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ROBUST CONTROL IN OPERATIONAL SPACE FOR GOAL-POSITIONED
MANIPULATOR TASKS
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Abstract

The operational space formulation has provided a fundamental tool for
the description of the dynamic behavior of manipulator end-effectors.
Based on this formulation and the artificial potential field concept, a
real-time collision avoidance method using goal-positioned control of
robot systems has been developed. This paper shows that the desired
goal-positioned behavior can be naturally achieved by properly defining a
target sliding surface in operational space, and then applying the sys-
tematic methodologies of sliding control and the operational space for-
mulation. A robust implementation of goal-positioned control on a
PUMA 560 illustrates the development.

1. Introduction

In this paper, we propose and demonstrate a robust
implementation of goal-positioned control, using sliding
surfaces in operational space. The notion of sliding surface
(Filippov, 1960) has been investigated mostly in the Soviet
literature (see Utkin, 1977, for a review), where it has been
used to stabilize a class of nonlinear systems. Although it
theoretically features excellent robustness properties in the
face of parametric uncertainty, classical sliding mode con-
trol presents several important drawbacks that severely
limit its practical applicability. In particular, it involves
large control chattering, as discussed in detail in (Slotine
and Sastry, 1983).

Chattering is in general highly undesirable in practice
(with a few exceptions, such as the control of electric
motors using pulse width modulation), since it implies
extremely high control activity, and further may excite
high-frequency dynamics neglected in the course of mod-
elling (such as resonant structural modes, neglected actu-
ator time-delays, or sampling effects). These problems are
remedied in (Slotine and Sastry, 1983) and (Slotine, 1984)
by replacing chattering control by a smooth control inter-
polation in a boundary layer neighboring a time-varying
sliding surface. (Slotine, 1984) shows how to monitor the
boundary layer width so as not to excite high-frequency
unmodeled dynamics, and quantifies the corresponding
trade-off between modelling effort and controller tracking
performance.

Research in dynamics of robot mechanisms has largely
focused on developing the equations of joint motions.
These joint space dynamic models have been the basis for
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various approaches to dynamic control of manipulators.
However, task specification for motion and contact forces,
dynamics, and force sensing feedback, are closely linked to
the end-effector. The description, analysis and control of
manipulator systems with respect to the dynamic char-
acteristics of their end-effectors has been the basic motiva-
tion in the research and development of the operational
space formulation. The end-effector equations of motion
(Khatib, 1980) is a fundamental tool for the analysis and
control of manipulator systems.

In conjunction with the artificial potential field concept
(Khatib, 1978), the operational space formulation has been
used in the development of a real-time obstacle avoidance
approach (Khatib, 1986) involving goal-positioned behav-
jor. The applications of the potential field concept to robot
collision avoidance have also been investigated in (Kuntze
and Schill, 1982; Hogan, 1983; Krogh, 1984; Espiau and
Boulic, 1985).

In this paper, we show that the desired goal-positioned
behavior can be naturally achieved by properly defining a
target sliding surface in operational space, and then apply-
ing the systematic methodologies of sliding control and the
operational space formulation. Section 2 summarizes the
framework of operational space dynamics and control.
Section 3 describes the application of sliding control in
order to achieve the target behavior in a fashion robust to
uncertainties in the system dynamics. In Section 4, the
development is demonstrated experimentally on a PUMA
560. Concluding remarks and suggested extensions are
offered in Section 5.

