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PREFACE

But that is not my point.
| have no point.

— DAVE BARRY (2002)

THIS BOOKLET contains draft material that I'm circulating to experts in the
field, in hopes that they can help remove its most egregious errors before too
many other people see it. I am also, however, posting it on the Internet for
courageous and/or random readers who don’t mind the risk of reading a few
pages that have not yet reached a very mature state. Beware: This material has
not yet been proofread as thoroughly as the manuscripts of Volumes 1, 2, 3, 4A,
and 4B were at the time of their first printings. And alas, those carefully checked
volumes were subsequently found to contain thousands of mistakes.

Given this caveat, I hope that my errors this time will not be so numerous
and/or obtrusive that you will be discouraged from reading the material carefully.
I did try to make the text both interesting and authoritative, as far as it goes.
But the field is vast; I cannot hope to have surrounded it enough to corral it
completely. So I beg you to let me know about any deficiencies that you discover.

To put the material in context, this portion of fascicle 8 previews Section
7.2.2.4 of The Art of Computer Programming, entitled “Hamiltonian paths and
cycles.” T haven’t had time to write much of it yet—not even this preface!

The explosion of research in combinatorial algorithms since the 1970s has
meant that I cannot hope to be aware of all the important ideas in this field.
I've tried my best to get the story right, yet I fear that in many respects I'm
woefully ignorant. So I beg expert readers to steer me in appropriate directions.

Please look, for example, at the exercises that I've classed as research
problems (rated with difficulty level 46 or higher), namely exercises 210, 224,
225, ...; I've also implicitly mentioned or posed additional unsolved questions
in the answers to exercises 65, 231, 369, 370, 372, .... Are those problems still
open? Please inform me if you know of a solution to any of these intriguing
questions. And of course if no solution is known today but you do make progress
on any of them in the future, I hope you’ll let me know.

I urgently need your help also with respect to some exercises that I made
up as I was preparing this material. I certainly don’t like to receive credit for
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iv PREFACE

things that have already been published by others, and most of these results are
quite natural “fruits” that were just waiting to be “plucked.” Therefore please
tell me if you know who deserves to be credited, with respect to the ideas found
in exercises 11, 12, 36, 37, 41, 42, 53, 55, 62, 63, 65, 71, 73, 84, 100, 106, 135,
136, 137, 138, 156, 157, 158, 159, 163, 177, 185, 202, 207, 212, 215, 216, 217, 218,
223, 242, 246, 247, 270, 271, 275, 299, 300, 350, 360, 361, 369, .... Furthermore
I've credited exercises 79, ... to unpublished work of Nikolai Beluhov and ....
Have any of those results ever appeared in print, to your knowledge?

While writing this section I also wrote numerous programs for my own edi-
fication. (I usually can’t understand things well until I've tried to explain them
to a machine.) Most of those programs were quite short, of course; but several
of them are rather substantial, and possibly of interest to others. Therefore I’ve
made a selection available by listing some of them on the following webpage:

https://cs.stanford.edu/ knuth/programs.html

In particular, prototypes of the main algorithms can be found there: Algorithm B
(SSBIDIHAM, and SSDIHAM for the special case of digraphs); Algorithm E
(DYNAHAM) and ET (DYNAHAMP); Algorithm F (HAM-EULER); Algorithm H
(SSHAM); Algorithm W (BACK-WARNSDORF). A few other programs are also
mentioned in the answers to certain exercises. If you want to see a program
called FOO, look for FOO on that webpage. See also

https://cs.stanford.edu/ knuth/programs/ham-benchmarks.tgz

for the benchmark graphs in Table 1.
* * *
Special thanks are due to George Jelliss, Arnaud Lefebvre, Filip Stappers, Peter
Weigel, Udo Wermuth, ... for their detailed comments on my early attempts
at exposition, and to numerous other correspondents who’ve contributed crucial
corrections. Andrej Krevl and Brian Roberts have helped me to utilize hundreds
of core processors on powerful computers in Stanford’s Infolab — quite a thrill!
* * *
I happily offer a “finder’s fee” of $2.56 for each error in this draft when it is first
reported to me, whether that error be typographical, technical, or historical.
The same reward holds for items that I forgot to put in the index. And valuable
suggestions for improvements to the text are worth 32¢ each. (Furthermore, if
you find a better solution to an exercise, I’ll actually do my best to give you
immortal glory, by publishing your name in the eventual book:—)
Cross references to yet-unwritten material sometimes appear as ‘00’; this
impossible value is a placeholder for the actual numbers to be supplied later.

Happy reading!

Stanford, California D. E. K.

99 Umbruary 2016
| have twenty years’ work ahead of me
to finish The Art of Computer Programming.

— DONALD E. KNUTH, letter to John Ewing (04 September 1990)
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7.2.2.4 HAMILTONIAN PATHS AND CYCLES 1

A long train of consistent calculations opens itself out,

for every result of which there is found a corresponding
geometrical interpretation, in the theory of two of the celebrated
solids of antiquity, alluded to with interest by Plato in the Timaeus;
namely, the Icosaedron, and the Dodecaedron.

— WILLIAM ROWAN HAMILTON (1856)

The total number of possible [knight's] tours that can be made is so vast that
it is safe to predict that no mathematician will ever
succeed in counting up the total.

— ERNEST BERGHOLT (1915)

I'll show that this problem is susceptible to a very special analysis,

which merits extra attention because it involves reasoning of a kind rarely used
elsewhere. The excellence of Analysis is easy to see, but most people think that
it's limited to traditional questions about Mathematics; hence it will always be
quite important to apply Analysis to subjects that seem to make it out of reach,
for it incorporates the art of reasoning in the highest degree.

One cannot then extend the bounds of Analysis

without justifiably expecting great advantages.

— LEONHARD EULER (1759)

7.2.2.4. Hamiltonian paths and cycles. A path or cycle that touches every
vertex of a graph is called “Hamiltonian” in honor of W. R. Hamilton, who began
to ponder and publicize such questions shortly after discovering the quaternions.
Hamilton was fascinated by Platonic solids such as the icosahedron, with its 20
triangular faces; and he introduced what he called the Icosian Game, based on
paths that go from face to face in that solid. Equivalently (see Fig. 121), his game
was based on paths from vertices to vertices along the edges of a dodecahedron.

51

43

34 '
(a) Icosahedron; (b) Dodecahedron.
Fig. 121. The icosahedron and dodecahedron, whose vertices, edges, and faces define

“dual” planar graphs: The faces of one solid correspond to the vertices of the other.
(The vertices have been named with two-digit codes that are discussed in exercise 3.)

15
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2 COMBINATORIAL SEARCHING (F8A: 4 Dec 2025 @ 1237) 7.2.24

It’s convenient to redraw Fig. 121(b) as three concentric rings, without concentric rings

crossing edges, as shown in Fig. 122(a). Then it’s easy to find a Hamiltonian Hamilton
spanning cycle

cycle, such as the one indicated by bold edges in Fig. 122(b). (In fact, Hamilton chords

proved that every such cycle on the dodecahedron is essentially the same as 3-regular graph
trivalent graphs

this one; see exercise 9.) Thus we can also redraw the dodecahedron’s graph as cubic graph
shown in Fig. 122(c). From that diagram it’s obviously Hamiltonian — that is, EP .
: R . R R am paths, history of-
it obviously has a spanning cycle; but it’s not obviously planar at first glance. Graeco-Roman icosahedra
Greek alphabet
24 Michon
12 43 51 32 Louvre
Perdrizet
British Museum
« 23 91 author
13 35 13
41 53
35 14
Se s : .
52 41 52 34 15 42
(a) (b) (c)

Fig. 122. Alternative views of a dodecahedron’s vertices and edges.

Every Hamiltonian graph can clearly be drawn as a great big cycle, together
with “chords” between certain pairs of vertices that aren’t neighbors in the cycle.
Thus a 3-regular graph can be specified compactly by listing only a third of its
edges, if it is Hamiltonian. (On the other hand, many trivalent graphs are not
Hamiltonian. In fact, the task of deciding whether or not a given cubic graph is
Hamiltonian turns out to be NP-complete; see exercise 14.)

Hamiltonian paths in antiquity. Let’s take a moment to discuss the rich
history of the subject before we consider techniques by which Hamiltonian paths
and cycles can be found. A strong case can actually be made for the assertion
that questions of this kind represent the birth of graph theory, in the sense that
they were the first nontrivial graph problems to be investigated.

For example, museums in many parts of the world contain specimens of
ancient icosahedral objects whose 20 faces are inscribed with the first twenty
letters of the Greek alphabet. In most of these cases the alphabetical sequence
A B, T, A, ..., T, Y on such artifacts forms a Hamiltonian path between
adjacent triangles. [E. Michon, in Bulletin de la Société nationale des Anti-
quaires de France (1897), 310 and (1904), 327-329, described an example in the
Louvre, catalog number N 1532; P. Perdrizet, in Bulletin de I'Institut francais
d’archéologie orientale 30 (1930), 1-16, illustrated several others.]

In 2015, curators of the Egyptian antiquities at the British Museum kindly
allowed the author to inspect the four icosahedra in their collection (EA 29418,
EA 49738, EA 59731, EA 59732), of which the first three are Hamiltonian. The
experience of rotating them by hand, slowly and systematically according to
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7.2.24 HAMILTONIAN PATHS AND CYCLES: IN ANTIQUITY 3

alphabetic order, turned out to be unexpectedly delightful. Here are views of alphabetic order
the largest one, EA 49738, centered at each of its twelve vertices:

Pi, as written in Greece
University College London
Petrie

coincidence

Hamilton

reentrant knight’s tour, see closed
Chaturanga

Shatranj

knights

al-‘AdlT ar-Ramt

Abu Zakartya Yahya
knight’s tour

Ibn Mant¢

\ open versus closed tour
closed versus open tour
Murray

It is made of steatite, 5.8 centimeters in diameter and 228 grams in weight, and
was acquired in 1911. A similar example, smaller and with more beautiful let-
terforms, is object number UC 59254 in the nearby Petrie Museum of University
College London [see W. M. F. Petrie, Objects of Daily Use (1927), #288]. What
a pleasant coincidence that W. R. Hamilton himself would independently come
up with the same concept some 1800 years later, and would proceed to find a
closed cycle instead of just a path!

Now fast forward to the ninth century, when Hamiltonian paths and cycles
of quite a different kind came into play. The game of Chaturanga or Shatranj—
a predecessor of chess, having different rules for certain pieces, but with knights
moving just as they do today — was becoming popular in Asia. And in A.D. 842
the current world champion, al-‘Adli ar-Rumi, published a book about Shatranj.
Complete copies of that work are lost; but we know from a subsequent treatise by
Abt Zakariya Yahya ibn Ibrahim al-Hakim that al-‘AdIT had presented a closed
knight’s tour: a Hamiltonian cycle on the chessboard. That same treatise also
recorded an “open” knight’s tour (a Hamiltonian path that can’t be completed
to a cycle), which was credited to an otherwise unknown author Ihn Mant‘.

