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OPTIMIZATION OF DYNAMICS IN MANIPULATOR DESIGN:
THE OPERATIONAL SPACE FORMULATION
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Abstract

In this paper we investigate the dynamic characteristics of manipula-
tors and develop a new method for the optimization of dynamics in
manipulator design. The dynamic optimization is aimed here at providing
the largest, most isotropic, and most uniform bounds on the magnitude of
end-effector acceleration at both low and high velocities. The operational
space formulation, which focuses on the dynamic behavior of the manipu-
lator end-effector, forms the basis for this optimization. Using the dy-
namic model of the end-effector in operational space, we establish the
input/output relationship between joint forces and end-effector accelera-
tion in the form of transformation matrices. The joint forces considered
here are, more precisely, the available joint forces that can contribute to
end-effector acceleration. The design optimization problem is then
expressed as a minimization of a cost function with respect to the
kinematic, dvnamic, and actuator design parameters and their con-
straints. This cost function is based on the characteristics of the transfor-
mation matrices, such as norm and condition number. A simple two-
degree-of-freedom mechanism is used to illustrate this formulation.

1. Introduction

The kinematic parameters of a manipulator are among
the most significant indices in the evaluation of a manipu-
lator’s characteristics. Research on the kinematics of
articulated mechanisms has developed means for the anal-
ysis of workspace characteristics [15, 17}, and the evalua-
tion of kinematic performance [3, 14, 19). The use of
redundancy to improve workspace and singularity char-
acteristics has been investigated [4, 5, 13]. Yoshikawa [19]
has proposed a measure of manipulability for the evalua-
tion of manipulator kinematic performance. Kinematic
and static force characteristics have been also investigated
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While in motion, however, manipulators are subject to
highly nonlinear inertial, centrifugal, Coriolis, and gravity
forces. Characterization of manipulator dynamic perfor-
mance is, therefore. an essential consideration in the analy-
sis, design. and control of these nonlinear, coupled, and
multi-dimensional mechanisms. Asada proposed the gener-
alized inertia ellipsoid [1] as a tool for the characterization
of manipulator dynamics and the measure of manipulability
has been extended to a measure of dynamic manipulability
[20].

Research in manipulator dynamics has focused on de-
veloping the equations of motion in joint space. However,
manipulator action is primarily characterized by the mo-
tion of the end-effector motion and the forces exerted on
the manipulator’s environment. The operational space for-
mulation establishes the equations of motion describing
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end-effector dynamic behavior in the operational space,
the space in which the task is originally described. This
end-effector dynamic model is a useful tool for the analy-
sis, design and control of manipulator mechanisms with
respect to their end-effector dynamic performance.

In this paper, the characterization and optimization of
end-effector dynamic performance is based on the end-
effector dynamic model. At a given configuration, the
dynamic performance is characterized by the magnitude of
the “minimum available™ isotropic acceleration that is
available at the level of the end-effector. Manipulator
design optimization is achieved by maximizing this crite-
rion throughout the workspace. This optimization will
provide the manipulator with large and uniform bounds on
“available operational space forces” throughout the
workspace.

Details of the operational space formulation can be
found in [7, 8]. After a brief review of this work, the paper
will focus on the use of the operational space formulation
as a tool for the design of manipulators.

2. Operational Space Formulation

An operational coordinate system is a set x of m indepen-
dent parameters describing the manipulator end-effector
position and orientation in a frame of reference R,. The
end-effector equations of motion in operational space can
be developed [7, 8] and written in the form

Ax)% + p(x, %) + p(x) = F; (1)
where A(x) designates the kinetic energy matrix, and
r(x, X) represents the vector of end-effector centrifugal and

Coriolis forces. p(x) and F are respectively the gravity and
the generalized operational force vectors.

