SATISFIABILITY

AND

[3E dor oF

LompUreR
FROGRAYMING

Don Knury — SAT 2012 — TrenTto

THE ART OF
COMPUTER PROGRAMMING
VOLUME 4 PRE-FASCICLE 6A

A (VERY INCOMPLETE)
DRAFT OF SECTION 7.2.2.2:
SATISFIABILITY

DONALD E. KNUTH Stanford University

ADDISON-WESLEY v¥

http://www-cs-faculty.stanford.edu/ "knuth/
fascba.ps.gz

Zeroth printing (revision —93), 10 June 2012

THIS BOOKLET contains draft material that I'm circulating to
experts in the field, in hopes that they can help remove its
most egregious errors before too many other people see it. T am
also, however, posting it on the Internet for courageous and/or
random readers who don’t mind the risk of reading a few pages
that have not yet reached a very mature state. Beware: This
material has not yet been proofread as thoroughly as ...

At the moment I’'m just beginning to write this material, so it’s
in an extremely raw state. But hey, I had to start somewhere.
As I finish drafting small pieces of the final big picture, I'm
trying them out by making these test pages. You will soon
see, however, that I've got a long way to go before I'll have
anything coherent. These are scraps that I hope to refine and
polish (if the FORCE stays with me). You’ll also notice that
many of the equation numbers and exercise numbers are flaky,
because I keep changing them frequently.

* E S *

My notes on combinatorial algorithms have been accumulating
for more than fifty years, yet I fear that in many respects my
knowledge is woefully behind the times. Please look, for ex-
ample, at the exercises that I've classed as research problems
(rated with difficulty level 46 or higher), namely exercises 90,
91, 108, ...; I've also implicitly mentioned or posed additional

unsolved questions in the answers to exercises 64, 80, 81, 90,
108, 185, 300, 323, Are those problems still open? Please
inform me if you know of a solution to any of these intriguing
questions. And of course if no solution is known today but you
do make progress on any of them in the future, I hope you’ll
let me know.

I urgently need your help also with respect to some exer-
cises that I made up as I was preparing this material. I certainly
don’t like to receive credit for things that have already been
published by others, and most of these results are quite natu-
ral “fruits” that were just waiting to be “plucked.” Therefore
please tell me if you know who deserves to be credited, with
respect to the ideas found in exercises 1, 2, 3, 4, 14, 61, 62, 68,
80(b,c,d), 82, 83, 93, 160, 168, 178, 179, 180, 235, 236, 237, 240,
251(b), 252, 280, 293, 320, 321, 324, ..., and/or the answers
to exercises

Special thanks are due to Armin Biere, Niklas Eén, Svante
Janson, Oliver Kullmann, Wes Pegden, Niklas Sorensson, and
... for their detailed comments on my early attempts at expo-
sition, as well as to numerous other correspondents who have
contributed crucial corrections.

I happily offer a “finder’s fee” of $2.56 for each error in
this draft when it is first reported to me, whether that error
be typographical, technical, or historical. The same reward
holds for items that I forgot to put in the index. And valuable
suggestions for improvements to the text are worth 32¢ each.
(Furthermore, if you find a better solution to an exercise, I'll
actually do my best to give you immortal glory, by publishing
your name in the eventual book:—)

http://www-cs—-faculty.stanford.edu/
“knuth/
fascba.ps.gz

* ES *

So far there are 75 pages (37 for text, 13 for exercises,
25 for answers); 15 of those pages are about basic
probability techniques, not about satisfiability:.

I think the section on SAT will eventually amount
to about 150 pages in Volume 4B. (For comparison,

Volume 4A already contains about 135 pages about
BDDs and ZDDs.)

bytes

28336
29623
22240
39733
39727
42912
HH812
28303
29330
38981

date

2011-08-26
2011-09-03
2011-09-13
2011-09-18
2011-11-24
2011-12-04
2011-12-28
2012-02-06
2012-03-07
2012-05-10

program

satO.
satl.
sat2.
sat3.
sat4.
satb.
satb.
sat’.
sat8.
sat9.

