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| can’'t get no ...
— MICK JAGGER and KEITH RICHARDS, Satisfaction (1965)

7.2.2.2. Satisfiability. We turn now to one of the most fundamental problems

of computer science: Given a Boolean formula F'(zq,...,x,), expressed in so-
called “conjunctive normal form” as an AND of ORs, can we “satisfy” F by
assigning values to its variables in such a way that F(zq,...,z,) = 17 For

example, the formula
F(xy,22,23) = (x1 V T2) A (22 V 23) A (T V Z3) A (T1 V T2 V 3) (1)
is satisfied when zyx523 = 001. But if we rule that solution out, by defining
G(x1,x2,x3) = F(x1,22,23) A (T1 V 22 V T3), (2)

then G is unsatisfiable: It has no satisfying assignment.

Section 7.1.1 discussed the embarrassing fact that nobody has ever been
able to come up with an efficient algorithm to solve the general satisfiability
problem, in the sense that the satisfiability of any given formula of size N could be
decided in N9 steps. Indeed, the famous unsolved question “does P = NP?”



Another problem equivalent to satisfiability 1s optained by going back to the
Boolean interpretation in (1) and complementing both sides of the equation. By
De Morgan’s laws 7.1.1-(11) and (12) we have

F(:L'l,:L'Q,.'I?3) = (.'f?l A :L'Q) \ (.'f?z A .'f?3) \Y (.'171 A :L'3) V (.'171 A 2 WA :f'g); (5)
and F is unsatisfiable <= F = 0 <= F = 1 <= F is a tautology. Consequently
F is satisfiable if and only if F' is not a tautology: The tautology problem and
the satisfiability problem are essentially the same.*

Since the satisfiability problem is so important, we simply call it SAT. And
instances of the problem such as (1), in which there are no clauses of length
greater than 3, are called 3SAT. In general, kSAT is the satisfiability problem
restricted to instances where no clause has more than k literals.

* Strictly speaking, TAUT is coNP-complete, while SAT is NP-complete; see Section 7.9.



The method of showing a statement to be tautologous

consists merely of constructing a table under it in the usual way
and observing that the column under the main connective
is composed entirely of ‘T’s.

— W. V. O. QUINE, Mathematical Logic (1940)



A Computing Procedure for Quantification Theory*

MARTIN Davis

Rensselaer Polytechnic Institute, Hartford Division, East Windsor Hill, Conn.

AND
HiLaAry PurNaAM

Princeton University, Princeton, New Jersey

The hope that mathematical methods employed in the investigation of formal
logic would lead to purely computational methods for obtaining mathematical
theorems goes back to Leibniz and has been revived by Peano around the turn
of the century and by Hilbert’s school in the 1920’s. Hilbert, noting that all of
classical mathematics could be formalized within quantification theory, declared
that the problem of finding an algorithm for determining whether or not a given
formula of quantification theory is valid was the central problem of mathe-
matical logic. And indeed, at one time it seemed as if investigations of this ‘“de-
cision’’ problem were on the verge of success. However, it was shown by Church
and by Turing that such an algorithm can not exist. This result led to consider-



A Machine Program for
Theorem-Provingf

Martin Davis, George Logemann, and
Donald Loveland

Institute of Mathematical Sciences, New York University

The programming of a proof procedure is discussed in
connection with trial runs and possible improvements.

In [1] is set forth an algorithm for proving theorems of
quantification theory which is an improvement in certain
respects over previously available algorithms such as that
of [2]. The present paper deals with the programming of
the algorithm of [1] for the New York University, In-
stitute of Mathematical Sciences’ IBM 704 computer,
with some modifications in the algorithm suggested by
this work, with the results obtained using the completed
algorithm. Familiarity with [1] is assumed throughout.