With respect to a system of n joint coordinates g. the
equations of motion in joint space can be written in the
form

A(q)g + b(q.4) + glq) =T; )
where b(q.q). g(q). and T, represent the Coriolis and
centrifugal. gravity, and generalized forces in joint space;
and A(q) is the n X n joint space kinetic energy matrix,
which is related to A(x) by

Alq) = JT(q) A(x}J(q). (3)

The control of manipulators in operational space is based



on the selection of F in Equation (1) as a command vector.
In order to produce this command, specific forces I' must
be applied with joint-based actuators. With q representing
the vector of n joint coordinates and J(q) the Jacobian
matrix, the relationship between F and the generalized
joint forces T is given by [10]

I'=J7(q)F. (4)
While in motion. a manipulator end-effector is subject to
the highly nonlinear forces mentioned earlier. These non-
linearities can be compensated for by dynamic decoupling
in operational space using the end-effector Equations of
motion (1). With this decoupling, motion and active force
control can be naturally integrated. The unified oper-
ational force command vector

F=F,+F,+F

ccg’ (5 )
where F,, is the operational command vector for control of
end-effector motions, F, is the command vector for active
control of end-effector forces, and F,, are the forces
necessary for compensation of centrifugal, Coriolis, and
gravity effects. F_ and F_, are given by

F, = A(XES;

F. ., = 1(x,%) + p(x); (6)
where E* represents the command vector of the decoupled
end-effector, which is equivalent to a decoupled single unit
mass moving in the m-dimensional space, and F* is com-
puted using a control law for the decoupled system. For
example, a simple motion control law for the decoupled
end-effector might be

r=%,+Kgé+ Kze; (7N
where X, is the desired end-effector acceleration, e and ¢é
are the errors in end-effector position and velocity, and X,
and K, are diagonal matrices of velocity and position
error gams Alternatively, more complex and nonlinear
control laws, such as sliding mode control [18], can be used
to compute F* within this framework. Using Equation (4),
the joint forces corresponding to the operational command
vector F in (6) can be written as

(®)

where b(q,q) is the vector of end-effector Coriolis and
centrifugal forces, p(x, %), mapped back into joint space.
In order to simplify the notation, A has been also used
here to designate the kinetic energy matrix when expressed
as a function of the joint coordinate vector q. The vector
b(q. 4) is distinc: from the vector of centrifugal and Corio-
lis forces, b(q, q). that arise when viewing the manipulator
motion in joint space. These vectors are related by

T = J7(Q)[A(Q)F: + F,] +b(a,4) + g(a);

b(q,4) = b(q,q) — J(q) A(q)h(q,q); 9)
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where

h(q.4) = J(q)4. (10)
b(q. q) can be expressed in the following form (which will

be useful in Section 4)

b(a,d) = B(a)[dd] + C(a)]a’]: (11)
where B(q) and C(q) are the n X n(n — 1)/2 and n X n
matrices of end-effector Coriolis and centrifugal forces
mapped into joint space. [§4] and [§%] are the symbolic
notations for the n(n—1)/2%x1 and n X1 column
matrices

(44] = [41G2G1d5--- dn — 1dn] "5

[4%] =

This approach to manipulator motion and active force
control has been implemented in an experimental manipu-
lator programming system COSMOS. Using a PUMA 560,
demonstrations of real-time end-effector motion and active
force control operations have been performed [11, 12], as
well as real-time collision avoidance [9].

[‘11‘?2 ‘13] ™.

3. Characterization of End-Effector Dynamic Performance

When evaluating the dynamic performance of a manipu-
lator, we are primarily concerned with the dynamic char-
acteristics of the end-effector in the manipulator work-
space. In this section we consider the relationship between
the operational space control system and end-effector dy-
namic behavior and show how end-effector acceleration
performance is one of the most important characteristics in
the evaluation of the manipulator dynamic behavior.

Let us examine the operational command vector F,, in
(6), which achieves the dynamic decoupling and motion
control of end-effector motion. Only a fraction of these
operational forces, specifically E*, contribute to the end-
effector acceleration and the control of end-effector mo-
tion. E* can be seen as the input of the decoupled end-
effector, which is equivalent to a single unit mass. The rest
of the operational forces are used for nonlinear compensa-
tion and dynamic decoupling.