X /\\\/\// C?g
al-*AdIt: " / / / (1)
/{/ / / \<(<

\/\ /

\ 7
g

IS

Ibn Mant‘:

~

Ly
P

[See H. J. R. Murray, A History of Chess (Oxford, 1913) 175-176, 336.] These
remarkable constructions are the earliest known solutions to what was destined
to become a classic combinatorial problem. It seems likely that the first path was
discovered before the first cycle, because there are so many more of the former.
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4 COMBINATORIAL SEARCHING (F8A: 4 Dec 2025 @ 1237) 7.2.24

Remarkably, knight’s tours on half of a chessboard, 4x 8, had been published
even earlier, by Kashmiri poets who were famous for their wordsmithing skills:

T~ 9[\
XN
9[\
8)

Ratnakara
(c. 830)

Rudrata
(c. 815)

Two copies of Rudrata’s half-tour will make an open tour on the full board. And
two copies of Ratnakara’s will make a closed tour, if we rotate one copy by 180°.

Sanskrit poems traditionally consisted of verses called slokas, containing 32
syllables each. Here is sloka number 15 in chapter 5 of Rudrata’s Kavyalankara:

YAT AT ATAT AT ATATA A AT | alilile
ATAATA T ATAET ST ATATATATAT 19l

This enigmatic text, which speaks of military leadership, sounds almost like
gibberish. But it cleverly represents a knight’s tour, in the same way that his
sloka 14 had represented a rook’s tour: When we read those 32 syllables in order
of the left tour in (2), we get exactly the same words!

More precisely, consider the following two 4 x 8 arrays of syllables o;:

01 030 09 020 03 024 011 026 01 02 03 04 05 O 07 08

016 019 02 029 010 O27 04 023 09 010 011 012 013 014 015 016 ( )

031 08 017 014 021 06 025 012 017 018 019 020 021 022 023 024

018 015 032 O7 028 013 022 Os 025 026 027 028 029 030 031 032
The subscripts on the left correspond to the first sequence of knight moves in (2),
while the subscripts on the right have their natural order. Rudrata composed a
verse with the amazing property that both arrays agree (with o1 = 1, 030 = 09,
09 =03, ..., 05 = 033), by choosing o1 =&, g5 =T, 03 = 04 = 05 = ™I, etc.

Notice that the constraints forced him to use at most four different symbols,
thereby throwing away most of the tour’s structure. It turns out, in fact, that
there are two knight’s tours consistent with his sloka. Therefore nobody knows
whether he was thinking of the tour in (2) and (3) or the tour in exercise 36(i).

Thousands of 4 x 8 knight’s tours are possible, and if Rudrata had known
more of them he could have written a much less ambiguous sloka that had twelve
distinct syllables. For example, a “fractured English” verse that describes such
a poet-friendly tour might go like this (see exercise 36(ii)):

nalinalile nalina ltlilt nanananali [15]

Want a good, good time, lots of fun?
Now not time so good; now not time.
Foo. Ah, so! So now fun is lost. (4)
Time not now good, so time not now.

Ratnakara came up with a better idea a few years later. For his tour,
illustrated at the right of (2), he composed two different slokas, both of which
made sense as part of his overall poem. Their syllable patterns

026 011 024 O5 O20 09 030 07 01 02 03 04 O5 0O¢ O7 08

023 04 027 010 029 06 019 016 09 010 011 012 013 014 015 016 ( )

012 025 02 021 O14 O17 08 031
03 022 013 028 01 032 015 018

December 4, 2025
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7.2.24 HAMILTONIAN PATHS AND CYCLES: IN ANTIQUITY b)

would have allowed him to define a tour quite precisely using 32 distinct syllables.
(See his Haravijaya, Chapter 43, slokas 145 and 146.) For example, here’s an
English rendition of his two-sloka scheme:

Have some fun, watch this or that word —
Great four lines, take out, each gives eight.
Left; then two black; and just here white.
Three rook steps make one knight move, right?

One, two, three, four! Watch each word here;
Or take some left steps and move eight.

Just right gives this black rook great fun,
Then have lines make out that white knight.

We obtain the second verse by reading the first verse in knight’s tour order,
starting at the fifth syllable of the fourth line. (Ratnakara actually used only 24
different syllables. Furthermore, his choices for o5 and o3z did not agree in the
two slokas; this may be due to errors in transmission of the ancient text, or to
“poetic license.” In any case his remarkable poem clearly defined a knight’s tour.)

Such wordplay had many devotees in medieval India. For example, Rudra-
ta’s tour of (2) was rendered in Ratnakara’s two-sloka style by King Bhoja in
his Sarasvati-kanthabharana (c. 1050), slokas 2.306 and 2.308; also by Vedanta
Desika in his devotional hymn Padukasahasra (1313), slokas 929 and 930.

A simpler scheme, capable of encoding knight’s tours on the full 8 x 8 board,
was used in slokas 5.623-632 of the encyclopedic Sanskrit work Manasollasa by
King Someshvara III (c. 1130). He named each square of the board systematically
by combining a consonant for the column with a vowel for the row; then an arbi-
trary tour was a nonsense verse of 64 syllables, which could be memorized if you
wanted to impress your friends. For example, in English we could use the names

r bah bay bee boe boo buh bai bao ]
dah day dee doe doo duh dai dao
fah fay fee foe foo fuh fai fao
hah hay hee hoe hoo huh hai hao
lah lay lee loe loo Iluh lai Ilao (7)
mah may mee moe moo muh mai mao
nah nay nee noe noo nuh nai nao

L sah say see soe soo suh sai sao |

to encode Someshvara’s tour as the following (memorable?) quatrain:

Sah nee soo nai lao fai bao duh, foe boo dee bah fay lah nay soe;

nuh sao mai hao dai huh doo bee, dah hay mah say noe suh nao lai.

Fao bai fuh dao buh doe bay fah, lay nah see noo sai mao hai foo?

Luh moe hee loo mee hoe moo lee, hoo fee boe day hah may loe muh. (8)

Incidentally, Yahya ibn Ibrahim had presented the two knight’s tours in (1)
by first stating two 64-word poems in Arabic, then copying the words of those
poems into 8 x 8 diagrams, according to the knight’s paths. Then he repeated
the right-hand tour, using the Arabic words “first,” “second,” ..., together
with Persian-style abjad numerals, in place of the words of the corresponding
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6 COMBINATORIAL SEARCHING (F8A: 4 Dec 2025 @ 1237) 7.2.24

poem. [His work is preserved in a rare manuscript belonging to the John Rylands
Library in Manchester: Arabic MS. 766, folio 39.] The latter convention, which
corresponds to

60[11156| 7 |54| 3 [42] 1
57| 8 159|62|31|64(53| 4
12|61[10(55| 6 |41| 2 |43
9 158/13|32(63(30| 5 |52
34(17]36|23|40|27|44(29
37(14|33|20|47|22|51|26
18|35[16|39|24/49|28|45
15|38[19|48|21]46|25|50

in decimal notation, has been used by many subsequent authors to characterize
particular knight’s tours in an easy-to-understand way. Path diagrams such as
(1) and (2), which provide complementary insights, weren’t invented until much
later, when Lelio dalla Volpe published a short book Corsa del Cavallo per tutt’ i
scacchi dello Scacchiere (Bologna, 1766), containing nineteen examples.

A greedy heuristic. Early in the 1800s, the knight’s tour problem inspired
an important new approach to combinatorial problems, based on making a
sequence of locally optimum decisions. Such techniques, now known as “greedy
algorithms,” were unheard-of at the time. But H. C. von Warnsdorf, a high court
official in Hesse who had challenged himself by spending many nights trying to
construct long paths of a knight, hit on a simple idea that worked like magic: At
each step, move to a place that has the fewest remaining exits. This principle
has become famous as “Warnsdorf’s rule.”

For example, suppose we want to construct an open knight’s tour on a 5 x5
board, starting in a corner. Numbering the cells ij for 0 < i,j < 5, we can
assume by symmetry that the first two steps are 00 — 12. From cell 12 we can
move the knight to either 04, 24, 33, 31, or 20, from which it could then exit in
either 1, 3, 3, 3, or 3 ways; Warnsdorf’s rule tells us to choose 04, because 1 < 3.
(Indeed, this is our last chance to visit 04, unless the tour will end at that cell.)
After 04 the knight must proceed to 23; and again we have five choices, namely
44,42 31, 11, or 02. The rule takes us to 44, then 32; then to 40, then 21; and
we’ve completed a partial tour that looks like this:

1312|133

31212128 (Bold numbers are the visited cells.
21818|4|2 Italicized numbers tell how many exits (10)
312|6|2|3 remain from the unvisited cells.)

7132|835

Four cells are now candidates for step 9, and they’re all currently marked ‘2’. So
there’s a four-way tie. In such cases, von Warnsdorf explicitly said that it’s OK
to choose arbitrarily, among all cells that have the fewest exits. Let us therefore
proceed boldly to cell 33 (between 4, 5, and 6). That makes a two-way tie; and
we might as well go next to 41 (just to the right of 7). From here we don’t want
to go to the middle square, which has just dropped from 8 to 7, because our
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7.2.2.4 HAMILTONIAN PATHS AND CYCLES: A GREEDY HEURISTIC 7

other choice is a 1. And now it’s plain sailing, as von Warnsdorf leads us on a
merry chase—ending gloriously with move 25 in the center cell 22.

It’s easy to implement Warnsdorf’s rule, by representing the given graph in
SGB format. (The reader should be familiar with this format; see, for example,
Algorithm 7B and the remarks that precede it.) The node for each vertex v
in Algorithm W below extends the basic format by including two utility fields,
DEG (v) and TAG(v), which correspond to the italic and bold numbers in (10).

Algorithm W allows the user to specify “target” vertices ty, ..., t,, which are
to be visited only when no other vertices are available. A similar mechanism was,
in fact, used by von Warnsdorf himself, in the advanced examples of his original
booklet that introduced the idea [Des Résselsprunges einfachste und allgemeinste
Losung (Schmalkalden, 1823); see also Schachzeitung 13 (1858), 489-492].

Algorithm W (Warnsdorf’s rule). Given a graph G, a source vertex s, and op-
tional target vertices ty, ..., t,, this algorithm applies Warnsdorf’s rule to find a
(hopefully Hamiltonian) path vy, v, ... that begins with s. Let n = N(G) be the
number of vertices of G; let vy = VERTICES((G) be G’s initial vertex in memory.

W1. [Initialize.] For 0 < k < n and v < vy + k, do the following: Set d <« 0,
a < ARCS(v); while a # A, set d < d + 1 and a < NEXT(a); then set
DEG(v) < d and TAG(v) < 0. (Thus DEG(v) is the degree of v.) Finally
set k < 0, v < s, and DEG(¢;) <~ DEG(¢;) +nfor 1 <i <.

W2. [Visit v.] Set k <+ k+ 1, vy < v, TAG(v) < k, a + ARCS(v), and 8 < 2n.

W3. [All arcs tested?] If a = A, go to W7. Otherwise set u < TIP(a), and go to
W6 if TAG(u) # 0. (Vertex u is a neighbor of v;, and a candidate for vj1.)