Changes in the Algorithm and Programming
Techniques Used

The algorithm of [1] consists of two interlocking parts.
The first part, called the QFl-Generator, generates (from
the formula whose proof is being attempted) a growing
propositional caleulus formula in conjunctive normal form,
the “quantifier-free lines.”” The second part, the Processor,
tests, at regular stages in its “growth,” the consistency of
this propositional caleulus formula. An inconsistent set
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The Complexity of Theorem-Proving Procedures

Stephen A. Cook

University of Toronto

Summarz

It is shown that any recognition
problem solved by a polynomial time-
bounded nondeterministic Turing
machine can be "reduced" to the pro-
blem of determining whether a given
propositional formula is a tautology.
Here "reduced'" means, roughly speak-
ing, that the first problem cam be
solved deterministically in polyno-
mial time provided an oracle is
available for solving the second.
From this notion of reducible,
polynomial degrees of difficulty are
defined, and it is shown that the
problem of determining tautologyhood
hae the <ame polvnomial decree as the

certain recursive set of strings on
this alphabet, and we are interested
in the problem of finding a good
lower bound on its possible recog-
nition times. We provide no such
lower bound here, but theorem 1 will
give evidence that { tautologies} is

a difficult set to recognize, since
many apparently difficult problems
can be reduced to determining tau-
tologyhood. By reduced we mean,
roughly speaking, that if tauto-
logyhood could be decided instantly
(by an "oracle') then these problems
could be decided in polynomial time.
In order to make this notion precise,
we introduce query machines, which
are 1like Turine machines with oracles
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Stephen Cook's Method I, frem his Spring P972 ceourse-notes,

Hniversity Of Toxmnto

It is suggested by Robinson's lemma and its proof
followsifrom 1t.
It operates on an expanding set of clauses Cl’ C2,...,Cn

(starting with the initial ones)

., consist=

Et ‘has a*push dowms stack:of literals 21,..., -

ent with no repetitions.
At every time we have a partial truth assignment

obtained by assigning true to 2% Rm on the stack. We

Qe
think of the objective as finding a satisfying assignment.
LN+~ O Cl""'cn given (we start with initiai clauses
Cl""’cn and empty stack)

Comment :

At every time before we enter step 2) no clause is
completely falsified by the partial truth assignment which
verifies all Zl""'gm' :

B m o+ omtl
Select a literal Zm such that neither Rm nor Eﬁ appears
on the stack.
If no.such Qm_exists then we have found a satisfying
truth assignment, so Cl""’cn are consistent.
If no clause is falsified by verifying 21,... Zm’ go
to step: 2) .
If some clause is falsified go to step 3).

3) (Assume Cs is falsified when 21,...,2m are verified)

Replace L. by Ih on the stack.
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An Empirical Comparison of Backtracking Algorithms

CYNTHIA A. BROWN anp PAUL W. PURDOM, JR.

Abstract—In this paper we report the results of experimental studies
of zero-level, one-level, and two-level search rearrangement backtracking.
We establish upper and lower limits for the size problem for which one-
level backtracking is preferred over zero-level and two-level methods,
thereby showing that the zero-level method is best for very small prob-
lems. The one-level method is best for moderate size problems, and the
two-level method is best for extremely large problems. Together with
our theoretical asymptotic formulas, these measurements provide a
useful guide for selecting the best search rearrangement method for a
particular problem.

Index Terms—Backtracking, constraint satisfaction, search algorithms,
tree search.

I. INTRODUCTION

An important task of computer scientists is devising general
algorithms that can be used to solve any problem from a large
set of related problems. Such sets of problems can be divided
into two classes, sometimes called “easy” and ‘“hard.” The easy
sets are those for which each problem in the set can be solved



Mathematics People

Computer-Aided Verification
Prize Awarded

The 2009 Computer-Aided Verification (CAV) award has
been presented to the following seven individuals: CONOR
F. MADIGAN, Kateeva, Inc.; SHARAD MALIK, Princeton
| University; JOAO P. MARQUES-SILVA, University College
Dublin, Ireland; MATTHEW W. MOSKEWICZ, University
of California Berkeley; KAREM A. SAKALLAH, University
of Michigan; LINTAO ZHANG, Microsoft Research, and
YING ZHAO, Wuxi Capital Group. They were honored for
fundamental contributions to the development of high-
performance Boolean satisfiability solvers.