S =5 5 £ 5 5 5 5

tabula rasa

truth table

incremental truth table
DPL 1962 “ready list”
prefer binary clauses
more efficient

Cook’s clause learning
Papadimitriou’s “Walk”
“WalkSAT”

Survey Propagation

Stephen A. Cook, CSC 2409S lecture notes
(University of Toronto, 17 January 1972)

It operates on an expanding set of clauses Cl' Cz,.'..,Cn
(starting with the initial ones)

It has a push down stack of literals 21,...,£m, consist-
ent with no repetitions.

At every time we have a partial truth assignment
obtained by assigning true to 11,...,2m on the stack. We
think of the objective as finding a satisfying assignment.
LlSssme = O CqreeeeCp given (we start with initial clauses
Cl....,Cn and empty stack)

Comment :

At every time before we enter step 2) no clause is
completely falsified by the partial truth assignment which
verifies all El""'zm' ‘

200 m + m+l ;
Select a literal Qm such that neither Lm nor Iﬁ appears

on the stack.

If no such £m_exists then we have found a satisfying

0.0.3 0.0.4 0.0.5

0.0.2

1
1
1

0.0.

0.1.5
0.2.5

0.1.4
0.2.4

1.3
0.2.3

0.

0.1.2
0.2.2

1.

0.
0.2.

4.3.4

4.3.2
4.4.2

4.3.5
4.4.5

4.3.3
4.4.3

1
1

4.3.

4.4.4

4.4.

“1.1.1
"2.2.1
"3.3.1

~0.0.1
“0.0.1
“0.0.1

“4.3.5
“4.4.5
“4.4.5

4.2.5
4.2.5
“4.3.5

http://www-cs-faculty.stanford.edu/
“knuth/programs/sat-to-dimacs.w

http://www-cs-faculty.stanford.edu/
“knuth/programs/dimacs-to-sat.w

(@]

file created by SAT-TO-DIMACS Wed Jun 6 10:23:47 2012
c 4.4.5 -> 125
4.4.4 -> 124

(@]

c 0.0.2 -> 2

c 0.0.1 > 1

p cnf 125 825
-125 -120 0

-125 -115 0

15 14 13 12 11 O
1098760
543210

[1]> sat0 < queenbxb5color.dat
(125 variables, 825 clauses, 1725 literals)
“0.0.1 "0.0.2 "0.0.3 “0.0.4 0.0.5 ... 74.4.5

Altogether 19700+18[785 mems, 39208 bytes.

[2]> satl < queenbxb5color.dat
(125 variables, 825 clauses, 1725 literals)

“0.0.1 0.0.2 70.0.3 70.0.4 "0.0.5 ... 4.4.5
Altogether 12652+2709 mems, 40624 bytes.

[3]1> sat2 < queenbxbcolor.dat

(125 variables, 825 clauses, 1725 literals)
“0.0.1 "0.0.2 "0.0.3 70.0.4 0.0.5 ... "4.4.5
Altogether 4526+3517938425 mems, 15516 bytes.

#define o mems++ /% count one mem x/
#define oo mems +=2 /% count two mems x/

46. As an experiment, I'm swapping the first true literal into
the first position of its clause, hoping that subsequent “de-
crease” loops will thereby be shortened.

(Increase the breakcount of ¢’s critical variable 46) =
1
for (o, =i = cmem|c].start; ;i++) {
0,q = mem|il;
if (o0, value(q)) break;
}
0, vmem|[q > 1].breakcount ++;
if ¢ £ i1 00, mem/[i] = mem/[ii], mem[ii]| = q;
}

This code is used in section 44.

[4]> sat3 < queenbxbcolor.dat
(125 variables, 825 clauses, 1725 literals)

“0.0.1 70.0.2 70.0.3 70.0.4 0.0.5 . 71.3.4
Altogether 19952+11647 mems, 42724 bytes.