W4. [Decrease DEG(u).] Set t + DEG(u) — 1 and DEG(u) < t.

W5, [Is DEG(u) smallest?] If t < 8, set § <t and v < w.

W6. [Loop over arcs.] Set a <— NEXT (a) and return to W3.

W7. [Done?] If § = 2n, terminate with path vy ...v. Otherwise go to W2. |

Notice that the candidates for vg1 are precisely the vertices u whose DEG needs
to change when vy, leaves the active graph. Therefore this algorithm runs in linear
time: Every arc is examined at most twice, once in step W1 and once in step W3.

The path chosen by Algorithm W depends on the ordering of arcs that lead
out of each vertex in SGB format, because Warnsdorf’s rule makes an arbitrary
decision in case of ties. A simple change to step W5 will randomize the path
properly, as if all orderings of the arcs were equally likely (see exercise 53).

Now that we understand Warnsdorf’s rule, let’s talk a little bit about greed.
Greed is of course one of the seven deadly sins; hence we might well question
the morality of ever using a greedy algorithm in our own work. However, greed
is actually a wvirtue, when it enhances the environment and harms nobody.

In what sense is Algorithm W greedy? From the standpoint of short-term
greed, also known as “instant satisfaction,” the best choice for vg41 would seem
to be a vertex with mazimum degree, not minimum, because that vertex will
give us the most flexibility when choosing vgys. But from the standpoint of
long-term greed, also known as “risk management” or maximizing our chance
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of success, it’s best to choose a vertex with minimum degree, as von Warnsdorf
stipulated; that choice leaves us with the most arcs remaining for moves in the
future. Indeed, short-term greed turns out to be very bad (see exercise 59).

How good is Warnsdorf’s rule? It works so well for knight moves that von
Warnsdorf naively believed it to be infallible, except perhaps on m x n boards
with m < 6 or n < 6. He even thought that he had a proof of guaranteed success.
His booklet exhibited many examples: 6x6,6x7, ..., up to 10x10. Experiments
by C. F. de Jaenisch [Traité des applications de I'analyse mathématique au jeu
des échecs 2 (1862), 59] showed in fact that, on an ordinary 8 x 8 chessboard,
one can basically choose the first 40 moves at random, and obtain a complete
knight’s tour by applying Warnsdorf’s rule only to the last 24 steps!

The rule can fail, however. On a 6 x 6 board, it gives a complete tour
about 97.2% of the time, yet it sometimes stops after only 32 or 34 steps if the
starting position is one of the eight interior diagonal squares. On the 8 x 8 board
it succeeds even more often (about 97.9%). Yet with probability 0.0000038 it
might stop with a path of length 39, as shown in the answer to exercise 59.

Hamilton’s dodecahedron graph (Fig. 122) is quite different from a graph of
knight moves, because it is 3-regular. A partial path in a 3-regular graph can
be extended in at most two ways, after we’ve selected the first two points, while
a knight can have up to seven choices at every step. (Furthermore, all starting
edges of the dodecahedron are equivalent.) Nevertheless, Algorithm W handles
that graph well: It finds a Hamiltonian path vivs .. .vy¢ with probability % =
.96875. Furthermore, it finds a path with veg —v; (hence a Hamiltonian cycle)
with probability % a .117. That probability rises to 122 s .543 if we set t1 to
a neighbor of s; it’s exactly 1/2 if we set {t1,t2,t3} to the three neighbors of s.

It’s not difficult to see that Algorithm W always works perfectly when G is
the graph of a rectangular grid and s is a corner vertex (see exercise 62). With
a bit more thought, we can even prove that it always succeeds when G is an
n-cube, thereby finding many examples of the generalized Gray binary codes
that we studied in Section 7.2.1.1 (see exercise 63). When G is the SGB graph
perms(—4,0,0,0,0,0,0) —whose vertices are the permutations of {0,1,2,3,4},
related by swapping adjacent digits— Warnsdorf’s rule finds “change ringing”
paths of length 5!—1 = 119 about 29% of the time. (See Algorithm 7.2.1.2P. This
probability drops to less than 2%, however, with permutations of 6 elements, and
to near zero with permutations of 7.) Another instructive example is the SGB
graph binary(10,0,0), whose vertices are the 16796 binary trees with 10 nodes,
related by “rotation.” Starting at the tree with all-null left links, Algorithm W
finds a Hamiltonian path about 5.6% of the time. (See Algorithm 7.2.1.6L.)

Of course Algorithm W isn’t a panacea. We can’t expect any algorithm to
solve the NP-complete Hamiltonian path problem in linear time! Warnsdorf’s
rule certainly has difficulty in critical cases; indeed, it can fail spectacularly even
on small graphs (see exercise 65). But it’s often a good first thing to try, when
presented with a graph that we haven’t seen before.

Ira Pohl [CACM 10 (1967), 446-449; 11 (1968), 1] has suggested breaking
ties in Warnsdorf’s rule by looking at the sum of the degrees of vy’s neighbors.
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Path flipping. Long before Warnsdorf’s time, the great mathematician Leon-
hard Euler had already published a classic paper about knight’s tours [Mémoires
de I'académie des sciences de Berlin 15 (1759), 310-337], in which he showed
how to discover long paths by a completely different method. (Euler credited
this idea, at least in part, to his friend Louis Bertrand.) Instead of Warnsdorf’s
“greedy” algorithm, his approach might be called a “breedy” method, because
it proceeded by simple mutations and adaptations of paths already known.

Suppose, for example, that we want to find a 3 x 10 knight’s tour, and that
Warnsdorf has already told us how to reach 28 of the 30 cells:

4 7]2]27]24[13[10[19]a [17
1[28] 5 [14] 9 [22]25[16]11]20] - (11)
6| 3]8]23[26[15]12]21]18] b

We can’t go from position 28 to an unvisited cell; but we needn’t despair, because
28 is just one knight’s move away from cell 23. Similarly, cell 1 is adjacent to 8.
Therefore we can immediately deduce that two more equally long paths exist:

1..23,28..24;  7..1,8..28. (12)

(Here ‘x ..y’ stands for the path from z to y that proceeds by unit steps +1.)
Operating in the same fashion on the first of these yields three more,

1..5,24..28,23..6; 1..15,24..28,23..16; 7..1,8..23,28..24. (13)
And, aha, one of these can be extended to a full tour 1..15,24..28,23..16,b, a:

417]2(19]16|13]10/25(30|27
1120|5149 |22|17|28|11)|24|. (14)
6|38 |21|18]15|12|23|26|29

Now the same subpath-flipping technique leads from (14) to additional tours
1..17,30..18; 1..23,30..24; 7..1,8..30; (15)
and we can continue to find tours galore:

1..13,18..30,17..14; 1..5,18..30,17..6; 7..1,8..17,30..18;
7..1,8..23,30..24; 13..8,1..7,14..30; 1..7,14..17,30..18,13..8;

etc. Indeed, the latter is a Hamiltonian cycle —a closed tour —because 1 is
adjacent to 8! A Hamiltonian cycle represents 30 different Hamiltonian paths,
each of which leads to further flips, hence further paths and cycles.

If we start with (14) and keep flipping until no new paths arise, it turns out
that we will have discovered all 16 of the Hamiltonian cycles of the 3 x 10 knight
graph, as well as 2472 of its 2568 noncyclic Hamiltonian paths.

One of the 96 noncyclic Hamiltonian paths not derivable from (14) is

1 [12] 3 [22[15[10] 7 [26]29[18
4 [23[14[11] 6 |25]20[17[ 8 [27] . (16)
13 2| 5 [24[21]16] 9 [28]19[30

It leads via flips only to three others, namely to 1..17,30..18; 13..1,14..30;
13..1,14..17,30..18. We wouldn’t have found a cycle, if we’d started with (16).
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Let’s formulate FEuler’s approach more precisely:

Algorithm F (Long paths by flipping). Given a simple path v; —ve — - - —
in a connected n-vertex graph, this algorithm repeatedly obtains new paths by
reversing subpaths as explained above, until either exhausting all possibilities or
finding a path that can be extended by a vertex ¢ {vi,vs,...,v:}. An auxiliary
table of vertex labels w[v] is used to discover potential flips.

F1. [Initialize for breadth-first search.] Prepare a dictionary, initially empty, for
storing paths of length ¢ — 1. Set w[v] + 0 for each of the n vertices v of
the graph. Set ¢ < 0 and perform wupdate(vy,...,vs), where update is the
subroutine defined below. Then set d < p < p; < pz + 0 and pg + gq.

F2. [Done with distance d?] (At this point we’'ve entered ¢ paths into the
dictionary, and we’ve explored the successors of the first p paths. Exactly
p; of those paths were obtained by making < d — i flips, for 0 < i < 2.) Go
to F6 if p = po; otherwise set p + p + 1.

F3. [Explore path p.] Let uj — ug — --- — u; be the pth path that entered
the dictionary, and set wlug] < &k for 1 < k <t. Go to F5 if uy —u;.

F4. [Process a noncyclic path.] For each vertex v such that u; — v, do the
following: Set k ¢ w[v]; terminate the algorithm if & = 0; otherwise call
update(uy, ..., Uk, Uty - - ., Ug+1). Then, for each v such that u; —wv, do the
following: Set k « w[v]; terminate if k = 0; otherwise update(ug_1,...,u1,
Uk, - - -, Ut). Then return to F2.

F5. [Process a cyclic path.] (A cyclic path will be in the dictionary only if
t = n; see below.) For 1 < j < t and for each v such that u; — v,
do the following: Set k < w[v] (which will be positive). If k& < j, call up-

date(Ujpr, .o, U, Uty ooy Uk, Uy - -, U1 ) a0 update(up_1,...,U1, U, ...,
Uj, Uk, - - -, Uj—1); Otherwise update(wjq1, ..., Uk, Uj, -, UL, Uy - oy Upg1)
and update(up—1,...,Uj, Uk, .., U, U1, .., Uj—1). Then return to F2.

F6. [Advance d.] Terminate if p = ¢ (we have found all the reachable paths).
Otherwise set d < d+ 1, p2 < p1, p1 < Do, Po < ¢, and go back to F2. |

Algorithm F relies on a subroutine ‘update(vy, ..., v:)’, whose purpose is to put
the path vy — - -+ — v; into the dictionary unless it’s already there. First the
path is converted to a canonical form, so that equivalent paths are entered only
once: If vy 4 vy, the canonical form is obtained by changing (vi,...,v:)
(vt,...,v1) if v; > v;. On the other hand if vy — vy, the path is cyclic, and we
terminate the algorithm if ¢ < n. (The graph is connected, so there must be a
vertex outside the cycle that is adjacent to a vertex of the cycle.) Finally, if t =n
and v, — v1, we obtain the canonical form by permuting the cycle cyclically so
that vy is the smallest element; then we set (v1,v2,...,0,) < (V1,0n,...,02) if
vy > v,. Once (v1,...,v;) is in canonical form, the update routine looks for it in
the dictionary. If unsuccessful, update sets ¢ < g+1 and inserts it as the gth path.