The award recipients worked in two different teams,
one at the University of Michigan and one at Princeton
University, where they created powerful programs for
checking whether a logic formula has a consistent solu-
tion. This is known as a “Boolean satisfiability problem”.
Satisfiability, or SAT, solvers can be used to solve a number
of different problems, and it must be determined whether
there is any way of satisfying all of them. SAT solvers have
had a profound impact on the field of computer-aided
verification, which is dedicated to the creation of tools
that allow hardware and software designers to detect pos-
sible flaws in their systems and programs. Sakallah and
Marques-Silva’s GRASP solver, developed at the University

1456 NOTICES OF THE AMS VOLUME 56, NUMBER 11



7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 7

00 o1 Jo2Jo3Josa o5 o6 o7 o8] o9
11 [12]13 ] 141516 17 [ 18] 19
22 [23[2a 2526 [27]28] 29
33 [ 3¢ [ 35 [36[37]38]39
44 [ 45 [ a6 [ a7 [ 48 [ 49
55 [ 56 | 57 | 58 | 59

66 | 67 | 68 | 69
77 [ 78] 79
88 | 89
: 99
Fig. 33. The McGregor graph %171
of order 10. Each region of this 30] 31 [32
“map” is identified by a two- 40[ 41 [ 42 [43
digit hexadecimal code. Can you 50] 51 | 52 [ 53 [54
60] 61 [ 62 [ 63 [ 64 |65

color the regions with four colors, 70 71 [ 72 | 73 | 74 [ 75 [76

never using the same color for 80 81 [ 82 [ 83 [ 84|85 ]86 [8r7

two adjacent regions? 90] 91 [92 [ 93 [ 94 [ o596 97 [98

a0la1Ia2la3la4la5|a6la7la8|a9
10

Martin Gardner astonished the world in 1975 when he reported [Scientific
American 232,4 (April 1975), 126-130] that a proper coloring of the planar
map in Fig. 33 requires five distinct colors, thereby disproving the longstanding
four-color conjecture. (In that same column he also cited several other “facts”
supposedly discovered in 1974: (i) e7V163 is an integer; (i) pawn-to-king-rook-4
(‘h4’) is a winning first move in chess; (iii) the theory of special relativity is
fatally flawed; (iv) Leonardo da Vinci invented the flush toilet; and (v) Robert
Ripoff devised a motor that is powered entirely by psychic energy. Thousands
of readers failed to notice that they had been April Fooled!)



One color used only seven times!  22° = 8,388,608 ways to color!
(Randal Bryant) (Frank Bernhart)

(The total number of ways actually turns out to be 898,431,907,970,211.)
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Conway’s Game of Life

A live (black) cell stays alive if and only if two or three of its neigh-
bors are alive.

A dead (white) cell comes to life if and only if exactly three of its
neighbors are alive.



Conway’s Game of Life

A live (black) cell stays alive if and only if two or three of its neigh-
bors are alive.

A dead (white) cell comes to life if and only if exactly three of its
neighbors are alive.










» 85. [39] A Garden of Eden is a state of Life that has no predecessor.

a) If the pattern of 92 cells illustrated here occurs anywhere within a
bitmap X, verify that X is a Garden of Eden. (The gray cells can be
either dead or alive.)

b) This “orphan” pattern, found with a SAT solver’s help, is the smallest

that is currently known. Can you imagine how it was discovered?
86. [M23] How many Life predecessors does a random 10x10 bitmap have, on average?
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81 ISATe INTRO 1
November 5, 2012 at 14:01

1. Intro. This program is part of a series of “SAT-solvers” that I’'m putting together for my own
education as I prepare to write Section 7.2.2.2 of The Art of Computer Programming. My intent is to
have a variety of compatible programs on which I can run experiments to learn how different approaches
work in practice.

Indeed, this is the first of the series — more precisely the zero-th. I've tried to write it as a primitive
baseline against which I'll be able to measure various technical improvements that have been discovered in
recent years. This version represents what I think I would have written in the 1960s, when I knew how
to do basic backtracking with classical data structures (but very little else). I have intentionally written it
before having read any of the literature about modern SAT-solving techniques; in other words I’'m starting
with a personal “tabula rasa.” My plan is to write new versions as I read the literature, in more-or-less
historical order. The only thing that currently distinguishes me from a programmer of forty years ago,
SAT-solving-wise, is the knowledge that better methods almost surely do exist.

