PRECISION WITH SODA FOR FUSING AUDIO-VISUAL FEATURES FOR ACTIVITY RECOGNITION FROM TRECVID 2010 DATASET

WHERE AVERAGE PRECISION IS MEASURED BY CORRECT RECOGNITION RATE COMPARED TO THE GROUND TRUTH

Fig. 6. Comparison of temporal trajectories and peak values of local directed
information (DI) by fusing audio and visual features and local DI based on only
audio and visual features versus time for two videos ��� . The true positives
for DI with fusion and false positives for DI with only visual features are high-
lighted. The fusion of DI provides better accuracy to detect and localize frames
in � with strong human interactions. Interactions between different people and
trajectories corresponding to peak values in DI in the events are indicated in
video by bounding boxes.

to 0.05 and 0.1, 8 and 15 peaks are detected. We increase the
number of detections with bootstrap resampling [30] BH pro-
cedure with 1000 samples to 11 and 23, while for MI, 5 and 12
peaks are detected using corrected BH procedure with central
limit theorem when is equal to 0.05 and 0.1. The number of
peaks detected increased to 9 and 19 with bootstrap resampling
BH procedure.

For further illustration, in Fig. 6, we plot the local DI with
fusion of visual and audio features and local DI using only vi-
sual features as temporal trajectories. These trajectories can be
interpreted as scan statistics for localizing common activity in
the two videos. Specifically, the curves in Fig. 6 show slices of
the local DI surfaces evaluated along the diagonal (no
relative time shift between the videos) for another pair of videos
in the “people meet and talk” corpus. Fig. 6 shows that by fusion
of two modalities, we obtain a sharper DI curve (gray curve) as
compared to the curve for local DI using only visual features
(red) or only audio features (blue). Note that at the local peak
value of DI annotated with the visual feature as “two people
walk through but did not talk to each other” as the audio signal
is flat while at the two other peak locations annotated with the
feature “Meeting” it is varying. Therefore, the fusion of audio
and video signal is capable of identifying the false alarm which
cannot be resolved when only visual features are used.

Table III compares the average precision of the proposed
SODA method and the SVM method for the TRECVID 2010
dataset. When there are events with low mutual interaction like

TABLE IV
COMPARISON OF AVERAGE PRECISION WITH SODA FOR FUSING

AUDIO-VISUAL FEATURES FOR ACTIVITY RECOGNITION FROM TRECVID
2010 DATASET VERSUS THE NUMBER FOR SIFT FEATURE CODEWORDS WHERE

AVERAGE PRECISION IS AVERAGED OVER ALL THE ACTIVITIES

“people marching,” and a large number of associated features,
the average precisions of the DI and SVM for retrieval are
similar. However on average, the proposed DI method results in
at least 10% better average accuracy. With fusion of audio-vi-
sual features, we obtain further improvement in recognition of
events like “lecture” or “greeting”, where the audio features
provide important cues in discriminating between them. We
also compare the average precision for activity recognition
using SODA versus the number of codewords for SIFT features
in Table IV. As shown in Table IV, the best recognition per-
formance is achieved when the number of codewords used to
construct SIFT features is 500. When the number of codewords
is larger than 500, the performance deteriorates slightly which
may be due to overfitting.

B. Video Retrieval

Indexing and retrieval of video with misaligned modal-
ities: Next we turn to the application of SODA for indexing
and retrieval of data with misaligned modalities. The imple-
mentation is as follows: 1) Compute marginal DI for the audio
and video signals and detect peaks. 2) Segment the audios and
videos according to peak locations to capture the beginning
and ending points of interactive activity. 3) Compute pairwise
DI on the aligned audio and video segments. 4) Repeat for all
peak locations/segments. Fig. 7 compares precision and recall
performance of SODA to other indexing and retrieval methods.
The experiments were implemented over the entire database
of 6320 videos. As shown in Fig. 7, the proposed DI method
has the best overall performance exhibiting a significantly
better area-under-the-curve (AUC) metric than the competing
methods where AUC is computed by a nonparametric method
based on constructing trapezoids under the curve as an ap-
proximation of area. Compared to the second best method
using cross-media indexing [35], SODA provides more than
7% improvement measured using the AUC of precision and
recall curves. Among these methods, only the Granger method
provides directional measures of information flow. However,
unlike DI, the Granger causality measure is based on a strong
Gaussian model assumption, which may account for its inferior
performance. Fig. 7 also shows that shrinkage regularized DI
is better than PCA regularized DI. We also demonstrate the
average running time for different algorithms for processing
one video sequence using Matlab on a 3-GHz PC in Table V,
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TABLE V
COMPARISON OF THE AVERAGE RUNNING TIME FOR DIFFERENT ALGORITHMS FOR PROCESSING ONE VIDEO SEQUENCE FROM TRECVID 2010 DATASET

Fig. 7. Comparison of precision and recall curves for indexing using SODA
with fusion and only with visual features, SVM with fusion, cross media
indexing [35], mutual information (MI), Granger causality measure with LW
shrinkage (GC-LW) [17], SIFT-bag kernel [38], unregularized DI, DI with
PCA regularization (PCA-DI) where PCA is implemented with a 20% residual
energy threshold. Precision is defined as the fraction of relevant videos among
those retrieved, while recall is the fraction of relevant videos retrieved among
all relevant videos in the database.

where SODA method takes about 6–7 s for processing one
video sequence on average.