The theory of breadth-first search tells us that (vq,...,v;) cannot match any
path in the dictionary that was obtained with fewer than d — 1 flips. (Otherwise
the path (uq,...,us) that led to it would have been seen before making d flips.)
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Therefore step F6 can save dictionary space and lookup time by deleting all paths
of index < ps from the dictionary whenever p- increases. Exercise 73 discusses
a simple trick that makes this deletion painless.

Algorithm F is amazingly versatile. For example, there are 9862 closed
knight’s tours on a 6 x 6 board, and 2963928 open tours. All of them will be
found by Algorithm F, when given any single instance.

We began our search for a 3 x 10 knight’s cycle by using the Warnsdorf-
inspired path (11). But we could have started Algorithm F with ¢ = 1, thus
presenting it with only a single vertex v;. Every time the algorithm finds a
larger path, we can simply restart it, with ¢ increased.

For example, the author tried the 3 x 10 problem 100 times, choosing v;
at random and ordering the vertex neighbors randomly in steps F4 and F5.
A Hamiltonian cycle was found in 82 cases, usually after making fewer than 100
calls on update. A stubborn Hamiltonian path like (16) was found in 6 cases.
And the remaining 12 cases failed to reach ¢ = 30; once ¢t was even stuck at 22.

Of course that’s a very small problem. When presented with the graph of
permutations of {0,1,2,3,4,5}, Algorithm F was able to find a “change ringing”
cycle of length 720 in each of ten random trials, averaging less than 50,000
updates per trial. On the other hand it did not do well when trying to find a
closed 3 x 100 knight’s tour.

Searching exhaustively. Let’s try now to design an algorithm that systemati-
cally finds every Hamiltonian cycle of a given graph. Such an algorithm will also
find every Hamiltonian path, because exercise 2 shows that every Hamiltonian
path of GG corresponds to a Hamiltonian cycle of a related graph G'.

A Hamiltonian cycle involves every vertex. So we can start it at any
convenient vertex v;. Then there’s an obvious way to grow all possible cycles via
backtracking: For each vo with v; — v, we consider each vs # v; with v — vs,
etc. We can also formulate the task as an XCC problem (see, for example, the
“prime queen attacking problem” in Section 7.2.2.3).

But those approaches are overly specific; there’s usually a much more ef-
ficient way to proceed. Instead of regarding our task as the assignment of
appropriate labels 1, 2, ..., n to the n vertices of our graph, it’s better to
regard it as the task of choosing n edges in such a way that (i) every vertex is
an endpoint of precisely two of those edges; (ii) the subgraph defined by those
edges is connected. Indeed, a Hamiltonian cycle is nothing more nor less than an
(unordered) set of n edges that form a single cycle.

Consider, for example, the 3 x 10 knight graph,

has 30 vertices and 50 edges. We can conveniently denote its vertices by two-

digit numbers, {00,01,...,09,10,11,...,19,20,21,...,29}, and write its edges
compactly in two-line form: 99, 99, 95, ... 3 1r 18 19
Notice that vertices 00, 09, 10, 11, 18, 19, 20, and 29 have degree 2 in this

graph. Consequently the two edges that touch each of them must be present
[e)ye]

in any Hamiltonian cycle; in other words, the pattern %é oo % is already
[elNe}

forced, before we begin to choose further edges.
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In this pattern, vertex 12 belongs to the edges 9 and 32, which were forced
from vertices 00 and 20. So 12 already has the two edges that it needs; and the
other edges that touch it, namely 94 and 13, cannot ever be part of a Hamiltonian
cycle. We might as well delete them. Similarly, we can delete edges 92 and 7.

Nothing else is obviously forced at this point, so we must make a choice. For
example, we must use either the edge 57 or the edge 53, because those edges are
the only ways for vertex 21 to reach its quota of two. In other words, our search
tree for the 3 x 10 knight graph must begin with a binary branch.

Suppose we choose 57. That edge implies in particular that we now have
01 —20 —12—00—21 — 02— 10 — 22 as a subpath of the final cycle.
Consequently edges 33, 9%, and 9% can no longer be used. Nor can the edge 5}
(because it would complete a short cycle!).

Aha. Only one of the remaining edges touches 01, namely %,. So that
edge is now forced. And then we’re confronted with another two-way branch.
Exercise 108 discusses one sequence of reasonable initial choices, and the reader
is strongly encouraged to study that scenario.

In general, as we’re trying to visit all Hamiltonian cycles of a given graph,
we’ll have a partial solution consisting of a set of disjoint subpaths to be included,
and a set of edges by which those subpaths might be extended until a complete
cycle is obtained. The subpaths are defined by the edges that have been chosen so
far. If there are t subpaths, {uy ...v1,...,us...v¢}, we say that the 2t endpoints
{u1,v1,...,ut,v:} are “outer” vertices; any vertex that lies on a subpath but is
not an endpoint is called “inner”; and all other vertices are “bare.” Every vertex
begins bare, and is eventually clothed. If we reach a state where all but two of the
vertices are inner, and if those two outer vertices are adjacent, we can complete
a Hamiltonian cycle. Success!

Algorithm H below finds Hamiltonian cycles by essentially starting with a
graph G and removing edges until only a cycle remains. It uses a sparse-set
representation for GG, because such structures are an especially attractive way to
maintain the current status of a graph that is continually getting smaller.

The idea is to have two arrays, NBR and ADJ, with one row for each vertex v.
If v has d = DEG(v) neighbors in G, they’re listed (in any order) in the first
d columns of NBR[v]. And if NBR[v][k] = u, where 0 < k < d, we have
ADJ [v] [u] = k; in other words, there’s an important invariant relation,

NBR[v] [ADJ [v] [u]] = u, for 0 <u < n, (17)

where n is the number of vertices in G. Neighbors can be deleted by moving them
to the right and decreasing d; neighbors can be undeleted by simply increasing d.
Furthermore, if u is not a neighbor of v, ADJ [v] [u] has the impossible value oo;
thus the ADJ array functions also as an adjacency matrix.

The edges u —v of GG are considered to be pairs of arcs, u —v and v— u,
which run in opposite directions. In particular, we always have ADJ [u] [v] = oo
if and only if ADJ[v] [u] = co. When an edge is deleted, however, we often need
to delete only one of those arcs in the NBR array, because Algorithm H doesn’t
always need to look at both of them.
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Algorithm H represents the vertices of G by the integers 0 to n — 1, as
we’ve seen in (17). Every vertex v has three fields: its current degree, DEG (v);
its external name, NAME (v), used only to print the answers; and a special field
called MATE (v). We have MATE(u) = v and MATE(v) = u when u and v are the
outer vertices at the ends of a current subpath; and we have MATE(v) = —1 if
and only if vertex v is bare. The value of MATE(v) is undefined when v is an
inner vertex, but it must be nonnegative in that case. (See exercise 109.)

An inner vertex is essentially invisible to our algorithm, because we already
know its context in the final cycle. We maintain an array VIS to list the visible
vertices —those that are either bare or outer. VIS is a sparse-set representation,
containing a permutation of the vertices, with the invisible ones listed last. The
inverse permutation appears in a companion array called IVIS, so that we have

VIS[k] =v <=  IVIS[v]l = k. (18)

Vertex v is visible if and only if IVIS[v] < S, where S is a global variable. Thus
v is inner if and only if IVIS[v] > S. Here’s how a vertex becomes invisible:

Set S« S—1, v « VIS[S], k « IVIS[v];
set VIS[S] < v, IVIS[v] « S, (19)
VIS[k] « v/, IVIS[v'] « k.

If u is a bare vertex whose degree decreases to 2, Algorithm H can make
significant progress, because the two remaining edges that touch v must both be
part of the cycle. Whenever such a u is discovered, we put it into a “trigger list”
called TRIG. A global variable, T, holds the size of the trigger list. This behavior
is implemented by using the following procedure to delete the arc u—v:

Set d + DEG(u) — 1, k < ADJ[u] [v], w < NBR[u] [d].
If MATE(u) < 0 and d = 2, set TRIG[T] < u, T < T+ 1.
Set NBR[u] [d] < v, NBR[u] [k] < w, (20)

ADJ [u] [v] < d, ADJ [u] [w] < k;
set DEG(u) <+ d.

One might think that we’ve now defined a comprehensive set of data struc-
tures for implementing Algorithm H; but we aren’t done yet. There’s also a
doubly linked list, maintained in arrays LLINK [v] and RLINK[v] for 0 < v < n,
with entries LLINK[n] and RLINK[n] serving as the list head. This list contains
all of the current “outer” vertices. More precisely, suppose that there are ¢
subpaths, and suppose that we have RLINK[n] = v;, RLINK[v;] = vj41 for
1 < j < 2t, and RLINK[v2;] = n. Then the outer vertices are {vi,vs,...,v2:};
and we also have LLINK[n] = vy, LLINK[v;] = v;—; for 1 < j < 2¢, and
LLINK[v1] = n. Insertion and deletion are accomplished in the usual way:

Set k < LLINK[n],
LLINK[n] « RLINK[k] < v, (21)
LLINK[v] < k, RLINK[v] < n.
Set j + LLINK[v], k + RLINK[v],
LLINK[k] < j, RLINK[j] < k; (22)
makeinner(v).

makeinner(v) =

remarc(u,v) =

activate(v) = {

deactivate(v) =
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The algorithm makes frequent use of the following subroutine:

If ADJ[w] [u] < DEG(w),
makemates(u, w) = { remarc(u,w) and remarc(w, u); (23)
set MATE (u) < w and MATE(w) + u.

Vertices v and w are becoming endpoints. It removes the edge between v and w,
if present, in order to prevent the formation of a short (non-Hamiltonian) cycle.
The current state at each level of the search tree is kept in two sequential
stacks. ACTIVE is an array that remembers which vertices are outer; SAVE is an
array that remembers the mates and degrees of the visible vertices. The SAVE
stack is somewhat unusual because it’s a “stack with holes”: n slots are allocated
to it at every level, but only the slots for visible vertices are actually used.
Level [ of the search can in fact involve up to seven state variables: CV(l) is
the outer vertex on which we’re branching; I(l) identifies the neighbor of that
vertex in the currently chosen edge; D(I) is the current degree of CV(l); E(l)
is the number of edges chosen so far; S(I) is the number of vertices that are
currently visible; T(I) and A(l) are the current sizes of TRIG and ACTIVE.

Algorithm H (All Hamiltonian cycles). Given a graph G on the n vertices
{0,1,...,n — 1}, this algorithm uses the data structures discussed above to visit
every subset of n edges that form an n-cycle. During every visit, the chosen
edges are EU[k] —EV[K] for 0 < k < n.

H1. [Initialize.] Set up the NBR and ADJ arrays as described in (17). Set the
global variables a <— e <= i <~ [ T <= 0. Also set VIS[v] < IVIS[v] < v
and MATE(v) « —1 for 0 < v < n. Set LLINK[n] < RLINK[n] < S < n.
Finally, for every vertex v with DEG(v) = 2, set TRIG[T] < vand T + T+1.