[Note: The present code is slightly modified from the original SAT0. It now corresponds to what has
become Algorithm 7.2.2.2A, so that I can make the quantitative experiments recorded in the book.]

Although this is the zero-level program, I'm taking care to adopt conventions for input and output that
will be essentially the same in all of the fancier versions that are to come.

The input on stdin is a series of lines with one clause per line. Each clause is a sequence of literals
separated by spaces. Each literal is a sequence of one to eight ASCII characters between ! and }, inclusive,
not beginning with ~, optionally preceded by ~ (which makes the literal “negative”). For example, Rivest’s
famous clauses on four variables, found in 6.5—(13) and 7.1.1-(32) of TAOCP, can be represented by the

following eight lines of input:
x2 x3 x4

x1 x3 x4

“x1 x2 x4

x1> x2 x3

“x2 x3 x4

“x1 x3 x4

xl x2 x4

xl -x2 =x3
Input lines that begin with =, are ignored (treated as comments). The output will be ¢~ if the input clauses
are unsatisfiable. Otherwise it will be a list of noncontradictory literals that cover each clause, separated by
spaces. (“Noncontradictory” means that we don’t have both a literal and its negation.) The input above
would, for example, yield ‘~’; but if the final clause were omitted, the output would be ‘x1 “x2 x3’, in some
order, possibly together with either x4 or “x4 (but not both). No attempt is made to find all solutions; at
most one solution is given.

The running time in “mems” is also reported, together with the approximate number of bytes needed for

data storage. One “mem” essentially means a memory access to a 64-bit word. (These totals don’t include
the time or space needed to parse the input or to format the output.)



2 INTRO SATO - §2

2. So here’s the structure of the program. (Skip ahead if you are impatient to see the interesting stuff.)

F#define o mems++ /* count one mem x*/
#define oo mems += 2 /* count two mems */
#define ooo mems +=3 /* count three mems */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "gb_flip.h"
typedef unsigned int uint; /* a convenient abbreviation */
typedef unsigned long long ullng; /* ditto */
(Type definitions 5);
( Global variables 3 );
(Subroutines 27);

main(int argc,char xargu[])

register uint c, h, i, j, k, [, p, q, r, level, parity;
(Process the command line 4);
(Initialize everything 8);
(Input the clauses 9);
if (verbose & show_basics) (Report the successful completion of the input phase 21 );
(Set up the main data structures 30 );
imems = mems, mems = 0,
(Solve the problem 39);
if (verbose & show_basics) fprintf (stderr,
"Altogether, %11lu+%1lu mems, %11lu bytes, %llu,nodes.\n", imems, mems, bytes, nodes);

3. H#define show_basics 1 /* verbose code for basic stats */
#define show_choices 2 /* werbose code for backtrack logging */
#define show_details 4 /* verbose code for further commentary */
(Global variables 3) =

int random_seed = 0; /* seed for the random words of gb_rand */

int verbose = show_basics; /* level of verbosity */

int hbits = §; /* logarithm of the number of the hash lists x/

int buf size = 1024; /* must exceed the length of the longest input line */

ullng imems, mems; /* mem counts */

ullng bytes; /* memory used by main data structures x/

ullng nodes; /* total number of branch nodes initiated */

ullng thresh = 0; /* report when mems exceeds this, if delta # 0 */
ullng delta = 0; /* report every delta or so mems */

See also sections 7 and 26.

This code is used in section 2.



7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 31

need SIZE(j). Instead, we can assume that the final literal of C} is in location
START(j — 1) — 1, provided that we define START (0) appropriately.

The resulting procedure is almost unbelievably short and sweet. It’s surely
the simplest SAT solver that can claim to be efficient on problems of modest size:

Algorithm B (Satisfiability by watching). Given nonempty clauses CiA---ACy,
on n > 0 Boolean variables x; ... z,, represented as above, this algorithm finds
a solution if and only if the clauses are satisfiable. It records its current progress
in an array my ...m, of “moves,” whose significance was explained above.