VI. CONCLUSION

We proposed a novel framework for multimodal video in-
dexing/retrieval and recognition based on SODA. The proposed
approach estimates the joint PDFs of SIFT and RASTA-PLP
and uses James-Stein shrinkage estimation strategies to con-
trol high variance. Since DI captures the directional informa-
tion that videos and audios naturally possess, it demonstrates
better performance as compared to other symmetric nondirec-
tional methods. We also demonstrate that the proposed SODA
approach improves audio and video temporal and spatial local-
ization and can be used to effectively index data with misaligned
modalities.

APPENDIX A
BIAS AND VARIANCE

Proposition 1: The bias of the directed information esti-
mator with James-Stein plug-in estimator can be represented as

(11)

where .

(12)

(13)
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(14)

Remark: In the above equations, comes from the
dimension of the PDF for and comes from the
dimension of the joint PDF for and .

Proposition 2: The DI with plug-in JS shrinkage es-
timator is asymptotically Gaussian, where the asymptot-
ical mean ,

where ,
,

, The asymptotic variance
is given by , where the first diagonal ele-
ments in are denoted by , the last
diagonal elements in are denoted by . The
nondiagonal elements in in the first rows and the
first columns in are denoted by . The
nondiagonal element in the last rows and the last
columns is denoted by and the rest of them are de-

noted by .
is a vector. Therefore

(15)

where if or

(16)

otherwise

(17)

APPENDIX B
DERIVATION FOR THE BIAS AND VARIANCE

In order to derive the bias and variance of regularized directed
information shown in Proposition 1 and 2, we first compute the
bias of shrinkage entropy estimator. The bias of the entropy es-
timator for features in a single frame with plug-in estimator can
be represented as

(18)

where .
The entropy estimator is asymptotically Gaussian.

The asymptotic mean can be represented as

and the asymptotic variance of the entropy es-
timator with plug-in estimator can
be represented as , where

.
The th diagonal element in the covariance matrix
is and the th row and th column nondiagonal
elements in is . Since the ML estimator of parameter

in the multinomial distribution converges to multivariate
Gaussian distribution for large , using delta method,
asymptotic expressions for variance can be established. We
briefly state the main idea behind delta method here: Let
a consistent asymptotic Gaussian estimator converge in
probability to its true value : . Then
if is a differentiable function, the delta method says that

. Further-
more, in the entropy estimation context, it is easy to show that

, .
Remark: With increasing , the variance decreases for

fixed . For fixed , if the shrinkage coefficient is increasing,
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the square of the bias is increasing and the variance is de-
creasing. Therefore, the optimal choice of provides the
optimal trade-off between the bias and variance by minimizing
the mean square error which is the sum of the square of the
bias and the variance. In the extreme case, when , the
shrinkage estimator boils down to maximum likelihood esti-
mator. In this case, the bias is 0 and the variance is maximized.
We now use the expressions for the bias and variance of entropy
estimator to find the bias and the variance of estimated directed
information. Based on the formulation of directed information
shown in the equation, the directed information can be further
simplified as

(19)

Let us assume the joint distribution of the two sequences
with the length (or states) of and is multi-
nomial distribution with the
frequency parameters . The marginal distribution

for a segment of the two se-
quences with length is also multinomial. Therefore, we can
apply the similar approach as we show for entropy estimation
to compute the bias and variance for the estimator of directed
information.

Proof for Proposition 1:
Proof: We use the Taylor expansion of the entropy function

around the true value of the entropy for ,
as follows:

(20)

where the coefficients are as follows:

(21)

where when , and when .
Therefore, the bias of the entropy can be represented as

(22)

Meanwhile, we have .
It can be seen that satisfies the following re-
cursive formula where

:

(23)

By substituting the first few terms with
into the recursion formula, the th-order cen-

tral moment of can be seen to be a polynomial in terms
of N, when is a even number, the order of the polynomial
at most , namely, , and at most
for even . Since , the th-order central mo-
ment of is a polynomial in terms of of the order
at most , namely, , when is an even number
and at most , namely, , when is
an odd number. We have the first few terms as shown in (24)
and (25) at the bottom of the next page. Since when ,

are at least
and can be ignored, only the first two terms are considered. Con-
sidering the first term in the above and combining the (22), we
obtain

(26)

A sufficient condition for the convergence of the right side of the
(26) is that , which establishes a sufficient
condition for asymptotical unbiasedness. For computation of the
bias, observe that

(27)

where . The equality shown in the (27) can
be shown as follows:
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(28)

Let , first consider

(29)

(30)

Therefore, (27) can be established:

(31)

Recall in the formulation of bias in (22), we have

(32)

Combining the (27), (31), and (32), the bias shown in Proposi-
tion 1 can be established. Let

. Since and
, when , is monoton-

ically decreasing. Therefore, when ,
, where

.
Proof for Variance of Regularized DI: Since the directed

information can be represented as

(33)

According to the delta method, we only need to com-

pute . We need to find

. Here we provide the derivation for computing

, the process of computing can
be shown similarly. Considering
is the multinomial distribution with frequency parameter

and the dimension

(34)

where . According to the chain rule,
we obtain

(24)

(25)
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, where

. Then we only need to
compute . It has been noted that if ,

. Therefore, according to the chain
rule, we can compute: for

(35)

For

(36)

The other terms can be derived similarly.
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