H2. [Choose the root vertex.] Let CURV be a vertex of minimum degree, and set
d < DEG(CURV) — 1. If d < 1, terminate (there is no Hamiltonian cycle).
If d =1, set CURV « —1 and go to H4.

H3. [Force a root edge.] Set CURU < NBR[CURV] [d —i] (the last yet-untried
neighbor of CURV), and set EU[0] < CURU, EV[0] < CURV, e <— 1. Then
activate(CURU), activate(CURV), and makemates(CURU, CURV).

H4. [Record the state.] Set CV(I) < CURV, I(ID) « i, D(I) « d, E(1) « e,
S() < S, TU) «+ T. For 0 < k < 8, set u < VIS[k] and SAVE[nl + u] +
(MATE (u),DEG(u)) (thereby leaving “holes” in the SAVE stack). Then set
w < RLINK[n]; while u # n, set ACTIVE[a] < u, a < a+1, u < RLINK[u].
Finally set A(I) < a, and go to H6 if [ = 0.

HS5. [Choose an edge.] Set CURU < NBR[CURV] [i], CURT < MATE (CURU), CURW «
MATE (CURV), EUle] < CURU, and e < e + 1. If CURT < 0 (CURU is bare),
makemates(CURU, CURW), activate(CURU), and go to H6. Otherwise (CURU is
outer), makemates(CURT, CURW). Call remarc(NBR[CURU] [k],CURU) for k
decreasing from DEG(CURU) — 1 to 0. Then deactivate(CURU).

H6. [Begin trigger loop.] Set j «+ 0if{ =0, else j + T(I-1). Goto H10if j = T.
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H7.

HS.

H9.
H10.
H11.

H12.

H13.

H14.
H15.

H16.

[Clothe TRIG[j].] Set v « TRIG[j1, and go to H9 if MATE(v) > 0 (v is
no longer bare). Otherwise go to H15 if DEG(v) < 2 (Hamiltonian cycle is
impossible). Set u < NBR[v] [0] and v < NBR[v] [1]. Go to H15 if w =
MATE (u) and e # n—2 (cycle is too short). Set EU[e] < u, EV[e] < v, e +
e+1,EULe] < v, EV[e] < w, e < e+ 1, MATE(v) < v, and makeinner(v).

[Take stock.] (We’ve just joined v to its only two neighbors, v and w, which
aren’t mates unless e = n.) Update the data structures as described in ex-
ercise 112, based on whether MATE (u) <0 and/or MATE (w) <0 (four cases).

[End trigger loop?] Set j < j + 1, and return to H7 if j < T.
[Enter new level.] Set ! + 1+ 1, and go to H13 if e > n — 1.

[Choose vertex for branching.] Set CURV < RLINK[n], d <— DEG(CURV),
k <+ RLINK[CURV]. While k& # n, if DEG(k) < d reset CURV « k and
d < DEG(k); set k <« RLINK[kK]. Go to H14 if d = 0. Otherwise set
EV[el « CURV and T « T(l — 1). (See exercise 129.)

[Make CURV inner.] Call remarc(NBR[CURV][k],CURV) for 0 < k < d
(thereby removing CURV from its neighbors’ lists). Then deactivate(CURV),
set ¢ < 0, and go to H4.

[Visit a solution.] If e < n, set u < LLINK[n] and v < RLINK[nl; go
to H14 if ADJ[u] [v] = oo; otherwise set EU[e] + u, EV[e] + v, e + n.
Now visit the n-cycle defined by arrays EU and EV. (See exercise 113.)

[Back up.] Terminate if [ = 0. Otherwise set [ «+ [ — 1.

[Undo changes.] Set d <~ D(I) and i < I() + 1. Go to H14if i > d.
Otherwise set I(1) « i, e < E(l), k < (I > 07 A0 —1): 0), a + A(D,
v < n. While k < a, set u < ACTIVE[k], RLINK[v] < u, LLINK[u] + v,
v ¢ u, k < k+ 1. Then set RLINK[v] «+ n, LLINK[n] < v, S «+ S(I),
T « T(). For 0 < k < S, set u < VIS[k] and (MATE(u),DEG(u)) «
SAVE[n! + u]. Finally set CURV < CV(l). Go to H5 if [ > 0.

[Advance at root level.] Terminate if CURV < 0. Otherwise set CURU <
MATE(CURV). (The previous edge CURU— CURYV is gone.) Set LLINK[n] «
RLINK[n] < n, a < 0, MATE(CURU) < MATE(CURV) < —1, S « n.
(Everything is again bare.) If DEG(CURU) = 2, set TRIG[0] < CURU and
T < 1; otherwise set T <— 0. If DEG(CURV) = 2, set TRIG[T] - CURV and
T+ T+ 1. GotoH3if T=0. Otherwise set CV(0) < —1, A(0) + e < 0,
and go to H6. |

This marvelous algorithm has lots of steps, but it isn’t terribly hard to un-
derstand. Its length arises mostly from the fact that a variety of data structures
need to work together, combined with the fact that special provisions must be
made at root level when no vertex has degree 2. In such cases, which are handled
in steps H3 and H16, we choose a root vertex of minimum degree, and a root
edge that touches it. We find all Hamiltonian cycles for which the root edge is
present; then we discard that edge, and repeat the process. Eventually we will
see a vertex of degree 2.
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Table 1
A BAKER’S BAKER’S DOZEN OF EXAMPLE GRAPHS FOR ALGORITHM H
Description  Vertices Edges Degrees Hamiltonian ~ Running  Mems per

min . . max cycles time (mems) solution
A Anna Karenina 49 138 3..19 49152 414M 8429.1
B binary trees 42 84 4..4 14306485 8739M 610.8
C concentric rings 144 216 3..3 66770562 35G 524.4
D  disconnected 23 118 7..22 0 65G 00
E expander 48 96 4..4 107921396 70G 648.3
F  Fleischner G3 57 126 3..14 2 2723M  1.4-10°
G giraffe tours 100 192 2..6 4515918298 3232G 715.6
H  Halin from 7 128 227 3..11 10128654600 2913G 287.6
P parity clash 82 145 2..4 0 203G 00
Q 5-cube 32 80 5..5 906545760 248G 273.5
R “random” 64 125 2..6 9011601 7087M 786.4
S Sierpinski simplex 34 96 3..6 1165688832 310G 265.6
T tripartite Ka4 56 15 74 9..11 207360000 40G 190.7
U  USA from ME 50 154 2..48 68656026 181G 2641.5

One good way to start learning Algorithm H is to play through the steps by
hand when G is a small graph like K3 or K4 or Cy. (See exercise 115.)

Algorithm H promises to produce interesting results galore, because the
number of interesting graphs is enormous. We can get an idea of its performance
in practice by studying the statistics of the benchmarks in Table 1, which reports
on many different kinds of graphs. Each graph has been given an identifying
letter for convenience.

e A, an “unstructured” graph based on Tolstoy’s novel Anna Karenina. More
precisely, this smallish graph arises from book("anna",0,6,0,0,1,1,0) in the
Stanford GraphBase (SGB) after repeatedly removing vertices whose degree is
less than 3. Algorithm H finds its Hamiltonian cycles in a flash.

e B, by contrast, is a 4-regular graph with a strict mathematical structure. It’s
the SGB graph binary(5,5,0), which consists of the binary trees with 5 internal
nodes; they’re related by the “rotation” operation, 7.2.1.6—(12). (Algorithm
7.2.1.6L defines a Hamiltonian path in this graph, not a cycle.)

e (' is one of the generalized dodecahedron graphs considered in exercise 11,
with parameter ¢ = 36 where Hamilton’s original graph had ¢ = 5.

e D is a contrived example that’s obtained from six disjoint copies of K3,
together with a copy of K5 whose five vertices are joined to everything else.
It has no Hamiltonian cycles, because it breaks into six nonempty components
when the five vertices of K5 are removed. (In the terminology of exercise 117,
graph D isn’t “tough.” Every Hamiltonian graph is tough.)

e FE is the SGB graph raman(3,47,1,1), a “Ramanujan graph of type 1.” The
vertices are {0,1,...,46, 00}, and the edges are described in exercise 119.
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e F'is a minor of the amazing 338-vertex graph introduced by H. Fleischner in
2013. His graph has 318 vertices of degree 4, 20 vertices of degree 14, and exactly
one Hamiltonian cycle(!). (See exercise 120.)

e (G is a graph of 10 x 10 “giraffe” moves, where a giraffe is like a knight in
chess except that it’s a (4, 1)-leaper instead of a (2, 1)-leaper.
For example, the attractive tour shown here, which has 90°-
rotational symmetry, was published by Maurice Kraitchik in
§67 of his pioneering book Le Probléme du Cavalier (Paris:
Gauthiers[sic]-Villars, 1927). Graph G requires the giraffe to
make a special kind of tour whose diagram exhibits a “Cossack
cross” in the four central squares. (A symmetrical example of
such a tour appears in the answer to exercise 149.)

e H is a representative example of a large family of planar Hamiltonian graphs
called “Halin graphs.” (See exercises 122-125.)

e P is a non-Hamiltonian graph that’s another kind of Achilles heel for Algo-
rithm H. We obtain it by appending new vertices ‘!” and ‘I’ to the 8 x 10 grid
graph Ps 0 Pjg, with three new edges u — ! — !! — v, where u and v are
opposite corners of the grid. There’s no Hamiltonian cycle; for if we collapse ‘I’
and ‘! into a single vertex, we obtain an equivalent bipartite graph P’ with 41
vertices in one part and 40 vertices in the other. Unfortunately, Algorithm H
doesn’t understand this. So it explores zillions of fruitless paths.

e () is the familiar 5-cube, P, 0P, 0P, 0P, 0P, whose Hamiltonian cycles are
the 5-bit “Gray cycles” that we investigated in Section 7.2.1.1.

Their total number, about 900 million, is just half of the value of d(5) that
was reported in Eq. 7.2.1.1-(26). Hmmm; was that a mistake? No: d(5) considers
the cycles (vp ...v31) and (vs; ... vp) to be different, while Algorithm H does not.

e R is a graph obtained by adding 64 “random” edges to a 64-cycle. More
precisely, it’s the SGB graph whose official name is
gunion(random_graph(64,64,0,0,0,0,0,1,1,3142), board(64,0,0,0,1,1,0),0,0).

It has only 125 edges, because three of the added edges were already present.

e S is the Sierpinski tetrahedron S§4), which was defined and illustrated in
Section 7.2.2.3 (Fig. 114). Lots and lots of Hamiltonian cycles here.

e T is a special case of exercise 106.

e [, the graph that’s last but not least in Table 1, is another unstructured
example from “real life.” It revisits the graph of the 48 contiguous states of the
USA, 7.1.4-(133), augmented by two additional vertices ‘" and ‘!I’; there are
edges ! —ME, and ! —wv for all v ¢ {ME,!}. Thus its Hamiltonian cycles are the
same as the Hamiltonian paths in 7.1.4—(133) from ME to any other state. (We
used ZDD technology to treat those 68 million paths in Section 7.1.4.)
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A census of knight’s tours. Soon after the author had first learned to program
a computer in the 1950s, he wondered whether he’d be able to list all of the
closed knight’s tours on a chessboard. Alas, however, he quickly learned that
the number of such tours is humongous — way too large to be computed by the
slow machines of those days. So his hopes were dashed. In fact, nobody even
had a good estimate for the total number of possibilities, until forty years later.