2. The Operational Space Formulation

An operational coordinate system is a set x of m indepen-
dent parameters describing the manipulator end-effector
position and orientation in a frame of reference %,. For a
non-redundant manipulator, these parameters form a set
of configuration parameters in a domain % of the oper-
ational space and constitute, therefore, a system of gener-
alized coordinates. The end-effector equations of motion in
operational space can be written (Khatib, 1980; Khatib,
1983) in the form,

A(x)X + p(x,x) + p(x) = F; (1)

where A(x) designates the kinetic energy matrix, and
w(x, x) represents the vector of end-effector centrifugal and
Coriolis forces. p(x) and F are respectively the gravity and
the generalized operational force vectors.
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The components vector u,(x, X) of the vector p(x, X) are
given (Khatib, 1987) by
p(x, %) =TI (x)% ((=1....,m);  (2)
where the elements of the m X m matrices IT,(x) are the
Christoffel symbols =, ;, given as a function of the partial
derivatives of A(x) with respect to the generalized coordi-
nates X,
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Using equation (2), the vector (X, %) can be written as

p(x, %) = II(x)v(%); (4)
where II(x) is the m X m(m + 1)/2 matrix given by
111 2"’1,12 2'771,1,"
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wm,ll 2Wm‘l:l 27Tm.1m
and
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The equations of motion (1) establish the relationships
between positions, velocities, and accelerations of the end-
effector and the generalized operational forces acting on it.
The control of manipulators in operational space is based
on the selection of F as a command vector. These gener-
alized operational forces are generated by joint-based actu-
ators. The generalized joint force vector I' corresponding
to F and consistent with the end-effector and manipulator
dynamic equations is given (Khatib, 1987) by

I' = J"(q)F; (7)
where q is the vector of joint coordinates and J T(q) is the
Jacobian matrix. The dynamic decoupling and motion
control of the manipulator in operational space is achieved
by selecting the control structure

F = A(x)u + IT(x)v(x) + p(x); (8)
where, /\(x), fI(x), and P(x) represent the estimates of
A(x), T1(x), and p(x). The system (1) under the command
(8) can be represented by

I,%=G(x)u+ e(x,x) + d(r); (9)
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where I, is the m X m identity matrix, and

G(x) = AT () A(x);

e(x.%) = A7) [T(x)v(X) + p(x)]. (10)

where
T(x) = [1(x) — II(x);

p(x) = p(x) — p(x)- (11)

With a perfect nonlinear dynamic decoupling, the end-
effector becomes equivalent to a single unit mass, I,
moving in the m-dimensional space. At the level of the
decoupled end-effector, various control structures can be
selected for u. For tasks where the desired motion of the
end-effector is specified, a linear dynamic behavior can be
obtained by selecting

u= Inrxd - k(v(x - xd) - kp(x - xd); (12)
277'1,23 2'71 2lm Wl.mm
2772,23 2772.2!11 WZ. mm
, () -
2 77»1 ,23 2 77m 2m Wm ,mm

where x 4, X, and ¥, are the desired position, velocity and
acceleration, respectively, of the end-effector. k » and k,
are the position and velocity gains.

For tasks that involve large motion to a goal position,
where a particular trajectory is not required, a PD com-
mand vector of the form

u= -—klx—kp(x—xd); (13)
will result in a poor coordination of the end-effector mo-
tions along its degrees of freedom. This is primarily due to
actuator saturation, bandwidth, and velocity limitation. A
coordination allowing a stgaight line motion of the end-
effector with an upper speed limit has been shown (Khatib,
1986) to be a desirable behavior for this type of tasks.

Equation (13) can be interpreted as a pure velocity
servo-control with a velocity gain k,, and a desired veloc-
ity vector (k,/k N(x, — X). Let V,,,, designate the assigned
speed limit. The limitation of the end-effector velocity
magnitude can then be obtained by selecting u as

u= —k,(x — vX,); (14)
where
Vinax
= sat :
v = sa R
= A (15)



with

x= K.
k,’
X=x- X, (16)

This allows a straight line motion of the end-effector at a
given speed V.. The velocity vector X is in effect con-
trolled to be pointed toward the goal position while its
magnitude is limited to V,,,. The end-effector will then
travel at V__, in a straight line, except during the accelera-
tion and deceleration segments. This type of command
vector is particularly useful when used in conjunction with
the gradient of an artificial potential field (Khatib, 1986)

for collision avoidance.
3. Robust Control for Goal-Positioned Tasks

In equation (9), the functions G, €, and d are not
precisely known, but the extent of their imprecision can be
upper bounded, as detailed later. The desired goal-posi-
tioned behavior can be written as s = 0 where

s = X + Ark. (17)
This represents the equation of an m X m-dimensional
surface in the state-space. Further, § contains the control
input u; therefore, from sliding control theory, the target
dynamics can be achieved exactly, in the presence of the

bounded modelling uncertainty, by using a control law of
the form

1
u=—[d+u,l];
8o

(18)

where g, is the estimate of the control gain. The vector fiis
the control input that would maintain § =0 if the dy-
namics were exactly known,

= —A(vx + 5X).