The end-effector dynamic performance of the manipula-
tor under control is, therefore, strongly dependent on the
extent of the boundaries of F*. As will be shown below,
limits on F* are equivalent to limits on the magnitude of
available end-effector acceleration. Boundaries on F¥ are
analogous to the saturation of actuators. From Equation
(7), it can easily be seen that bounds on F,; will limit the
maximum position error gains that can be used in normal
operation before the limits of ¥ are reached. By achlevmg
large and isotropic bounds on F.* throughout the manipu-
lator workspace, closed loop mampulator response and
disturbance rejection can be improved.



Using the dynamic model in (1), end-effector accelera-
tion is given by

= AT (X)[F - p(x, %) — p(x)]. (12)

This equation relates end-effector acceleration to gener-
alized applied end-effector forces (corrected for gravity,
centrifugal and Coriolis forces) through the inverse of the
operational space kinetic energy matrix. Asada [1] has used
this matrix in formulating the Generalized Inertia El-
lipsoid (GIE) for the characterization of manipulator dy-
namics.

The GIE has been viewed as a tool for manipulator
dynamic optimization to provide uniform and isotropic
inertia characteristics throughout the manipulator work-
space. Although the GIE establishes the relationship
between end-effector forces and accelerations, this rela-
tionship does not relate actual actuator force input to
end-effector accelerations. The forces involved in (12) are
the generalized operational forces F acting at the end-effec-
tor. However, end-effector operational control forces are
produced by joint actuators through the inverse of Equa-
tion (4). The bounds on end-effector forces are therefore
configuration dependent, and do not represent an isotropic
and uniform input in Equation (12). Thus, a uniform GIE
does not guarantee uniform end-effector acceleration per-
formance.

Since desired end-effector motions and applied forces
are specified in orthogonal subspaces of the operational
space [11], the evaluation of the uniformity and isotropic-
ity of end-effector behavior requires an independent analy-
sis for motion and force control throughout the oper-
ational space. For the moment, let us consider end-effector
performance under motion control. For end-effector mo-
tion performance, the relationship between F¥ and joint
forces can be obtained from (8) as

Er = E(q)[T - b(a.q) - g(a)]: (13)

where

E(q) = [/T(@)A(q)] (14)
For non-redundant manipulators, £(q) can be written as
J(q)A ~'(q). Since F* is equivalent to the acceleration of
the decoupled unit mass end-effector, E(q) also establishes
the relationship between joint forces and end-effector
accelerations (using equations (4) and (12))

% = E(q)[T - b(q.q) — g(q)]. (15)

Thus, bounds on E* are equivalent to bounds on X.

The measure of dvnamic manipulability proposed by
Yoshikawa [20] is based on the matrix E(q). The
input /output relationship in Yoshikawa's formulation
relates the manipulator generalized forces T corrected for
gravity g(q) and the joint space centrifugal and Coriolis
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forces b(q, q) to a “pseudo” acceleration vector. This vec-
tor consists of the actual end-effector acceleration cor-
rected for the vector h(q,q) of (10), which has been
interpreted as a virtual acceleration. However, as shown in
Equation (10), this vector is part of the expression b(q, @),
and so the use of the dynamic manipulability measure does
not correctly evaluate end-effector acceleration perfor-
mance at non-zero velocity.

For the performance analysis of end-effector applied
forces, only static forces are significant, and the relevant
relationship can be established with respect to the desired
applied forces F, as

F,=J""(q)[T - g(q)]- (16)

Equations (15) and (16) establish the basic relationship
between joint forces and end-effector motions and applied
forces. In the following sections, we will concentrate on
manipulator dynamic optimization with respect to end-
effector motion performance.

4. Formulation of End-Effector Dynamic Characterization

The mapping of joint forces to end-effector accelerations
is illustrated in Fig. 1 for a planar manipulator with two
revolute joints. When operating in the horizontal plane,
and at zero velocity, the bounds on end-effector accelera-
tion are given by the mapping of the bounds on joint
actuator torques through the relation

X = E(q)T;

as shown for a given configuration, q, in Fig. 1. Fig. 2
shows how these bounds vary as a function of the manipu-
lator’s configuration.