That ancient riddle was finally solved, hurray, by Brendan D. McKay, who
proved (without actually constructing them) that the total number of closed
knight’s tours is exactly 13,267,364,410,532. [Technical Report TR-CS-97-03
(Computer Science Department, Australian National University, 1997), 4 pages.]

Hmmm. Thirteen trillion is indeed a huge number. Yet it isn’t completely
out of reach. If we can visit one tour every microsecond, we can visit them all
in 13 million seconds, which is about 5 months. Also, if we represent each tour
as a 168-bit vector that shows which edges are used, we can store all the tours
in about 279 terabytes; and we’ll see later that further compression is possible.

Furthermore, the vast majority of knight’s tours belong to sets of eight
that are essentially the same, except for rotation and/or reflection of the board.
Indeed, McKay found that there are 1,658,420,247,200 equivalence classes of
size 8, and 608,233 equivalence classes of size 4 (see exercise 137); hence the
total number of essentially different closed tours is the sum of those two numbers,
namely 1,658,420,855,433. We could fit them all into at most 35 terabytes.

Instead of storing them all, however, we can actually compute them all, in
a fairly short time, if we exploit parallelism. The idea is to partition the set
of all tours into a large number of bunches, where the members of each bunch
can be computed rapidly by Algorithm H. Every bunch is independent of the
others. Therefore several bunches can be computed simultaneously, if we have a
computer that has several processing units.

Suppose C is a closed knight’s tour. Let’s say that the wedge of C at cell
(4, ) is the pair of edges that touch that cell in C. At most 8 edges touch any cell;
hence there are at most (g) = 28 possible wedges at any cell, and it’s convenient
to give each of those possibilities a code letter, as shown in Fig. 123.

We shall partition the closed tours into 28* bunches, based on their wedges
at the four central cells. More precisely, we shall number the rows and columns
from top to bottom and left to right with the digits 0 to 7, and we shall place each
tour into the bunch that corresponds to its wedges at cells 33, 34, 43, and 44.

A slightly tricky rule turns out to be a good way to give a four-letter name
to every bunch, by writing down the code letter for the wedge at 34 after rotating
the tour clockwise by 0°, 90°, 180°, and 270°, respectively. For example, let’s
look again at al-‘AdlT’s historic tour (1); it clearly has wedge c at cell 34. Rotating
it 90° clockwise puts cell 33 into position 34, where we now see wedge z. Another
90° rotation yields wedge b at 34 (because B was originally at 43). And a final
rotation gives us another z. Therefore cycle (1) belongs to bunch czbz.

Notice that the four equivalent tours obtained from (1) by rotation belong to
bunches czbz, zbzc, bzcz, and zczb. In general, the tours of bunch a;asaszay
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2 ° ° & 1 k v top-bottom reflection
multiplicity
Fig. 123. The 28 possible wedges of a knight. K‘S“g?llcal
b d £ h j 1 x The angle 6 of the narrowest wedges, {a,b,A,B}, uppercase letters

is arctan 2 =~ 37°; {c,d,C,D} are slightly wider,

90° — # = arctan 2 ~ 53°. Eight wedges, namely

3

{e,f,E,F,g,h,G,H}, make a 90° turn. Then come
{i,j,I,J}, at 90° + 0 = 127°; and {k,1,K,L},

at 180° — @ =~ 143°. Finally, wedges {w,x,y,z}

are straight. Notice that a 90° counterclockwise

B D F H J L z rotation changesa+—= b+—>A—>B—a;...; k—

l—+K—L—=k;w—y—w; and x — z — x.

are equivalent to the tours of bunches asaszayay, asagaias, and agaqasas
whenever each «; is one of the 28 wedge codes.

Reflection also gives an equivalent tour, whose bunch depends only on the
unreflected bunch name. For example, the top-bottom reflection of cycle (1) gives
a cycle that belongs to bunch yByD. In general, let p and 7 be the permutations
of wedge codes that correspond to 90° rotation and to top-bottom reflection.
Then a — ap is the mapping discussed in Fig. 123, and we have

a=abcdefghijklABCDEFGHIJKLwxyz;

ap=bAdCEfEhGjI1KBaDcFeHgJilkyzwx;

ar=BACdGhEfIjlkbacDgHeFiJLKzyxw; (24)
a=arp=aBDCHGFEJIKl1AbdchgfejikLxwzy.

Exercise 142 shows that top-bottom reflection maps ajasasay — dya3aa; .
The main consequence is that, if a;asasay is any one of the 28* bunches,
its closed tours are equivalent to those of seven other bunches:

Q30401 , Q3040 Qly, Q40 Qp3, Ouli3@all, G3®a0n (g, Gl Aulls, O al3ds. (25)

In most cases these eight bunches are distinct, and we say that a;asasay has
multiplicity 8. For example, the equivalent bunches czbz, zbzc, bzcz, zczb,
yByD, ByDy, yDyB, DyBy all have multiplicity 8. But sometimes all eight bunches
are identical, and we say that the multiplicity is 1. (There are just four bunches
of multiplicity 1, namely aaaa, 1111, AAAA, and LLLL.) Exercise 146 shows that
30 canonical bunches have multiplicity 2; and 774 of the canonical bunches have
multiplicity 4. The multiplicity is always equal to either 1 or 2 or 4 or 8.

A bunch is canonical if it is the lexicographically smallest of the bunches
equivalent to it, where the lexicographic order uses ASCII code (so that upper-
case letters precede lowercase letters). For example, ByDy is canonical; it’s
lexicographically smaller than bzcz and the other six equivalent bunches.

Although there are 28* = 614656 bunches altogether, only 77245 of them are
canonical. Furthermore, no knight’s tour has ‘a’ anywhere in its bunch name; do
you see why? This reduces the number of relevant canonical bunches to 66771.
(See exercises 145 and 148.)
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In order to carry out a census of all the closed knight’s tours, it there-
fore suffices to solve subproblems of the form “Visit all of the tours in bunch
arasagay,” for 66,771 canonical names ajasasas. And each of those 66,771
subproblems asks for the Hamiltonian cycles on a modified 8 x 8 knight graph,
where eight particular edges are forced to be part of the cycle. Equivalently, 24
particular edges of that knight graph are forbidden. Every subproblem is in fact
“Algorithm H friendly,” because at least 16 of the remaining edges — 8 edges in
the center, and 8 edges in the corners— are forced.

For instance, it turns out that bunch ByDy has exactly 31,905,973 tours; and
Algorithm H needs only 16 Gp (a few seconds) to visit them all. The same is
true, of course, for bunch czbz; but we don’t need that bunch in our census,
because it’s not canonical.

One easy way to carry out the census is to prepare ten shell scripts, each
with 6677 or 6678 of the subproblems. Then run all the scripts simultaneously,
on a machine with 10 processors. At the time this section was written, the
job was thereby accomplished with off-the-shelf hardware in less than two days.
Notice that this strategy, via bunches, saves a factor of 8 because of symmetry,
and another factor of 10 because of parallelism.

Almost all of the 66,771 bunches contributed solutions; the only exceptions
were 198 cases of the form «lfl or lalf, and Algorithm H rejected them
immediately. The smallest nonempty canonical bunch class was CFgd, with only
165,504 solutions (80 Myu); the largest was LLLL, with 652,228,612 solutions
(287 Gu); the median was Cflz, with 17,440,101 solutions (8587 Mu). To get
the total number of tours, we simply compute the sum, over all bunches, of the
number of solutions times the multiplicity. (Without multiplying by multiplicity,
the total number of solutions over all bunches came to 1,671,517,634,718.)

The scheme just described has worked well, but we could have conducted
the census in many other ways. For example, instead of defining bunches based
on the 28* possible wedges at the four central cells, we could have based our
definition on the 6% possible wedges at centrally located boundary cells. Or we
could have used the 5% possible wedges at the cells that are a knight’s move away
from a corner. Exercises 151 and 152 explore those interesting alternatives.

The ability to conduct a reasonably quick census opens the door to the
solution of many problems that were long thought to be out of reach, and it also
raises new questions that are interesting in their own right. For example, how
many of the 13 trillion possible tours involve each of the 28 possible wedges at
least once? (Answer: 278,078,503,988.) How many of those tours involve each
wedge at least twice? (Answer: 155,528.) And how many of those doubly diverse
tours involve each wedge at most thrice? (Answer: 70,240.) In the latter tours,
exactly eight of the 28 wedges occur three times, because 64 =20-2 4+ 8- 3.

It turns out that Algorithm H is not the bottleneck when answering ques-
tions of this kind: The process of analyzing a tour tends to take longer than the
process of generating the tour itself, because Algorithm H is so efficient. The
total time is therefore roughly equal to the time to analyze 1.67 trillion tours,
divided by the degree of parallelism.
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Exercises 156-164 are devoted to a wide variety of questions that can be
answered by a good census-taker, and Fig. A-19 in the answer pages is a gallery
of knight’s tours with unusual properties. For example, one of the 70,240 tours
with maximally diverse wedges appears in Fig. A—19(a).

What’s the maximum number of times that a knight can make the sharpest
possible turn during a complete cycle, forming a tight angle of just 8 ~ 37°7
(See Fig. 123.) Contrariwise, what’s the maximum number of times that it can
continue in the same direction as its previous move, making no turn at all?
Exercise 158 clears up those riddles.

N7 V4 V4 A7 V7

Y~ L LN PR L

I II 111 IV \ VI
L dib=dh SR =l v2Eh
AN SRR VAN N SR SNRYAN
VII VIII IX X XI XII XIII

Fig. 124. The thirteen topological types of knight’s cycles.
Every Hamiltonian cycle on an nxn knight graph includes eight fixed edges,
forming narrow wedges at each corner. The endpoints of those wedges
can be connected up in 13 essentially different ways, modulo rotation and
reflection, indicated by dashed lines in these diagrams. (The actual paths
of interconnection can, of course, have wildly differing lengths and shapes.)

Figure 124 suggests a census-oriented question of a different kind, because it
points out that there are 13 fundamentally different kinds of knight’s cycles on a
square board. How many tours are of each topological type? (See exercise 156.)

Dynamic enumeration. Let’s switch gears now and focus on counting. Instead
of trying to visit every Hamiltonian cycle of a given graph, we’ll try only to figure
out exactly how many such cycles exist.

Algorithm E below is, in fact, designed to solve a somewhat more general
problem: Given a graph G on the vertices {1,2,...,n}, we’ll determine the
number of m-cycles in the induced subgraph G,,, = G|{1,...,m},for 3 < m < n.
In particular, when m = n we’ll know the number of Hamiltonian cycles in G.