[5]1> satb < queenbxbcolor.dat
(125 variables, 825 clauses, 1725 literals)

“0.0.1 "0.1.1 70.2.1 70.3.1 0.4.1 . 0.2.3
Altogether 18851+688489345 mems, 73248 bytes.

[6]1> sat6 < queenbxbcolor.dat
(125 variables, 825 clauses, 1725 literals)

“1.1.1 72.2.1 "3.3.1 "4.4.1 70.1.1 . 0.3.5

Altogether O new clauses, 0 recycled,
36176+17047 mems, 74748 bytes.

[71> sat3 d10000000
(125 variables, 600

after
after
after
after
after
after

~

10002287
20001484
30002010
400000099
50005241
600000099

mems:
mems:
mems :
mems :
mems:
mems:

< rand-3-125-600-0.dat
clauses, 1800 literals)
0043103310050244541525454
0043233352305014452151514
033140403243032441550535
3045100324034535554155454
3302043304005454315125
3332353351050545440445544

Altogether 27638+60489039 mems, 42124 bytes.

[8]> sat5 d10/000000 < rand-3-125-600-0.dat
(125 variables, 600 clauses, 1800 literals)
after 10002965 mems:0acd545d54a456daab544c47ad

after 20003037 mems:3bcb44b554dc4dbabca
after 30000035 mems:3cbbad45a54bd4addd4544d44

Altogether 18551+31/987450 mems, 69648 bytes.

[9]> sat3 d2000 < queenbx5color.dat

(125 variables, 825 clauses, 1725 literals)
after 2019 mems:11114555

after 4027 mems:1111455555555555511145555
after 6/026 mems:1111455555555555511145555555E
after 8043 mems:1111455555555555511145555555E
after 10032 mems:111145555555555551114555555E
“0.0.1 "0.0.2 "0.0.3 70.0.4 0.0.5 ... "1.3.4
Altogether 19952+11647 mems, 42724 bytes.

[10]> satb d100000000 < queenbxbcolor.dat
(125 variables, 825 clauses, 1725 literals)
after 100000033 mems:bbbbbbbbbbbbbbbc55555577
after 200005826 mems:bbbbbbbbbbbc555555557777
after 300000049 mems:bbbbbbbbbc5555557777bchE
after 400000033 mems:bbbbbbbc5555555557777bbt
after 500000050 mems:bbbbbbc55555555557777bbt
after 600000005 mems:bbbbbcb55555555557777bchE
“0.0.1 0.1.1 "0.2.1 "0.3.1 0.4.1 ... 0.2.3
Altogether 18851+688489345 mems, 73248 bytes.

[11]> sat3-rand d100000 < queenbxbcolor.dat
(125 variables, 825 clauses, 1725 literals)

after
after
after
after
after
after
after

100023
202114
300010
400042
501349
603041
701449

mems:
mems:
mems :
mems :
mems:
mems:
mems :

111111111111111111111111114
11111111111111111111111112°F
111111711111111111111112555¢
11111111111111111111255555¢&
11111111111111111112555555¢&
11111111111111111125555555¢&
11111111111111111255555555¢&

“1.0.2 "2.3.1 72.1.5 72.0.2 ... 70.2.5
Altogether 21/679+795425 mems, 42724 bytes.

10000 01000 00100 00010 00001
00010 00001 10000 01000 00100
10000 01000 00100 00010 00001
00001 10000 01000 00100 00010
00100 00010 00001 10000 01000

000 001 010 011 100
011 100 000 001 010
000 001 010 011 100
100 000 001 010 O11
010 011 100 000 001

“0.0.1
“0.1.1

~“0.0.3
"0.1.3

“4.4.1
“0.0.1
“0.1.1

"4.4.3
“0.0.2
"0.1.2

“4.4.1

“4.4.2

0.1.1
“0.1.1

0.0.1
0.0.

“0.070.11
0.070.11
0.070.11

1

1

1.
“0.1.1

0.