When operating in the vertical plane, so that gravita-
tional effects are present, the relationship between end-
effector accelerations and joint torques is

% = E(q)[T - g(q)]-

Gravitational forces will modify the bounds on the joint
torques that are able to affect accelerations of the end-
effector. This is shown in Fig. 3, where the dashed lines
represent actuator bounds, while the solid lines represent
the effective joint forces. At a given configuration, end-
effector dynamic performance can be characterized by the

E(q)

1. End-effector acceleration bounds.

Figure



Figure 2. The configuration dependency of acceleration bounds.
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Figure 3. Gravitational effects on the acceleration bounds.
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Figure 4. Minimum available acceleration.

“minimum available” end-effector acceleration. This accel-
eration, as illustrated in Fig. 4, is limited by the minimum
available joint torques that are able to contribute to end-
effector acceleration.

Let I, and I‘o be respectively the minimal and maximal
bounds of the i actuator force I} at zero joint velocity.
At a given configuration, q, the minimal value of the
amplitude of the i** joint force that is available to contrib-
ute to the end-effector acceleration at zero joint velocity is
given by '

’

Yo, (Q) = min(ll‘o, - gi(‘l)lv |fo, - gi(‘I) I), (17)
where v, is the minimum available torque described above.
Using these minimum available joint forces, let us define
an n X n joint force normalization matrix,

No(‘l) = diag(Yo,(Q)); (18)

so that the vector of normalized joint forces that are able
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to contribute to end-effector acceleration is confined to the
unit hypercube 2,

2, = Ny '(q) 1—11 ["Y(),(Q)‘ 'Yo,(CI)]- (19)
Define the m X m acceleration weighting matrix W
1, 0
W= 0 wi, ]|’ (20)

where I, I, , and 0 are the identity and zero matrices
with the élmensxons of the end-effector posmon and orien-
tation sub-spaces, m, and m,. w is a “metric homogene-
ity” weighting coetﬁc:ent between the linear and angular
accelerations of the end-effector. This weighting is intro-
duced to normalize angular accelerations with respect
linear accelerations. The minimum available weighted
acceleration WX at zero joint velocities is then within the
hyperparallelepiped 2,

2,,= E(@)9; (21)

where

Ey(q) = WE(q) No(q)- (22)

The matrix Ey(q) describes the mapping, at zero joint
velocities, of the unit hypercube of normalized joint forces
(19) into the hyperparallelepiped of weighted accelerations
(21). For a given manipulator, E,(q) incorporates the
effects of gravity and joint torque limits and is a transmis-
sion matrix that characterizes the dynamic performance of
the manipulator at zero velocity.

Coriolis and centrifugal forces which arise at non-zero *
joint velocities modify the values of minimum available
joint forces. In typical robotic actuators (such as D.C.
servo motors), the actuator force bounds are similarly
modified at high velocities. Let § be the vector of maxi-
mum operating joint velocities, and let us des:gnate by I,
and T, the lower and upper bounds of the i" actuator
force F at these maximum velocities. The minimal value of
the amplitude of i** joint force that is available to contrib-
ute to the end-effector acceleration at § becomes

Y,,(a) = min(|g;(q) — sign(5;)»:(q)l,

15;(q) — sign(5;)v,(a)1);  (23)

where g;, §;, and », are the i"" components of the vectors
a(q) = L, - g(a) - C@)[a’];
5(a) = "—A@ C(ala’]; (29)

v(q) = (B(a))ad].

The operator & produces the matrix of the absolute
values of the elements of B(q). »,(q) therefore represents
the largest absolute values of Coriolis force that can occur



at the i" joint during any motion within the limits of
maximum operating joint velocities. At these velocities, the
joint force normalization matrix and the hyperparallele-
piped of minimum available weighted end-effector acceler-
ation become

N,(q) = diag(v,,(q)):

2,, = EU(Q)QI; (25)

where

E,(q) = WE(q)N,(q). (26)
E,(@) characterizes the dynamic behavior of the manipula-
tor at its maximum operating velocity.