Algorithm E is easy to understand, once you understand it, but not so easy to
explain. We shall study it by looking first at how it applies to Hamilton’s original
example, the vertices of a dodecahedron. To start, let’s redraw Fig. 122(a) so
that the vertices are named {1,2,...,20}:

9 13 9

On the left is Hamilton’s graph G; in the middle is an 8-cycle in Gg, clearly
unique; on the right is the 20-cycle of Fig. 122(b).
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The key idea that underlies Algorithm E is the notion of an “m-config,”
which is a subset of the edges that satisfies three properties: (i) Every vertex
< m appears in exactly two edges. (ii) No edge has both endpoints > m.
(iii) There is no cycle of edges. One consequence of (i) and (iii) is that the edges
of an m-config always form disjoint subpaths of the graph. One consequence
of (ii) is that the only 0O-config is the empty set.

For example, Hamilton’s graph obviously has just five 2-configs, namely

and they contain respectively 1, 1, 1, 1, 2 subpaths.

The “m-frontier” F, of GG is the set of vertices > m that are reachable from
{1,...,m}. Building on our experience with Algorithm H, we classify each vertex
of F,, in an m-config as either “outer” (an endpoint of a subpath), or “inner”
(an intermediate vertex of a subpath), or “bare” (not in any subpath), according
as its degree in the m-config is 1, 2, or 0. (There’ll be exactly 2t outer cells when
there are t subpaths.) Two m-configs are equivalent if they have the same outer,
inner, and bare cells, and if the outer cells are paired up in the same way.

Fy = {3,5,17,19}, and no two of the 2-configs in (27) are equivalent. But
when m gets larger, we usually have fairly large equivalence classes. For instance,
it turns out that Hamilton’s graph has exactly 32 16-configs, including these five:

1 1

The first three of these are equivalent, and so are the last two. Furthermore,
every 16-config turns out to be equivalent either to one of those or to one of

1

Algorithm E works by systematically discovering every “m-class,” namely,
each equivalence class of m-configs, while also computing all of the class sizes. So
it’s important to give an appropriate name to each m-class. When F},, has q ele-
ments (u1, ..., uy), this name consists of ¢ integers a;, one for each element of the
frontier: If u; is inner, a; is —1 (written ‘1’ for short). If u; is bare, a; = 0. And if
u; is outer, with mate u; at the other end of its subpath and j' > j, we set a; and
a; to the smallest positive integer not assigned to an outer vertex u; with ¢ < j.

For example, the frontier Fig is (uy,us,us,us) = (17,18,19,20). The 16-
class at the left of (28) has a subpath from 18 to 20, with 17 inner and 19 bare;
so its name is 1101. The class at the right has a subpath from 18 to 19 and
leaves both 17 and 20 bare; so its name is 0110. The names of the four classes
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in (29) are respectively 1111, 1001, 1011, and 1212. (Check them!) Algorithm E
determines not only that every 16-config belongs to one of those six classes, but
also that the classes contain respectively 4, 2, 6, 6, 4, and 10 configs.
Confession: The statements above are almost true, but not really correct.
Algorithm E actually works with an extended frontier F,, = F,, U {m + 1},
instead of with F,, for 0 < m < n; in particular, By = {1}. This modification
makes the program simpler. And it doesn’t change the definition of equivalence
classes, because vertex m + 1 will always be bare if it wasn’t already in Fy,.
The precise ordering of vertices (u1,...,uq), where ¢ = |Fp,|, is important
for naming the m-classes. A somewhat pecuhar rule turns out to work best: We
divide F}, into two parts, F (Fm 1 U{m+1}) \ {m} and F+ = F, \ F,
then we place the elements of F),, first, otherwise sortlng into increasing order

{1, ..., ug} = F,, {Ugot1,---,Ug} = Ff where qo = |F-|; (30)
uj <wujyq for 1 <j < qandj#qo.

For example, the extended-and-ordered frontiers of Hamilton’s graph are

Fo (1); =(8,9,17,19,20,10% 5 _ (15 16,17, 19, 20);
=(2,5,17); =(9,10,17,19,20,12); 5 — (16,17, 19,20, 18),
= (3,5,17,19); =(10,12,17,19,20,13); 5" _ (17,18, 19, 20);
=(4,5,17,19,6); Fw (11,12,13,17,19, 20); ﬁw _ (1519, 20) (31)
= (5,6,17,19,8,20); = (12,13,17,19, 20, 14); ﬁ” _ (19, 20);
= (6,8,17,19,20,9); = (13,14,17,19, 20, 16); ﬁlg _( 20).

F6 (7,8,9,17, 19, 20); = (14,16,17, 19, 20); o

Notice that ﬁm always beglns with u; =m + 1.

Everything works nicely because we can readily enumerate all the m-classes
once we know the names and sizes of all the (m—1)-classes. Indeed, the transition
from m — 1 to m means that vertex m gains respectively (0,2, 1) neighbors if it
is (inner, bare, outer). And the state of vertex m in an (m—1)-config is the first
digit of its class name; thus vertex m gains (0,2, 1) neighbors if and only if that
name begins with (1,0, 1), respectively.

When m = 17, for example, we know that Hamilton’s 16-configs have the
class names 1101, 1111, 0110, 1001, 1011, 1212. In cases 1101 and 1111, vertex 17
is already inner; so those cases are already 17-configs. In case 0110, the class
fizzles out and leads to no 17-configs, because vertex 17 has only one neighbor
in the frontier (namely vertex 18) and it cannot gain two. Cases 1001, 1011 and
1212 do lead to 17-configs, when 17 is joined to 18; see exercise 173.

Let’s write ‘a +»,, 8’ if the (m—1)-class a can lead to the m-class 5. Then
we can verify, using (31), that the sequence

01 011 =9 1221 3 01122 4 121233 +—5 123123 ¢ 123312 7
122313 g 121233 9 112210 +519 010221 +511 101122 515 (32)
012210 13 10111 14 00111 15 11221 16 1111 =17 111 18 020

takes us step-by-step from the left of (26) to the right, if ‘a +—,, C},’ means that
the (m—1)-class a can be immediately followed by a p-cycle in G|{1,...,p}.
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In general, if C'is any m-cycle in Gy, = G|{1,...,m}, where G is any graph
with m or more vertices, there’s a unique sequence of transitions

O=ap—10q—2ay -+ aj_1 —; Cp, forsomej < m. (33)

For we obtain the j-class a; by first removing all edges of ), whose endpoints
both exceed j; then we use the extended frontier Fj; to name the j-config that
results. Conversely, any sequence (33) defines a unique m-cycle in G,,. This
one-to-one correspondence is the basis of Algorithm E.

Notice that the size of a j-class «, that is, the number of equivalent j-configs
that it contains, is the number of paths of length ;7 from 0 to « in such a sequence
of transitions. We're counting Hamiltonian cycles by counting paths in a (large)
digraph of j-classes.

The main data structures for Algorithm E are two tries (see Section 6.3),
one for classes of the (m — 1)-configs already enumerated and one for classes of
the newly seen m-configs that they spawn. When the extended frontier F,, has
size ¢, the trie for m-configs has ¢ levels, representing successive digits of each
class name. Then there’s a “bottom” level of lieves, containing the class sizes.

11
L [elel ] L] [el ] [ [elel |
110 11 011 100 101y
LDl ) el DD Cledl D) Ll fel ) [ LT ) LT [p]
1101 1111 0110 1001 1011 1212
| 14 ]| 6 | | 2 | | 6 | | 4 ]| 10

Fig. 125. A trie with ¢ = 4, having A = 4 fields in each node.

For example, the six 16-classes in (28) and (29) might be represented by the
trie in Fig. 125. There’s one lief for every class name a; ...a,; and the path to
that lief, from the root at level 0, implicitly specifies the digits a1, ..., a4 in turn.
More precisely, every node on level [, for 0 < [ < ¢, has A fields, representing
the potential digits (1,0,1,...) that might appear in a name; the field for a;y;
links to the node or lief at level [ + 1. In this way each node or lief on level [
represents all classes whose name begins with a particular prefix a; ... q;.

Algorithm E uses two arrays, MEM and WT, to represent a trie. Each element
of MEM is a node that’s capable of holding A pointers, where A has been chosen
large enough to exceed a; + 1 for any digit a;. Each element of WT is a “bignum,”
a nonnegative integer that might be rather large; 128 bits or more are typically
allocated for each bignum, depending on the input graph. Trie nodes live in MEM;
trie lieves live in WT. For example, node 011 in Fig. 125 might be in MEM[9], and
lief 0110 might be in WT[3]. Then we’d have MEM[9][1] = 3 and WT[3] = 2. (Null
pointers, like MEM[9][0], are zero, and shown as blanks in this illustration.)
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A sparse-set data structure is ideal for maintaining the frontiers as m grows.
There’s an array FR, which contains a permutation of the vertices, and a com-
panion array IFR for the inverse permutation. The first g elements of FR are the
current frontier. More precisely, we have

FR[IFR[v]l]l =wv, for 1<v<mn; and 1<FR[k]l<n, for0<k<n. (34)

Vertex v is part of l?'m if and only if IFR[v] < ¢q. Vertex u; in the discussion
above corresponds to FR[j—1] in the computer’s internal representation. (These
conventions intentionally mix 0-origin and 1-origin indexing. Algorithm E wants
the vertices to be named {1,2,...,n},not {0,1,...,n—1}, for ease in exposition.)

The main work of Algorithm E, which is to carry out the transitions from
(m—1)-classes to m-classes, is greatly facilitated by the use of a MATE table
somewhat like that of Algorithm H: MATE[j] = (-1, 0, k¥ > 0) means that u; is
respectively (inner, bare, mated to uy). For example, class 1101 is equivalent to

MATE[1] = —1, MATE[2] = 4, MATE[3] = 0, MATE[4] = 2, (35)

because both conventions mean that w; is inner, ug is bare, and that there’s a
subpath whose endpoints are us and uy. It’s easy to convert from one convention
to the other (see exercise 179).

The transition from m — 1 to m is basically straightforward. But the details
can be a bit tricky, because two frontiers and two MATE tables are involved.
The (m—1)-classes are characterized by a table OMATE[j] for 1 < j < ¢' =
|Fi—1| based on the “old” frontier Fy,—1 = (uy,...,uy ), while the m-classes
are characterized by a table MATE[j] for 1 < j < ¢ = |Fy,| that’s based on
the “current” frontier F,,, = (uq,...,uq). Vertices that belong to both frontiers
are represented by different indices in OMATE and MATE. N

Consider, for example, the case m = 8 in graph (26). The old frontier F7
is (8,9,17,19,20,10), while Fg, the current frontier, is (9,10,17,19,20,12), acc-
ording to (31). Thus u} = u; and ug = u,. A subpath from vertex 9 to vertex 17
is represented by OMATE[2] = 3 in a 7-config, but by MATE[1] = 3 in an 8-config.

In general, if we set ug = m, there’s a one-to-one mapping ¢ such that

u; =u;,, forl<j<gq; 1lo=0. (36)

Going the other way, if we set u{, = m + 1, there’s a one-to-one mapping 7 with
Uy, = tp,, for1 <k < qo; (37)

here g is defined in (30). We have 17 = 0 if and only if gy = ¢’ (see exercise 181).