B1. [Initialize.] Set d « 1.

B2. [Rejoice or choose.] If d > n, terminate successfully. Otherwise set mq
[Waq=0 or Wagy1 #0] and I < 2d + my.

B3. [Remove [ if possible.] For all j such that [ is watched in C;, watch another
literal of C;. But go to B5 if that can’t be done. (See exercise 124.)

B4. [Advance.] Set W7 < 0, d < d + 1, and return to B2.
B5. [Try again.] If my < 2, set mg < 3 —my, | < 2d + (mq & 1), and go to B3.

B6. [Backtrack.] Terminate unsuccessfully if d = 1 (the clauses are unsatisfi-
able). Otherwise set d < d — 1 and go back to B5. 1

Readers are strongly encouraged to work exercise 124, which spells out the
low-level operations that are needed in step B3. Those operations accomplish
essentially everything that Algorithm B needs to do.
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continued from page 1

Random formulas sampled from most
distributions turned out to be easy to
solve. Yet in the early 1990s, when con-
sidering formulas with a fixed ratio of
clauses to variables, computer scientists
noticed a curious phenomenon. When
the ratio is small, formulas have many
variables and few constraints; there are
many satisfying assignments and it’s
easy for simple algorithms to find one of
them. When the ratio is large, the vari-
ables tend to be overly constrained, and
formulas almost certainly have no satis-
fying assignments. Remarkably, as the
ratio, r, of clauses to variables grows,
the transition from probably satisfiable
to probably unsatisfiable is not gradual,
but abrupt.
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F(:El, To, :Ug) = (ZEl V Zfz) N (:Uz V ZE3) N (fl V :53) A (:fl VoV :Eg)

~ a simple example that’s satisfiable
1 ~2

2 3

~1 ~3

~1 ~2 3

G($17$27$3) — F(:Eh L2, 563) A (:El VaaV j?))

~ a simple example that’s unsatisfiable
1 ~2

23

~1 ~3

~1 ~2 3

12 ~3



Van der Waerden’s Problem

Place red and blue balls so that no three balls of the same color are
equally spaced.

Examples of incorrect placements:

C————0

(C, S ©



Try with eight balls:




Eight balls, continued:

0000 00
Oo——0
O——9

|
00000000 (77 €7 53 ) 32 %

000000 ¢ 00000000 0000000 0000000

o——o ——o ——o0 o——©




demo[1]> sat-waerden 3 3 8

N FHLWOOMOWL ©O©N 0N~ 0

at-waerden 3 3 8

S
2
3
4
5
6
7
3
4
5
6
4
5

U AN FD O AN AN

~5 ~8

~2



demo[2]> sat-waerden 3 3 8 | satO

(8 variables, 24 clauses, 72 literals successfully read)
ISAT!

~12~345 ~67 ~8

Altogether 850+384 mems, 1712 bytes, 6 nodes.

demo[3]> sat-waerden 3 3 9 | satO
(9 variables, 32 clauses, 96 literals successfully read)

~

UNSAT
Altogether 1111+9136 mems, 2200 bytes, 75 nodes.

demo[4]> sat-waerden 3 3 9 | satOw
(9 variables, 32 clauses, 96 literals successfully read)

~

UNSAT
Altogether 222+3666 mems, 880 bytes, 79 nodes.



demo[5]> sat-waerden 3 3 9 | satl0
(9 variables, 32 clauses, 96 literals successfully read)

~

UNSAT
Altogether 252+5191 mems, 978 bytes, 7 nodes.

demo[6]> sat-waerden 3 3 9 | satil
(9 variables, 32 clauses, 96 literals successfully read)

~

UNSAT
Altogether 1042+8987 mems, 7272 bytes, 3 nodes.

demo[7] sat-waerden 3 3 9 | satl3 s1001 1/tmp/learned
(9 variables, 32 clauses, 96 literals successfully read)

~

UNSAT
Altogether 667+2838 mems, 7021 bytes, 6 nodes.
6 learned clauses written to file ‘/tmp/learned’.



demo [8]> more /tmp/learned
~3 ~b

4 ~5

~5

3

~4 ~1

~1



demo [8]> more /tmp/learned
~3 ~b

4 ~5

~5

3

~4 ~1

~1




=) k)
4 ~5
-—-More--(417%)

79000000 .