5. Optimization of Dynamic Performance

In manipulator design using the operational space ap-
proach, dynamic optimization is aimed at providing the
largest and the most isotropic and uniform bounds on the
end-effector acceleration, or equivalently, on the command
vector F* (6), at both low and high velocities. While
performance at high velocities is important in fast gross
motion operations, performance at low velocities is par-
ticularly important for fast response in tasks with a
relatively smaller range of motion or during assembly
operations involving the active force control of contact
forces. The Ey(q) and E,(q) matrices establish the
input/output relationship between the minimum available
joint forces and the end-effector weighted accelerations at
zero and maximum joint velocities.

In a given configuration g, the Ey(q) and E,(q) matrices
are expresssed as a function of the manipulator’s kine-
matic, dynamic, and actuator parameters; e.g. link lengths,
masses, inertias, centers of mass, actuator masses, and
their force and velocity limits. Let n designate the set of
these parameters.

In the manipulator design process, workspace and
kinematic considerations will be used first to determine the
set of possible kinematic configurations of the mechanism.
The kinematic parameters associated with each of these
kinematic configurations will be specified within some
design boundaries. These kinematic specifications, in ad-
dition to dynamic and structure requirements, establish
various constraints on some or all of the manipulator
design parameters 7. Kinematic, dynamic, and actuator
parameters are in fact highly interconnected. For example,
the link’s mass, center of mass, and inertias are affected by
the variations of its length or actuator force specifications.
Let {u,(n): i=1.....n,}and {v;(n): i=1....,n.} des-
ignate the sets of equality and inequality constraints on the
manipulator design parameters 7.

The optimization problem can then be formalized in
terms of finding the design parameters 7. under the con-
straints {«,(n)} and {¢,(n)}. that maximize the volume of
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the hyperparallelepipeds 9, , 9, and minimize the ratio
of their largest and smallest axes. Expressed as a function
of the manipulator configuration q and the design parame-
ters 7, the matrices Ey(q, 1) and E, (g, ) constitute the
basic components in this optimization problem.

The matrices Ey(q,n) and E_(q,7n) are asymmetric.
However, using the polar decomposition, an m X n asym-
metric matrix M can be represented as the product of an
orthogonal matrix, U, with the symmetric positive semi-de-
finite matrix (MM7). The orthogonal matrix in this
decomposition describes the rotation properties of vectors
mapped by M while {(MMT) contains the elongation
characteristics of these mapped vectors. The largest eigen-
value of J/(MMT) is in fact the Euclidean norm ||M|| of
M. In addition, the ratio of this eigenvalue to the smallest
one, i.e. the condition number x(M), characterizes the
uniformity of the mapping by M. The condition number
has been used to evaluate the kinematic characteristics in
articulated hand design [16].

Finally, the problem of dynamic optimization over the
manipulator work space 9, can be expressed as the mini- -
mization of a global cost function C(7)

min €(7) = min /9 C(q,n)w(q)dq

subject to the constraints

u(n) =0

v,(n) <0 N 7
where the function w(q) is used to relax the weighting of
the local cost function C(g, 1) in the vicinity of the work
space boundaries and singularities. This local cost function
i1s composed of terms involving the magnitude and isotro-
picity characteristics at a given configuration, and is given
by

C(q.m) = [ + aoh‘(Eo(q,n))}

1
Il Eo(a, )l

1
+WP[|—|~E—(~(Q-—TI)“ + a,x(E,(q, n))} (28)

ag(a,) is the desired relative weighting between the end-
effector acceleration characteristics of isotropicity and
magnitude at zero velocity (maximum operating velocity).
w, controls the relative importance given to dynamic per-
formance at high velocity. ‘

The optimization of manipulator performance for tasks
involving applied end-effector forces can be similarly for-
mulated, using the relation (16). In addition, the optimi-
zation of end-effector velocity performance can also be
formulated using the manipulator kinematic model and the
actuator velocity characteristics. In the manipuiator design
process, end-effector dynamic, applied force, and kine-



matic performance can be incorporated into a global opti-
mization by extending the previous cost function.

