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Abstract— The possibility of controlling humanoid robots
in free-space opens new fields of application involving free-
floating behaviors. Recently, we presented a prioritized task-
oriented control framework for the control of multiple motion
primitives while complying with physical constraints imposed
by the robot’s body and environment. We adapt here this
framework to the control of free-floating robots.

Index Terms— Free-floating dynamics, prioritized control.

I. INTRODUCTION

An important characteristic of humanoid robots is their
free-floating dynamics. For efficient control, we need to
describe the interactions between the free-floating base
and the robot’s motion. We present here dynamic models
describing these interactions and use them for efficient
control of free-floating humanoids.

The control of multiple prioritized task primitives has
been addressed since the early 1980s at the inverse kine-
matic level [4], [6], [14], [15], [21]. The dynamic in-
teraction between the robot’s operational space motions
and forces was first addressed in the Operational Space
Formulation [10], [11]. More recently, we extended this
formulation to allow controlling multiple prioritized task
primitives [13], [20].

The control of free-floating robots and/or robots with
passive degrees of freedom was first addressed in the
late 1980s. Arai and Tachi [1] proposed a cartesian space
approach for the control of underactuated robots with the
aim of reducing the number of actuators. For space appli-
cations such as the ETS-VII JAXA (Japanese Aerospace
Exploration Agency) mission [16], Umetami and Yoshida
introduced an extended end-effector Jacobian named Gen-
eralized Jacobian [7], [22] – a.k.a. Free-Floating System’s
Jacobian [3], [17] – which combines the dynamic interac-
tions between the joint velocities and the velocities of the
free-floating base.

In this paper we extend the theory and control strategies
described in [13] and [20] to free-floating robots. First,
we introduce an Extended Generalized Jacobian that inte-
grates the free-floating dynamics into the task prioritization
framework. Second, we analyze task feasibility and propose
robust controllers that can operate under task singularity.
We will complement the theory with several control ex-

amples implemented in a physics-based humanoid robot
simulator.

II. OPERATIONAL SPACE CONTROL IN FREE-FLOATING
ROBOTS

We consider the humanoid robot shown in fig. 1, where
we have assigned a reference frame to the base link
represented by the 6 × 1 vector xbase, containing three
translational and three orientational components. The free-
floating system formed by the robot joints and the free-
floating degrees of freedom of the base link, can be
characterized by the dynamic equation

Asys

ẍbase

q̈

 + bsys + gsys =
0

Γ

 , (1)

where Asys, bsys and gsys are the mass matrix, the
Coriolis/centrifugal component, and the gravity component
respectively, ẍbase is the 6×1 vector of base accelerations,
q̈ is the n×1 vector of joint accelerations (n is the number
of joints of the robot), and Γ is the n × 1 vector of joint
torques .

Fig. 1. Free-Floating Humanoid Robot: A free-floating base frame is
assigned to the hip link.



We derive the joint space dynamics, by defining a joint
selection matrix Sq =

[
0 I

]
characterized by the equality

q = Sq

xbase

q

 , (2)

where I is the n × n identity matrix. Let us consider
the dynamically consistent generalized inverse of Sq [10]
described by the equality

Sq = A−1
sys ST

q A, (3)

where A =
(
SqA

−1
sysS

T
q

)−1
is the joint space mass/inertia.

We use this operator to transform eq. (1) into the joint
space dynamics:

S
T

q

(
Asys

ẍbase

q̈

 + bsys + gsys =
0

Γ


)

=⇒
=⇒ Aq̈ + b + g = Γ. (4)

Here b = S
T

q bsys and g = S
T

q gsys are the joint Corio-
lis/centrifugal and gravity torque components. Let us break
down the free-floating system’s dynamic quantities into
block components:

Asys =
Abb Abr

Arb Arr

 bsys =
bb

br

 gsys =
gb

gr

 ,

(5)
where the subscripts b and r represent the base and robot
components respectively. Further development of eq. (4)
renders the equalities,

A = Arr − ArbA
−1
bb Abr (6)

b = br − ArbA
−1
bb bb (7)

g = gr − ArbA
−1
bb gb , (8)

where A is the Schur Complement [8] of Abb, and is also
referred as the Generalized Inertial Tensor [23].

We consider the following kinematic equation of an
operational space point x:

ẋ = Jsys

ẋbase

q̇

 (9)

Jsys =
∂x/∂xbase ∂x/∂q

 =
Jb Jr

 . (10)

where Jb and Jr are the components corresponding to the
base and the robot joints respectively.