—e—o




demo [8]> more /tmp/learned

~3 ~b
4 ~5
~5
3
~4 ~1
~1

. and so on: Each of the four remaining learned clauses can be
deduced as a forced consequence of its predecessors. Finally, all six of
the learned clauses force a contradiction. Thus the given clauses, which
encode the nine-ball problem, are unsatisfiable.



demo[9]> sat-waerden 4 4 34 | sat13 >! /dev/null

(34 variables, 352 clauses, 1408 literals successfully read)
ISAT!

Altogether 4857+141856 mems, 21974 bytes, 132 nodes.

demo[10]> sat-waerden 4 4 35 | sati13 >! /dev/null

(35 variables, 374 clauses, 1496 literals successfully read)
UNSAT

Altogether 5137+448507 mems, 27663 bytes, 318 nodes.



demo[11]> sat-waerden 5 5 177 | sat13 >! /dev/null

(177 variables, 7656 clauses, 38280 literals successfully read)
ISAT!

Altogether 96579+74594130 mems, 619697 bytes, 11038 nodes.

demo[12]> sat-waerden 5 5 178 | satl13 1/tmp/learnt >! /dev/null
(178 variables, 7744 clauses, 38720 literals successfully read)
UNSAT

Altogether 97665+21013308385 mems, 3257686 bytes, 949207 nodes.
877397 learned clauses written to file ‘/tmp/learnt’.

75.324u 0.000s 1:15.37 99.9% 0+0k 0+0io Opf+Ow
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€1 =2221081046 97576857467661157687722=c3Q
rrrrrrrerrrrrrrrerrr gttt

[}
o o
N o=

& AU RN

THWONNWARAWRR R WWUDONNWROOO OO

£ SS AL AL

444465645541100000=a5q

CORRTRANWWANWRWNRWNROOOO OO

b54=0000000015464675466117677424338

Fig. 36. An array of black and white pixels together with its
row sums 7, column sums ¢;, and diagonal sums ag4, bq.



e o R )
.___,.-:::. - T-E :

(a) lexicographically first; (b) maximally different; (c) lexicographically last.
Fig. 37. Extreme solutions to the constraints of Fig. 36.



A Digital Tomography Puzzle

111515151153331614334
AR EEARERRERRERRERE

NN - ===
-

1
1
2
3
34333234332332322100 4
3
3

00000133432223342333

Fach cell in this 7 x 21 array is either black or white.
The number of black cells in each row, column, and diagonal is shown.
Reconstruct the hidden black/white pattern.



A Digital Tomography Puzzle — First step of solution

111515151153331614334
I A A O O O A I I
—19
7
1 ~12
1 ~6
1 ~131
1 ~—0 1
1 ~—~1 2
2 3
234333234332332322100 4
3
000001334322233423333



~ sat-tomography (7x21, 58)
1x21 1R1401

1x20 1R1401

1x20 1x21 1R1402
~1x20 ~1x21 ~1R1401
~1x20 ~1R1402

~1x21 ~1R1402

1x19 1R1301

1x18 1R1301

1x18 1x19 1R1302
~1x18 ~1x19 ~1R1301
~1x18 ~1R1302

~1x19 ~1R1302

1x17 1R1201

1x16 1R1201

1x16 1x17 1R1202
~1x16 ~1x17 ~1R1201
~1x16 ~1R1202

~1x17 ~1R1202



demo[13]> sat-tomography-prep 7 21 < puzzle.data | sat-tomograp)
Chy | sat13 >! /dev/null

0K, I’ve input an image with 7 rows and 21 columns.
Input for 7 rows and 21 columns successfully read (total 58)

(1039 variables, 3926 clauses, 9362 literals successfully read)
ISAT!

Altogether 77340+30907 mems, 201223 bytes, O nodes.
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Synthesis of a circuit (1 + zo + z3 + 24 + x5 = 422 + 221 + 20)

The old way:

The new way:

(found by solving 76321
clauses in 957 variables)



The Pythagorean triples problem: Choose either 1 or 1,

..., N or N, without having a® + b® = ¢? or a® + b? = 2.