~0.0.1

“0.0.1

“0.070.11

0.074.42

0.074.41

0.074.43

[12]> satb db00000 < queenbxbcolor-binary.dat
(555 variables, 2130 clauses, 6340 literals)
after 500597 mems:bad5a45a4a55a55d554a5554a5k
after 1000633 mems:badbadbadab5ab5d554a5554ak
after 1500013 mems:badbadbadabbab5d554a5554ak
after 2000006 mems:badbadbadab5abb5d554a5554ak
“0.0.3 0.074.43 4.4.3 "4.4.1 ... 71.371.41
Altogether 67011+2312306 mems, 256608 bytes.

[13]> sat3 d1/000000000000 < queenbx5color-bin
(555 variables, 2130 clauses, 6340 literals)
after 1000000000063 mems:1115154155154542444¢
after 2000000000122 mems:1115154155244515551F
“0.0.3 “0.0.1 "0.1.3 70.0°0.13 ... 0.270.32
Altogether 116372+2189929944193 mems, 156244

[14]> sat3-rand d1/000000000000 < queenbxbcolc

(555 variables,

after
after
after
after
after
after
after
after
after
after
after

etc...

1000000001844
2000000012419
3000000002278
4000000000002
5000000000557
6000000004086
7000000011274
8000000000156
9000000000495

mems

mems

mems

mems:

2130 clauses, 6340 literals)
mems :
:00000000000000000003
mems :
mems :
:0000000000000000003C
mems :

mems :
:0000000000000000030C

0000000000000000000C

00000000000000000003
0000000000000000003C

00000000000000000033
00000000000000000033

00000000000000000303

10/000000004416 mems:000000000000000003C
11/000/000000191 mems:0000000000000000033
estimated 3 petamems to finish (3el15)!

“0.0.1

~“0.0.3

“4.4.1

“4.4.2

0.1.1

0.0.3 0.1.3 0.0.2 0.1.2 0.0.1

“0.0.3

0.1.1
0.1.1

“0.1.3 0.0.2 0.1.2 0.0.1

“0.1.2 0.0.1

“0.0.2

0.0.3 0.1.3
~0.0.3

0.1.1

“0.1.2 0.0.1
“0.1.1

~0.0.2

“0.1.3

“0.0.1

0.0.3 0.1.3 0.0.2 0.1.2

0.0.3 4.4.3 0.0.2 4.4.2 0.0.1

~0.0.3

4.4.1

“4.4.3 0.0.2 4.4.2 0.0.1 4.4.1

“4.4.2 0.0.1 4.4.1

“0.0.2

0.0.3 4.4.3

4.4.1
“4.4.1

“4.4.3 70.0.2 "4.4.2 0.0.1
0.0.3 4.4.3 0.0.2 4.4.2

~“0.0.3

“0.0.1

[15]> satb < queenbxbcolor-altbinary.dat

(75 variables, 850 clauses, 4900 literals)
0.0.3 "0.0.1 0.1.3 “0.1.1 0.0.2 ... "2.1.1
Altogether 43651+76175 mems, 145248 bytes.

[16]> sat3 < queenbxbcolor-altbinary.dat

(75 variables, 850 clauses, 4900 literals)
0.0.3 "0.0.1 0.1.3 "0.1.1 "0.2.3 ... 70.4.2
Altogether 77/652+675724229162 mems, 90342 byt

[17]> sat3-rand < queenbxbcolor-altbinary.dat
(75 variables, 850 clauses, 4900 literals)
3.4.2 "3.4.1 0.1.2 70.1.1 4.2.3 ... 70.4.2
Altogether 78695+6426416 mems, 908324 bytes.