Due to the dynamic coupling between the robot’s joint
motion and the motion of its free-floating base, the op-
erational space kinematics can be obtained from the joint
velocities alone: ẋ = J q̇. Here J is called the Gener-
alized Jacobian [22] and combines the system kinematic
properties with the inertial quantities due to free-floating
dynamics. To derive J we need to consider the conservation
of angular and linear momentum. Let us study the upper
half of the free-floating system’s Lagrangian [7]:

d
(
Abbẋbase + Abr q̇

)
dt

−∇xbase
Ksys = 0. (11)

The equality ∇xbase
Ksys = 0 holds, since Asys and conse-

quently the system’s kinetic energy Ksys are independent
of the base motion.

By integrating eq. (11) we reveal the conservation of the
system’s momentum:

Abbẋb + Abr q̇ = constant. (12)

where the constant term represents the spatial momentum
at the starting time. For the time being let us consider this
term equal to zero. From eqs. (9), (10) and (12) we can
decompose J into the equality

J = Jr − JbA
−1
bb Abr, (13)

which reveals the dependency of the Generalized Jacobian
on kinematic and dynamic quantities. Alternatively, we can
express J as

J = JsysSq, (14)

where Sq =
−A−1

bb Abr

I

.

A. Task Control

We use the joint dynamics and the Generalized Jacobian
described in eqs. (4) and (14) to obtain the operational
space dynamics of the free-floating system through the
following transformation,

J
T
(

Aq̈ + b + g = Γtask

)
=⇒ Λẍ + µ + p = F, (15)

where Γtask is the torque input that controls the operational
space task, J = A−1JT Λ is the dynamically consistent
generalized inverse of J , Λ = (JA−1JT )−1 is the opera-
tional space mass/inertia, µ and p are the operational space
Coriolis/centrifugal and gravity terms, and F = J

T
Γtask is

the vector of operational space forces. Dynamic decoupling
is achieved by using the control torque,

Γtask = JT
(
Λẍref + µ + p

)
, (16)

where ẍref is the control reference at the acceleration
level. When we apply this control, we obtain the decoupled
behavior ẍ = ẍref .

Because humanoid robots are redundant with respect
to the operational space task, we associate a dynamically
consistent task null space [10] defined by

N = I − JJ. (17)

B. Posture Control

The control of the null space motion (a.k.a. self-motion)
is called posture control. We can control task and posture
simultaneously by considering the compound torque

Γ = Γtask + Γposture. (18)

Because the posture is dynamically consistent with the task,
it can be further expressed as a linear combination of the
columns of NT :

Γ = Γtask + NT Γsubtask, (19)



where Γsubtask represents the control input of a secondary
task (a.k.a. posture task). Let us consider controlling a
posture task defined by the vector xp, and with Jacobian
Jsys(p) = (∂xp/∂xbase , ∂xp/∂q). Similarly to eq. (14),
a Generalized Jacobian can be associated with this task:

Jp = Jsys(p)Sq. (20)

In a previous paper, [13] we introduced an extended
posture Jacobian, Jp|t, that was dynamically consistent
with the task. Using eq. (20) we extend this Jacobian to
free-floating robots:

Jp|t = Jsys(p)SqN, (21)

Λp|t =
(
Jp|tA−1JT

p|t
)−1

. (22)

Here Λp|t is the mass matrix associated with this extended
posture space. The extended posture dynamics can be
obtained from the projection,

J
T

p|t
(
Aq̈ + b + g = Γposture

)
=⇒

Λp|tẍp|t + µp|t + pp|t = Fp|t, (23)

where Jp|t = A−1JT
p|tΛp|t is the dynamically consistent

generalized inverse of Jp|t, Fp|t is the vector of control
forces, and µp|t and pp|t are the Coriolis/centrifugal, and
gravity force vectors of the extended posture space. To
accomplish dynamically-consistent control of the posture
subtask we choose the control input

Γposture = JT
p|tFp|t, (24)

Fp|t = Λp|t
(
ẍref(p) − ẍp|bias

)
+ µp|t + pp|t, (25)

where ẍref(p) is the control reference. Here, ẍp|bias is a
bias acceleration induced by the coupling of the primary
task into the posture subtask. If Jp|t is full rank, the subtask
is feasible and this controller will yield the decoupled
behavior ẍp = ẍref(p).

III. PRIORITIZED CONTROL IN FREE-FLOATING
ROBOTS

In this section we adapt the framework for the control of
multiple prioritized task primitives [20] to free-floating ro-
bots. Prioritization was designed to ensure that constraints
and critical task objectives are first accomplished, while
optimizing the execution of the robot’s global task. In
general, a humanoid robot must control simultaneously
a collection of N task objectives (including constraints),
{xk(q) | k = 1, 2, . . . , N}, where the numbering represents
the priority level in the control hierarchy. The following
torque equation represents a prioritized control hierarchy:

Γ = Γtask(1) + NT
task(1)

(
Γtask(2) + NT

task(2)·
(
Γtask(3) + · · ·

))
. (26)

Here, Γtask(k) is the control input of the kth t task objec-
tive, and Ntask(k) is its null-space. This nested topology

can be simplified by defining an extended null-space matrix
containing the null-spaces of all previous task objectives:

Nprev(k) = Ntask(k−1) · Ntask(k−2) · · ·Ntask(1), (27)

where prev(k) = {1, · · · , k − 1} represents the set of
previous objectives. Equation (26) becomes

Γ = Γ1 + Γ2|prev(2) + Γ3|prev(3) + · · · , (28)

where Γk|prev(k) = NT
prev(k)Γtask(k), and the subscript

k|prev(k) indicates that the kth task objective is controlled
in the null-space of all previous ones.