6. Application

In the following example, simple two-link arm is used to
illustrate this formulation for the dynamic optimization of
manipulator systems. Both joints are assumed to be revo-
lute and to have parallel axes of rotation. Let /;, m,, r,,
and /; be the length, mass, distance vector from the joint
to the center of mass, and the inertia at the center of mass
for the i" link. Gravity acts in the plane perpendicular to
these axes. If s,, ¢, 5,, €5, §)5, and c¢,, denote respec-
tively, sin(q,), cos(q,), sin(q,), cos(q,), sin(q, + ¢,), and
cos(g, + g,), the Jacobian matrix for this manipulator,
expressed in the base reference frame coordinates, is

=lisy — 151, —lysyy

J= (29)

liey + lyepn 15¢45-

The elements of the operational space kinetic energy ma-
trix A(q) are

Ap = [(il -L+ mzllz)l% - 2(f2 + kl)lll?.cz

~ 2
+12112522]/(111252) 5

Mo = (kidy = Lhey)/hi3sy; (30)
Ay = iz/@:

Ay =An;

where

il =1 + ’"1('}2, + ryzl);
iz =1, + mz(rxz2 + ryzz);

ky = myl\(r.c; = 1,5,)

The elements of the matrices B(q) and C(q) are

by = =2k, = 2A nix,
+2A (X x; — N1Y2) + 25,55
512 =2(Ay — An)x,y; + 2’\12("% —J’22); (31)
and

En=An—A)x iy + >‘1z(x12 ‘.Vlz)"
&1y = —ky = Apnixy + Ap(xx = piyr) + Ay xss
n =k, = Apxypp + Ap(xx, — )’1)’2) + Apyixss
€y = (>‘22_)‘11))‘2)’2'*'}‘12()‘%_)’22); (32)
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where
ky= '"211(’.\»:52 + r_r:CZ);

x, = lic, + I3t

With g representing the acceleration of gravity, the com-

ponents of the gravity vector g(q) are

&= mz(’x,"u - ’}-2512)8§

(33)

81 =8+ ml(rxlcl - '}-,51)8 + mylic,g.
In this example,-the link lengths are constrained to main-
tain a maximum extension of /., while link each length

is constrained to be within the range of [ to I. These
constraint equations are simply expressed as

11 + 12 = Imax;
Lz 1

I, <1 (34)
For this example, /,,, = 1.0 meter, [ = 0.4 meter, and
1 = 0.6 meter.

In order to illustrate the type of constraints that might
arise on the manipulator dynamic parameters, suppose
that each link is constructed as a solid cylinder, and that
the actuators are located at the joints. The minimum value
of the link cylinder radius can be expressed as a function
of the maximum loading force f,,,,, the allowable struct-
ural stress in the links { (which can be related to the
maximum link deflection under load), the length of the
link, and the material properties of the link. Consequently,
link masses and inertias will be constrained by the value of
the minimum link radius. For this example, the constraints
on the mass and inertia are

m; > kl}? +m,;

Lz (12 =30, + 32) 1 + Lo, + mo s (35)

W x

where

2/3

= p(4fmnx/7r§)

p = is the material density of the link structural material

and m, and I, are the mass and Inertia of the i

actuator. Actuators are assumed to have symmetrical peak
torques (I‘ = —I,), and their masses and inertias are
considered to be ]mearly proportional to the peak torque
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1.602kg - m?

4, =05m,m =12.5kg,r, =025m,r, =0,1,

1, =05m,m, =9.5kg,r,, =025m,r, =0,/ = 0.664kg - m?