Iy T4 T3 T2 L1 XQ
Yr Ys Ys Y4 Y3 Y2 Y1 Yo

1 1.0 01 00 O0O0O0O0 01

(X x Y = 6401)

~7Z13

A2:6 ~Y4 X2

“"PO:6 “Al1:6 TAO:6
RO:6 ~“A2:6 “P0O:6
Q1:9 7“A4:9 7“A3:9
“A9:11 R1:10 Q1:10
A10:5 A8:5 “P2:5
P3:7 A10:7 TA9:7

"R3:3 Q2:2
“U11 A13:11 P3:11
C8:3 7(C8:2

“C11:2 B11:2 V10
"D13:2 U112

[18]> sat3 < 6401.dat
(286 variables, 911 clauses, 2309 literals)

~“Z13 ... TA8:9 A10:9 "A6:8 "Q2:8 TAT:7 ~Y4
Altogether 40217+183094 mems, 63704 bytes.

[19]> sath < 6401.dat
(286 variables, 911 clauses, 2309 literals)

“Z13 ... A0:2 A2:2 "P2:3 AO:5 X2 Y2
Altogether 26/121+12307/600 mems, 104784 bytes.

[20]> sat6 < 6401.dat
(286 variables, 911 clauses, 2309 literals)

“7213 ... A2:5 P2:8 "A10:8 "A1:4 "A1:6 "B8:5
Altogether 2019 new clauses, 439 recycled,
40415+3159955 mems, 720648 bytes.

[21]> sat5 d5000000 < 6401.dat

(286 variables, 911 clauses, 2309 literals)

after 5008203 mems:5445545555555444a4455d55\
d55badb44d54d54d5455b55555555d545¢ch

after 10001285 mems:5445545555555444d54a445\
5d555d55bd55555555d555badb44d54d54a445\
5d555555¢c54a44555555555555455b555ba4d4\
55b555555555555455555d5

“Z213 ... AO0:2 A2:2 "P2:3 AO:5 X2 Y2

Altogether 26/121+12307600 mems, 104{784 bytes.

[22]> sat3-rand d50000000 < 6401.dat

(286 variables, 911 clauses, 2309 literals)

after 50000824 mems:54455455555554441024555\
5555555555455555555553535555555555\
5554555555555555535513555155155544\
4555555555554345555555555555511135\
5555545355015355553555555555555555\
510555511524

“Z13 ... TA1:4 "A1:3 TA1:2 "Q0:2 "A1:1 "R1:1C

Altogether 44190+540916781 mems, 63704 bytes.

Cynthia A. Brown and Paul W. Purdom,
Jr., IEEE Transactions PAMI-4 (1982)

voted to making the program fast. For large problems, nearly
all the time was spent doing intermediate predicate evaluations,
so optimization of predicate evaluations received particular
attention. Backtracking proceeds by setting or changing one
variable at a time. For our purposes, a clause is true if at least
one literal in it is true or unknown. We keep a list for each
literal. Each clause is on the list for@ of the literals that
causes it to be true. Initially, when no variables are set, any
literal in a clause causes it to be true. When a variable is set or
changed, one literal becomes false. The clauses on the list for
that literal are examined. If a clause contains other literals that
cause it to be true, then the clause is moved to the list for that
literal. If all the literals in a clause are false, then the predicate
is false, and it is time to backtrack. After backtracking, the
clause that caused the predicate to become false is again true,
so it is not necessary to move it (or any other clauses remaining
on its list) to a new list. Also, there is no need to move any
other clauses when backtracking. Since a clause can be left on
the list of any literal that makes it true, there is no need to
restore other clauses to their former lists. This method of
evaluating intermediate predicates allows us to evaluate large
predicates rapidly. For v=256, t =4096, and s = 3, we esti-
mate that only 35 us are required for a typical evaluation.

I haven’t written any of this stuff up yet.

But the current draft has lots of cool material about Monte
Carlo / Las Vegas approaches to SAT solving, like WalkSAT.

Here’s an excerpt that you might find interesting;:

Exercise 175 proves that such an algorithm always has an
optimum cutoff value N = N*, which minimizes the expected
time to success when the algorithm is restarted after each fail-
ure. Sometimes N* = oo is the best choice, meaning that
we should always keep plowing ahead; in other cases N™* is
quite small.