A Generalized Jacobian can be associated to every task
objective according to

Jk = Jsys(k)Sq, (29)

where Jsys(k) = (∂xk/∂xbase , ∂xk/∂q). We define an
Extended Generalized Jacobian resulting from the projec-
tion of the joint velocities into the null-space Nprev(k):

Jk|prev(k) = JkNprev(k) = Jsys(k)SqNprev(k), (30)

and we associate an extended generalized inertia matrix:

Λk|prev(k) =
(
Jk|prev(k)A

−1JT
k|prev(k)

)−1
. (31)

where the subscript k|prev(k) indicates the kth task objec-
tive is operated within the null-space Nprev(k). To establish
prioritization at the acceleration level, Γk|prev(k) should
render null accelerations in all preceding levels prev(k),
or equivalently

∀ i ∈ prev(k) JiA
−1NT

prev(k) = 0, (32)

where Ji represents the Generalized Jacobian defined in
eq. (29). In [20] we found that the null space that fulfills
this constraint has the following unique solution,

Nprev(k) = I −
k−1∑
i=1

J i|P (i)Ji|P (i), (33)

where J i|P (i) = A−1JT
i|P (i)Λi|P (i) is the dynamically

consistent generalized inverse of Ji|P (i). We obtain the
dynamic behavior of the kth task objective from the
projection

J
T

k|prev(k)

(
Aq̈ + b + g = Γk|prev(k)

)
=⇒ (34)

Λk|prev(k)ẍk|prev(k) + µk|prev(k) + pk|prev(k) = Fk|prev(k),

where µk|prev(k) and pk|prev(k) are the prioritized Corio-
lis/centrifugal and gravity forces, and

Fk|prev(k) = J
T

k|prev(k)Γk|prev(k) (35)

are the virtual forces associated with the kth task objective.
We accomplish efficient control of these objectives by
choosing the control input

Γk|prev(k)) = JT
k|prev(k)

(
Λk|prev(k)

(
ẍref(k) − ẍk|bias

)

+ µk|prev(k) + pk|prev(k)

)
. (36)



Here ẍk|bias is a bias acceleration induced by the coupling
of higher priority task objectives (refer to [20] for further
details). If Jk|prev(k) is full rank, this controller will yield
the decoupled behavior ẍk = ẍref(k), where ẍref(k) is a
control reference.

A. Task Feasibility

A task objective k is unfeasible if the Jacobian Jk|prev(k)

drops rank. In this circumstances, the extended generalized
inertia matrix has the following eigen-decomposition

Λ−1
k|prev(k) = Jk|prev(k)A

−1JT
k|prev(k) =

Ur(k) Un(k)


Σr(k)

0


UT

r(k)

UT
n(k)

 , (37)

where Σr(k) is a diagonal matrix of non-zero eigenvalues,
and Ur(k) and Un(k) are matrices corresponding to non-
zero and zero eigenvectors, respectively. Because some
eigenvalues are equal to zero, it is not possible to fully
control ẍk. However, by choosing the control input

Γk|prev(k) = JT
k|prev(k)

(Ur(k) Σ−1
r(k) UT

r(k)

 ·
(
ẍref(k) − ẍk|bias

)
+ µk|prev(k) + pk|prev(k)

)
. (38)

we accomplish dynamic decoupling in the controllable
directions according to UT

r(k)

(
ẍk = ẍref(k)

)
, where Ur(k)

defines these directions.

IV. SIMULATION ENVIRONMENT

To verify the proposed controller, we have developed
a realtime humanoid robotic simulation environment, SAI
[12]. SAI is a unique virtual environment that integrates
multi-body dynamics [2], robot control, multi-contact sim-
ulation, and haptic interaction. It incorporates a dynamics
engine that resolves forward and inverse dynamics of an
n degrees-of-freedom (DOF) branching multi-body system
with linear complexity, O(n). Moreover, we can resolve p
collisions with a complexity of O(np + p3) using opera-
tional space models [18].