T, = S00Nm,T,, = 350Nm, T, = 200Nm,T,, = 140Nm
Figure 5. Initial design.
magnitude
m, = ka..,I‘O.Ia,-
= ka, 0, (36)

where k, and k, are the proportionality coefficients of
actuator masses and inertias. In addition, the joint torques
L, and I, at maximum operating joint velocities (2.0
rad/sec) are reduced to 70% of their values at zero velocity

(..I:O,’ rO,)'

The set of design parameters 7 consists of {/;, m;, I;, 1.,
m,,1,,0,,T,}, whie the equality and inequality con-
straints are represented by Equations (34), (35), and (36).
In this example, the selected material is steel (p =
7880kg/m>), f,... = 650N, { = 68.9 10°N/m?, and the
motor mass and inertia proportionality constants (k,
0.01, k,, = 0.0025) are representative of typical high f;er—
formance D.C. servo motors.

Initial Design from Joint Space Perspective

Figs. 5 and 6 illustrate the dynamic performance for two
different arm designs. The parallelepipeds in the upper left
figures (a) depict the boundaries on minimum available
end effector acceleration at zero joint velocities. The largest
circles that can be inscribed within these boundaries, which
represent the magnitude of the minimum available iso-
tropic accelerations, are shown in the upper right figures
(b) (A more detailed drawing of the minimum isotropically
available acceleration and its relation to acceleration
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I, = 0.60m, m, = 16.92kg, r, =020m,r, =0,I, = 1.93kg- m?
I, = 0.4m, m*= 6.09%g, r2 = 0.2lm, r, = 0, I, = 0.3%g - m’
= 130Nm, T, = 91Nm

v 1oy

To, = 612Nm, T, = 428Nm, T,

Figure 6. Optimized design.

Figure 7. Minimum isotropic acceleration.

bounds is shown in Fig. 7). The lower figure (c, d) illustrate
these accelerations at maximum operating joint velocities.
Let a@, and &, be the average magnitude of available
isotropic acceleration over the workspace at zero and
maximum joint operating velocities, respectively.

The dynamic performance shown in Fig. 4 corresponds
to an initial set of design parameters that were developed
using only joint space, rather than operational space, con-
siderations. Kinematically, the optimum link lengths occur
atl, =1,=05m. Using these link lengths, the minimum



link radii, mass and inertia were calculated. and the actu-
ators were sized to be based on gravity loading and uni-
form joint space acceleration considerations. However, this
design yields poor isotropic end effector acceleration char-
acteristic. In addition, the magnitude of the minimum
available acceleration at maximum operating velocity is
appreciably reduced. @, and a, are 38.3 m/sec? and 19.0
m/sec?, respectively.

Optimized Design

The design parameters of the above arm were used as
the starting point for a gradient search algorithm which
used the cost function given in Equation (27), and the
constraints in Equations (34), (35), and (36). Fig. 6 shows
the results of the optimization. At zero velocity, @, is 59.7
m/sec?, which represents an improvement of 56% over the
“initial design. More significantly, at maximum velocity a,
is 35.1 m/secz, an increase of 85% relative to the initial
arm. The sum of the actuator torques required in this
improved design are only 6.0% higher than those used in
the initial design.

7. Conclusion

The dynamic optimization problem in manipulator
design has been formalized, using the end-effector equa-
tions of motion in operational space. The characteristics of
the relationship that governs the transfer of joint forces to
end-effector accelerations have been used for the evalua-
tion of the manipulator dynamic performance. The optimi-
zation problem has been expressed as the minimization,
with respect to the design parameters and constraints, of a
cost function based on these characteristics.

The large isotropic and uniform bounds on end-effector
acceleration provided by this dynamic optimization will be
translated into a large and well conditioned operational
space command vector. This will provide the control sys-
tem, in addition to the forces necessary for end-effector
dynamic decoupling, sufficient operational forces to achieve
the desired design performance throughout the workspace.

The kinematic characterization and optimization of
manipulators can be similarly formulated. A global optimi-
zation integrating kinematic and dynamic criterion can be
achieved.
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