Special Seminar: Formal Methods meets Machine Learning: Explorations in Cyber-Physical Systems Design, Professor Sanjit A. Seshia, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley

Special Seminar

Title: Formal Methods meets Machine Learning: Explorations in Cyber-Physical Systems Design
Speaker: Professor Sanjit A. Seshia, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley
Date: December 4, 2017
Time: 4:00pm
Location: Gates, Room 463A

Abstract:
Cyber-physical systems (CPS) are computational systems tightly integrated with physical processes. Examples include modern automobiles, fly-by-wire aircraft, software-controlled medical devices, robots, and many more. In recent times, these systems have exploded in complexity due to the growing amount of software and networking integrated into physical environments via real-time control loops, as well as the growing use of machine learning and artificial intelligence (AI) techniques. At the same time, these systems must be designed with strong verifiable guarantees.

In this talk, I will describe our research explorations at the intersection of machine learning and formal methods that address some of the challenges in CPS design. First, I will describe how machine learning techniques can be blended with formal methods to address challenges in specification, design, and verification of industrial CPS. In particular, I will discuss the use of formal inductive synthesis --- algorithmic synthesis from examples with formal guarantees --- for CPS design. Next, I will discuss how formal methods can be used to improve the level of assurance in systems that rely
heavily on machine learning, such as autonomous vehicles using deep learning for perception. Both theory and industrial case studies will be discussed, with a special focus on the automotive domain. I will conclude with a brief discussion of the major remaining challenges posed by the use of machine learning and AI in CPS.

Bio:
Sanjit A. Seshia is a Professor in the Department of Electrical Engineering and Computer Sciences at the University of California, Berkeley. He received an M.S. and Ph.D. in Computer Science from Carnegie Mellon University, and a B.Tech. in Computer Science and Engineering from the Indian Institute of Technology, Bombay. His research interests are in formal methods for dependable and secure computing, with a current focus on the areas of cyber-physical systems, computer security, and robotics. He has made pioneering contributions to the areas of satisfiability modulo theories (SMT), SMT-based verification, and inductive program synthesis. He is co-author of a widely-used textbook on embedded, cyber-physical systems and has led the development of technologies for cyber-physical systems education based on formal methods. His awards and honors include a Presidential Early Career Award for Scientists and Engineers (PECASE), an Alfred P. Sloan Research Fellowship, and the Frederick Emmons Terman Award for contributions to electrical engineering and computer science education.

Date: 
Monday, December 4, 2017 - 4:00pm to 5:00pm
location: 
Gates Computer Science, 353 Serra Mall, Stanford, CA 94305, USA