V. EXAMPLE: INTERACTIVE HAND POSITION CONTROL
UNDER JOINT LIMIT CONSTRAINTS

We first study an example of interactive hand position
control of a free-floating humanoid robot while complying
with joint limit constraints. The humanoid model has n =
24 joint DOFs (degrees of freedom): 2×6 for the legs, 2×4
for the arms, 2 for the torso, and 2 for the head. The robot’s
height is 1.65m; its weight is 71kg. In this example, the
robot is commanded to reach a target position with its
left hand. To achieve this goal, the robot must accomplish
simultaneously two task objectives: comply with joint limit
constraints and control the left hand position. Therefore the
following controller is applied:

Γ = ΓJLC(1) + ΓHAND(2) + ΓFRIC(3), (39)

Fig. 2. Hand Position Control under Joint Limit Constraints: In this
sequence, the hand is commanded to track a target. When the arm is fully
stretched reaching the elbow limit, the task becomes unfeasible and the
target cannot be reached.
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Fig. 3. Data Recorded During the Experiment Shown in Fig. 2: The
left hand tracks precisely the trajectory (a), except when the left elbow
limit is reached (b).



where the subscripts JLC, HAND and FRIC stand for
joint limit constraints, hand position control, and joint fric-
tion respectively, and the numbers in parenthesis represent
their priority order. Because this hierarchy is imposed,
if the hand is commanded to move beyond the robot’s
reach, the extended generalized mass matrix will display
singular behavior according to eq. (37). The joint friction
component is applied to damp the remaining self-motion.

The task objectives for this example are based on the
following Potential Fields [9]:

VJLC =‖ qviol − qlimit ‖2 (40)

VHAND =‖ xhand − xtarget ‖2, (41)

where qviolating is the vector of joints that, at a given time,
violate joint limits, qlimit is the vector of joint limit values,
and xtarget is an interactive hand position target. Because
joint limits are defined in joint space, we associate a matrix
Sviolating that selects the violating joints according to

qviolating = Sviolating

xbase

q

 . (42)

Furthermore, the Jacobian associated with the position of
the left hand has the following decomposition:

Jhand =
∂xhand/∂xbase ∂xhand/∂q

 . (43)

In this experiment, for every task objective k, we use a
simple PD control reference with velocity saturation:

ẍref(k) = −kv

(
ẋk − νẋdes(k)

)
, (44)

ẋdes(k) =
kp

kv
∇Vk ν = min

(
1,

vmax(k)

||ẋdes(k)||
)

, (45)

where ẋdes(k) is a desired velocity and vmax(k) is a
saturation value.

Fig. 4. Another Example of Hand Position Control under Joint
Limit Constraint: This time, the shoulder lateral joint limit is reached
in the middle of the motion. In contrast with the previous example, the
task is feasible at all times and therefore it is accomplished effectively.
Notice that the legs twist to the right side to compensate for the torso’s
side motion.
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Fig. 5. Data Recorded During the Experiment Shown in Fig. 4: The
right hand reaches effectively the goal position (a) despite reaching the
right shoulder joint limit moments before (b).

When we apply the controller defined in eq. (39) we
obtain the results shown in fig. 3, where the robot’s
left hand is commanded to track a sinusoidal trajectory
with period T = 4s and amplitude A = 0.6m. The
hand tracks effectively the goal trajectory except when
the elbow joint limit is encountered during the intervals
∆t1 = (0.2s, 1.55s), and ∆t2 = (4.2s, 5.55s). During
these intervals, the controller of eq. (38) is applied instead,
thus stopping the hand 0.13m away from the final target
position. Notice that the right leg stretches out to preserve
angular momentum and the robot’s body moves downward
to preserve the center of mass position. Both of these
behaviors are due to free-floating dynamics.

Let us study a similar example (see fig. 4) where the
robot’s right hand is commanded to move to a different
target position. This time however, despite reaching the
shoulder joint limit, the target is reached effectively be-
cause is feasible at all times. In fig. 5, we show the target
being reached at t = 0.7s, while the right shoulder joint
limit is reached at t = 0.5s.



VI. CONCLUSION

In an effort to develop controllers for new applications
of humanoid robots, we have adapted the prioritized task-
oriented control framework described in [20] to free-
floating robots. This step allows us for the first time
to generate on the spot free-floating behaviors such as
running, jumping, or touching objects in free space.

This controller characterizes for the first time the virtual
mass properties of prioritized tasks in free-floating robots,
allowing us to control precisely task motions or to im-
plement hybrid position/force controllers for free-floating
behaviors.

We envision humanoid robots performing free-floating
whole-body behaviors while maintaining high precision
control of the task and body posture. The reported con-
troller is suited for these applications, because it de-
composes these motions into basic task primitives, and
incorporates the free-floating dynamics into the control of
each task objective. At the same time it allows to study
task feasibility at runtime allowing to modify the control
strategy if needed.
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