(19)

The vector u, of components

u, = —k;sgn(s;); (20)

where the k, are positive constants, guarantees that s = 0
remains attractive in the presence of model uncertainty,
and more specifically that (sliding condition)

(21)

1d
= —(s?) < —nlsils

where the n, are positive constants. To this effect, the
vector k of components k, should be such that

k,= (B, - )i, + B,(le,| + 7,)5 (22)
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where, for each degree of freedom, B, and ¢, are, respec-
tively, the gain margin and an upper bound on the dy-
namic uncertainty. Given the structure (9) of the system
dynamics and the definitions (10) and (11), adequate
choices of ¢;, B;, and g, are

€, = a(X) = ay + a[v(X)]; (23)
where the constants a, and «, are selected such that
a2 AT )P VX ED:
q = AN TN Vxe2n (24)
and
B: = Bo = {Oumin/ Omax :
8 = 80 = |%min " Omax ; (25)
where the constants o, and o,,,, are selected as
Oin < IG()Nl, VX EZ;
O 2 IG(X)|l, VYXED. (26)

While control law (18) achieves the target dynamics (17)
exactly, the presence of the switching terms k;sgn(s,)
implies that in practice undesirable control chattering will
occur. To suppress the chattering and obtain a band-
width-limited controller that best approximates the exact
behavior described above, the switching action k,sgn(s,) is
replaced by a smooth interpolation in a boundary layer
neighbouring the sliding surface:

- s
u, = —k;sat| — |;
' P

where, following (Slotine, 1984), the ¢, are defined by

(27)

¢+ A¢/Bi = kd,;/BO if A¢; = Bok

é, + N, = Bok,, if Ao, < Bok (28)
and the vector k is
_ A
k=k—-k,+ —¢ (29)
Bo
with initially
B
9(1=0) = Tk,(1=0). (30)

The vector k, is equal to the vector k computed along
the desired trajectory; since the desired behavior consists
here of a specified relationship between position and veloc-



ity, k, can be computed by replacing X by AvX in the
expression (22) of k. The components of k, are

kg = (Bo— 1)la| + Bo(les| + m,)s (31)
where
€a, = a(X) = oo + a[v(%)|. (32)

With these choices of ¢ and u, the parameter A, already
used in the definition (17) of the sliding surface, can then
be interpreted as the desired control bandwidth.

Additional considerations have to be taken into account
in this application. With the choice (15) of », maintaining
s = 0 would require that the control input have discontinu-
ities at (A[X| = Vax)- These can be eliminated by using a
second order digital filter with an adequate cutoff frequency
w,. Further, convergence has to be monitored outside the
boundary layer, where the system lies initially, as well as
when the algorithm is used in the context of obstacle
avoidance. To this effect, a vector u,, with components

Uy, = "kL,Sgn(Si); (33)
is added to the control law u outside the boundary layer.

This guarantees that the boundary layer is reached within
a finite time smaller than go|s,(z = 0)|/(Bok.,)-

Table 1.
Control Parameters.