Graham, 1984: Is it possible for N = c0? ($100 reward!)
Cooper, Poirel, 2008: Yes for N = 1344.

Kay, 2009: Yes for N = 1514.

Myers, 2015: Yes for N = 6500.

Cooper, Overstreet, 2015: Yes for N = 7664.

Heule, Kullmann, Marek, 2016: Yes for N = 7824.
Heule, Kullmann, Marek, 2016: No for N = 7825!

2 or 2,



Solving and Verifying the boolean Pythagorean
Triples problem via Cube-and-Conquer

Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek

The University of Texas at Austin, Swansea University, and University of Kentucky

Abstract. The boolean Pythagorean Triples problem has been a long-
standing open problem in Ramsey Theory: Can the set N = {1,2,...}
of natural numbers be divided into two parts, such that no part contains
a triple (a, b, c) with a® + b2 = ¢® ? A prize for the solution was offered
by Ronald Graham over two decades ago. We solve this problem, prov-
ing in fact the impossibility, by using the Cube-and-Conquer paradigm,
a hybrid SAT method for hard problems, employing both look-ahead
and CDCL solvers. An important role is played by dedicated look-ahead
heuristics, which indeed allowed to solve the problem on a cluster with
800 cores in about 2 days. Due to the general interest in this mathemati-
cal problem, our result requires a formal proof. Exploiting recent progress
in unsatisfiability proofs of SAT solvers, we produced and verified a proof
in the DRAT format, which is almost 200 terabytes in size. From this we
extracted and made available a compressed certificate of 68 gigabytes,
that allows anyone to reconstruct the DRAT proof for checking.

1 Introduction

Propositional satisfiability (SAT, for short) is a formalism that allows for rep-
resentation of all finite-domain constraint satisfaction problems. Consequently,
all decision problems in the class NP, as well as all search problems in the class
FNP [9,29,35,19], can be polynomially reduced to SAT. Due to great progress
with SAT solvers, many practically important problems are solved using such



~ sat-pyth 7825
345

~3 ~4 ~5

5 12 13

~5 ~12 ~13
6 8 10

~6 ~8 ~10

7 24 25

~7 ~24 ~25
8 15 17

~8 ~156 ~17
9 12 15

~9 ~12 ~15
9 40 41

~9 ~40 ~41
10 24 26
~10 ~24 ~26

5474 5520 7774
~5474 ~5520 ~7774



demo[14]> sat-pyth 6500 | sat13 410000000000 f.001 hi0 s3142 >

€1 /dev/null

C(5370 variables, 15348 clauses, 46044 literals successfully re)
ad)

after 100000053109 mems: 2z=0 d=45.7 t=515.1 m=47084.3 p=302.)

€9 m/p=155.4 r=34.3 L=37.9 1=35.4 g=30.7 s=0.02 a=0.13

ISAT!

cAltogether 293197+145227517488 mems, 11971290 bytes, 4527737 n)
odes.

749.386u 0.024s 12:30.48 99.8) 0+0k 0+0io Opf+Ow



demo[14]> sat-pyth 6500 | sat13 410000000000 f.001 hi0 s3142 >
€1 /dev/null
(6370 variables, 15348 clauses, 46044 literals successfully re)

Cad)

after 100000053109 mems: 2z=0 d=45.7 t=515.1 m=47084.3 p=302.)

Co m/p=155.4 r=34.3 L=37.9 1=35.4 g=30.7 s=0.02 a=0.13

ISAT!

cAltogether 293197+145227517488 mems, 11971290 bytes, 4527737 n)
odes.

749.386u 0.024s 12:30.48 99.8) 0+0k 0+0io Opf+Ow

(The calculations by Heule, Kullman, and Marek for N = 7825, using
the glucose 3.0 solver by Gilles Audemard and Laurent Simon, took
about 35,000 hours of CPU time, after dividing the task into about a
million independent jobs to be run in parallel. But the computation was
completed in two days, because they did it in Texas — on a computer
cluster called Stampede.)