But N* exists only in theory, and the theory requires per-
fect knowledge of the algorithm’s behavior. In practice we usu-
ally have little or no information about how N should best
be specified. Fortunately there’s still an effective way to pro-

ceed, by using the notion of reluctant doubling introduced by
M. Luby, A. Sinclair, and D. Zuckerman [Information Proc.

Letters 47 (1993), 173-180], who defined the interesting se-
quence

S1,82,...=1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,
1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,16,... (97)
The elements of this sequence are all powers of 2; and we have
Sn+1 = 2S5, if and only if the number S, has already occurred

an even number of times. A convenient way to generate this

sequence is to work with two integers (u,v), and to start with
(u1,v1) = (1,1); then

(Unt1,Vn11) = (Un&—un =07 (Up, +1,1): (U, 20,)). (98)

The successive pairs are (1,1), (2,1), (2,2), (3,1), (4,1), (4,2),
(4,4), (5,1), ..., and we have S,, = v, for all n > 1.

Exercise 178 introduces the “reluctant Fibonacci sequence”

1,1,2,1,2,3,1,1,2,3,5,1,1,2,1,2,3,5,8,
1,1,2,1,2,3,1,1,2,3,5,8,13,1, . ..

and its answer explains how to generate it with an amazingly
short sequence of bitwise operations.

185. [46] If the given clauses are satisfiable, and if p > 0,
can there be an initial x for which Algorithm W always loops
forever?

(answer)

185. Note to the reader: I've been tearing my hair out try-
ing to resolve this question. If there is a counterexample, I
definitely ought to mention that fact in my book. If not, the
result still is essential for a basic understanding of this impor-
tant algorithm. I've been alternating between thinking I had
a counterexample and thinking that there is a simple way to
prove that no counterexamples exist. I can’t figure out the
essential reason why counterexamples have escaped all of my
devious constructions. Hopefully somebody will already have
resolved this issue? Help!

185. [46] If the given clauses are satisfiable, and if p > 0,
can there be an initial x for which Algorithm W always loops
forever?

(revised answer)

185. Equivalently, consider the following digraph on 2™ ver-
tices, one vertex for each © = z; ..., For all clauses C; not
satisfied by x, there’s an arc from z to all vertices y that are
obtainable by a flip that Algorithm W might make. (In par-
ticular, if at least one literal of C; has cost zero, the literals of
nonzero cost are not flipped.) Does every strong component of
this digraph have an exit, unless it represents a solution?

185. [36] (H. H. Hoos, 1998.) If the given clauses are satis-
fiable, and if p > 0, can there be an initial = for which Algo-
rithm W always loops forever?

(current answer)

185. (Solution by Bram Cohen, 2012.) Consider the 10 clauses
1246, and 60 more that are obtained by the cyclic permutation
(1234567). All binary © = x; ...x7 with weight vx = 2 have
cost-free flips leading to weight 3, but no such flips to weight 1.
Since the only solution has weight 0, Algorithm W loops forever
whenever v > 1. (Is there a smaller example?)

AND Now

A SPECIAL REQUEST

Wetar 15 vovg FULL WAWE?

Rankin, Robert Alexander, 338, 351, 714.
Rao, Calyampudi Radhakrishna
($o5007 v TH), 518.
Rapaport, Elvira Strasser, 713.
Rashed, Roshdi (= Rashid, Rushdi)
(wil, guads,), 493, 812.
Raviv, Josef (2°39 q09), 677.

Yakubovich, Yuri Vladimirovich (Sdxy6osuy, FOpwuii
Biagumuposua), 402, 428.

Yan, Catherine Huafei (Bif23E), 768.

Yang Hsiung ($58E or $5), 487-488.

Yannakakis, Mihalis (I"avvoxdxng, MuyxdAng), 604.

Yano, Tamaki (&E7IR), 503, 504.

Yates, Frank, 289.

Yee, Ae Ja (©] o)A}, 750.

http://www-cs—faculty.stanford.edu/
“knuth/
fascba.ps.gz

THaNks foR LisTeNING!