Vax 15.0 in./sec
A 35.0

ag 100.0

a 20

By 1.2

8o 1.0

. 20.0 rad /sec

kg,
a

300.0
29
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Figure 1. Sliding control-plan view of the trajectory
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In practice, to avoid control discontinuities when the
system enters the boundary layer, it is desirable to replace
u, by a function whose derivative is continuous. A compu-
tationally efficient choice is

—(s; — ¢'i)kL,/[aL + (s — ¢i)] if s, > ¢;;

u —3
E — (s + ¢i)k[.,/[°‘1,— (s;+ )] ifs, <~
(34)
Finally, the control vector u becomes:
1 ¥
u=—[a+u, +ul; (33)

8o
with @, u,, and u, as given in (19), (27), and (34).
4. Experimental Results

We now illustrate the development with a robust imple-
mentation of goal-positioned control on a PUMA 560
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Figure 2. Sliding control-horizontal component of velocity
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Figure 3. Sliding control-vertical component of velocity
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Figure 4. PD control-plan view of the trajectory

robot. The above approach has been implemented in
ESPRIT/DAPROC, an experimental robotic program-
ming, development and control system developed at Boe-
ing. ESPRIT, residing on a VAX 11/780, provides the
high level programming and development environment
while DAPROC, the low-level real-time controller, resides
on a PDP 11-44. The combined system controls a PUMA
560 robot. At the present time the implementation is
limited to a planner motion (position and orientation)
using three degree-of-freedom (joints 2, 3 and 5). This is
due to the PDP processing power limitations.

A two-level control architecture (Khatib, 1985) is used
in the implementation of the operational space control
system. These are a low rate parameter evaluation level
and a high rate servo-control level. The experimental re-
sults were obtained with the parameter evaluation and
servo-control levels running at 50 and 100 Hz, respectively.
The motion selected in these experiments consisted of a
straight line motion along the x,-axis at a maximum
velocity of 15.0 in./sec. The numerical values of the con-
trol parameters are given in Table 1.
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Figure 5. PD control-horizontal component of velocity
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Figure 6. PD control-vertical component of velocity
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Figure 7. Sliding control-vertical saturation scaling function »

The sliding surface s, and the boundary layer ¢, are
shown in Figures 1 and 2 while the three components of
the overall control (&,, #,, and u,,) are shown in Figures
3, 4, and 5, respectively. The resulting control u, is shown
in Figure 6. Initially the system lies outside the boundary
layer (s, > ¢,) resulting in ‘a nonzero u, which brings the
system within the boundary layer in 0.055 second. The
peak in @, reflects the maximum rate of change of »
(Figures 7, and 8) which occurs during the transition from
operation with a saturated velocity command to operation
with an unsaturated command. The trajectory of x, is
presented in Figure 9.

5. Concluding Remarks

A robust implementation of goal-positioned control
using sliding surfaces in operational space has been pre-
sented. In this implementation, a nonlinear decoupling
control structure, based on the end-effector dynamic model,
is used for the dynamic decoupling of end-effector motion
in operational space, while a sliding control structure is
used at the level of decoupled end-effector to achieve a



G

—_—
15 B \/\\ L
B B \¥ o
g
i o 4 /\/\,\/\QKNW\/\/\/\ -
-5 4 - -
10 ha -
15 - ud
~
S
-0 T T T T T T
o 0.25 0.5 0.75 1 1.25 1.5
time (sec)
Figure 8. Sliding control-sliding surface s and boundary layer +¢
200 1 1 1 1 1 1
150 -1 -
100 -1 -
so E -
e el J VY
J
.50 4 L
100 - -
150 - -
200 T T T T T T
o 0.25 0.5 0.75 1 1.25 1.5

time (sec)

Figure 9. sliding control-robustness component of usy

200 1 ! 1 1 1 L
150 1 -
100 E o
s0 m -
/

s o _m’_r__A___,M/——f\/\/ A~ L
-s0 . -
100 - -
150 | -
-200 T T T T T T

o 0.25 0.5 0.75 1 1.25 1.5

time (sec)

Figure 10. Sliding control-sliding control component of u;

robust goal-positioned dynamic behavior. The initial ex-
perimental results have shown a significant increase of
control bandwidth and improvement of the overall dy-
namic performance of the system. The integration of this
implementation in the artificial potential field approach for
real-time collision avoidance is being considered.
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