Three main cases arise when we consider the m-classes that can follow a
given (m—1)-class, depending on whether vertex m is inner, bare, or outer in
that class. In other words, there are three cases, depending on whether OMATE[1]
is =1, 0, or > 1. The first case is easy, because the given (m—1)-class is already
an m-class, and its MATE table is directly inherited from OMATE. We shall call
this the BMATE table (“basic mate table”):

OMATE[k7]o, if 1<k < qo; OMATE[0] =0,

BMATE[k] = {0, if go < k < q; (-1)o = -1, 00 =0. (38)
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In the other two cases, we start with the basic mate table, then add either
two edges from m to non-inner vertices (if OMATE[1] = 0), or one edge from m
to a non-inner vertex (if OMATE[1] > 1), in all possible ways. We set up an array
called NBR, so that the edges from vertex m to vertices > m can be represented as

M —— UNBR[0]5 - -~ T —— UNBR[r—1]- (39)

Algorithm E (Enumerate Hamiltonian cycles). Given a graph G on the vertices

{1,2,...,n}, this algorithm computes CYC[m], the number of m-cycles in the

induced graph G | {1,2,...,m}, for 3 < m < n. As described above, it uses

the arrays MEM, WT, OMEM, and OWT to represent tries; FR and IFR to represent
frontiers; NBR to represent neighbors; and several other auxiliary arrays, which
are described in various exercises that contain implementation details.

E1. [Initialize.] Set CYC[m] < 0 (which is a “bignum”), for 3 < m < n. Set
FR[kK] + k+ 1 and IFR[k+1] < k, for 0 < k < n. Set MEM[0] [j] «
OMEM[0][j] < O for 0 < j < A. Also set m < 1, ¢ < 1, MEM[0][1] «+ 1,
and WT[1] « 1 (a “bignum”).

E2. [Establish the trie for m —1.] (At this point, FR and IFR represent the exter-
nal frontier Fj,_1, which has ¢ elements. Arrays MEM and WT represent the
trie of (m—1)-classes.) Set ¢’ < ¢, p « w < 0; also swap OMEM <> MEM and
OWT <> WT. (Only the base addresses change. Thus OMEM and OWT now repre-
sent the (m—1)-classes. The previous contents of OMEM and OWT are now irrel-
evant; we’ll construct the trie of m-classes in their place. That trie contains
p nodes and w lieves as it is being built. It’s now empty, because p = w = 0.)
Change FR, IFR, qo, and ¢ so that they now represent F,,. (See exercise 187.)

E3. [Visit the first (m—1)-class.] Set ¢’ + 1 pointer variables py, ..., p;, so that
OMEM[p;] is node @} ...a; for 0 <1 < ¢’ and OWT[p],] is lief a; ... a,, where
ay ...ay is the lexicographically smallest (m—1)-class. (See exercise 189.)

E4. [Prepare to process a} ...a,,.] Set up the OMATE table and the BMATE table.
(See exercise 179(a) and (36)—(38).) Go to step E5 if OMATE[1] < 0, to step
E6 if OMATE[1] = 0, otherwise to step E7.

E5. [Contribute when m is inner.] Set MATE[k] « BMATE[k] for 1 < k < q.
Then call contribute() (exercise 191) and go to ES.

E6. [Contribute when m is bare.] Call the subroutine try(NBR[i],NBR[j]1) for
0 <i<j<r (see exercise 193), and go to E8.

E7. [Contribute when m is outer.] Call try(OMATE[1]0,NBR[k]) for 0 < k < r.

E8. [Visit the next (m—1)-class.] Set ¢'+ 1 pointer variables py, ..., p;, so that
OMEM[p;] is node aj ... a; for 0 <1 < ¢" and OWT[p],] is lief a} ... a;,, where
ay .. .ay is the lexicographically smallest unvisited (m—1)-class, and return
to E4. (See exercise 189.) If all of the (m—1)-classes have been visited,
however, set m < m + 1. Return to E2 if w > 0; otherwise terminate. |

A superficial glance at this algorithm leads to a natural question: Where does it

actually calculate the values CYC[3], CYC[4], ..., CYC[n], which are the desired

outputs? The answer is that those values accumulate as m-cycles are discovered,
during the calls of try(i, j) in steps E6 and ET.
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It’s quite instructive to watch Algorithm E in action when G is the complete
graph on n vertices. That’s when we get the most cycles. (See exercise 183.)

On the other hand, we've developed Algorithm E by considering a toy
problem that has only a few Hamiltonian cycles. Indeed, when we apply it to
the little graph (26), the results are that CYC[8] = CYC[14] = 1, CYC[17] = 2,
CYC[20] = 30, and CYC[m] = 0 otherwise. Ho hum. What’s the point? We obvi-
ously could have counted those cycles much faster by just visiting them directly.

But Algorithm E yields truly impressive results when we apply it to many
other graphs. For example, suppose G is the graph of knight moves on an 8 x 32
board. How many closed tours are possible? Answer:

2,980,043,104,279,785,843,506,369,864,414,419,975,166,020,
125,721,505,674,144,076,449,194,991,145,270,100.  (40)

Almost 3 quinvigintillion (see OEIS A193055)! That’s CYC[256]. Of course,
while computing this bignum, Algorithm E also discovers our old friend CYC[64],
the number of closed 8 x 8 tours, and many other interesting numbers along the
way (see exercise 196). And the running time for the entire calculation was just
66.5 teramems— about 2.5 teramems to go from 8 x k to 8 x (k+1) boards.

Let’s look more closely at the calculations that led to (40). The extended-
and-ordered frontiers of the 8 x 32 knight graph start small, but they rapidly fall
into a pattern in which each F},, has size 16 or 17:

Fy = (00);

Fy = (10,21,12);

Fy = (20,21,12, 31,02, 22);

Fs = (30,21, 31,02,12, 22,01, 41, 32);

Fy = (40,01, 21,31,41, 02,12, 22,32, 11, 51, 42);

Fs = (50,01, 11,21,31,41, 51,02, 12, 22, 32, 42, 61, 52);

Fs = (60,01, 11,21,31,41, 51,61, 02, 12, 22, 32,42, 52, 71, 62);

Fr = (70,01,11,21,31,41,51, 61, 71,02, 12, 22, 32, 42, 52, 62, 72);
Fs = (01,11,21,31,41,51,61, 71, 02, 12, 22, 32, 42, 52, 62, 72);
Fy = (11,21,31,41,51,61,71,02,12, 22, 32,42, 52, 62, 72, 13); (41)
Fio = (21,31,41,51,61, 71,02, 12,22, 32, 42, 52, 62, 72, 13, 03, 23);
Fiy = (31,41,51,61, 71,02, 12,22, 32,42, 52, 62, 72, 03, 13, 23, 33);
Fi» = (41,51,61, 71,02, 12, 22, 32,42, 52, 62, 72, 03, 13, 23, 33, 43);
Fis = (51,61,71,02,12, 22, 32,42, 52, 62, 72,03, 13, 23, 33, 43, 53);
Fiq = (61,71,02,12,22, 32,42, 52,62, 72,03, 13, 23, 33,43, 53, 63);
Fis = (71,02,12, 22, 32, 42,52, 62, 72,03, 13, 23, 33, 43, 53, 63, 73);
Fie = (02,12,22,32,42, 52, 62,72, 03, 13,23, 33,43, 53, 63, 73);
Fir = (12,22,32,42,52, 62,72, 03, 13,23, 33, 43, 53, 63, 73, 14);
Fis = (22,32,42,52,62,72,03,13, 23, 33,43, 53,63, 73, 14, 04, 24);
Fio = (32,42,52,62,72,03,13, 23, 33,43, 53, 63, 73, 04, 14, 24, 34);

and so on. (The vertices have row-column names (00, 10, ..., 70,01, 11, ..., 71,
02, ...) here, instead of (1, 2, ..., 256).) When 7 < m < 232, Fj,,+s turns out to
be the same as F},, except that the vertices are shifted one column to the right.
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Fig. 126. The number of lieves, C},, in the tries for m-classes in the 8 x 32 knight graph.

The m-classes also fall into a pattern that’s periodic modulo 8; but they
don’t stabilize until m gets somewhat larger. It turns out that, when m mod 8 is
(0,1, ...,7), the number C,, of m-classes is respectively (282609677, 233377701,
382538097, 461026164, 596486159, 601036842, 830339355, 833813266), for 72 <
m < 240; thus it reaches its peak when m mod 8 = 7 and we’re closing out a
column. Similarly, the number P,, of nonlief trie nodes turns out to be respec-
tively (531992432, 470709142, 834186552, 1115100721, 1320322736, 1343754219,
1779294552, 1798400809), which is about (1.88, 2.02, 2.18, 2.42, 2.21, 2.24, 2.14,
2.16) nodes per class. Further statistics are discussed in exercise 198.

This periodic pattern proves that the number CYC[8n] of 8 xn knight’s cycles
satisfies a linear recurrence, and has a generating function that’s a quotient of
(huge) polynomials. Empirically, the numbers are very close to .000000002465 -
526.46™, for 16 < n < 32.

Periodicity mod 8 suggests that we can also construct “periodic knight’s
tours,” by finding classes «ag, a1, ..., a7 such that

Qo —rm O, a1 g1 A2, Q3 ;42 A3, cee a7 a7 Q. (42)

Such sequences of transitions occur, for example, when m mod 8 = 0 and «y is
1234214300000000 or 0112314505004023 (see exercise 200). If we can also find
transitions from 0 to ap, and from o to C), for some p with p mod 8 = 0, we ob-
tain complete knight’s cycles with 8 rows and an unbounded number of columns:

These 8 x 16 tours become 8 x (k + 5) tours when the m-class ag occurs k times,
for every k > 1.

It’s fascinating to follow the course of the knight in labyrinthine tours like
this. Starting, for example, at the left of the lefthand tour, the knight will hop
all the way to the right, then left, then right, then left, right, left, right, and left
again. A knight traversing the righthand tour will reverse direction ten times!
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Algorithm E is remarkably fast, but it needs lots of memory. Although the
frontier sets in (41) are rather large, the algorithm succeeds only because they
aren’t too large. No frontier has more than 17 elements; hence each trie node
needs to hold only 10 pointers (see exercise 195). And we’ve seen that no trie has
more than 1.8 billion nodes; hence each pointer needs to occupy only four bytes.
Therefore, with 40 bytes in each trie node and 48 bytes in each bignum, the
total bytewise memory requirement is roughly 2 billion times 40, plus 1 billion
times 48, namely 128 gigabytes per trie. (Exercise 204 shows, however, that this
memory requirement is somewhat pessimistic, because the trie of (m—1)-classes
can be greatly compressed.)

By making only a few changes to Algorithm E, we can extend it to “Al-
gorithm ET,” which counts the Hamiltonian paths of each induced subgraph
G| {1,...,m} instead of counting the Hamiltonian cycles. The idea is simply
to imagine a new vertex ‘oco’, following vertex n, with v — oo for 1 < v < n.
Hamiltonian paths of G|{1,...,m} are then equivalent to Hamiltonian cycles of
G|{1,...,m,00}. (See exercise 2.) The new vertex ‘0o’ becomes a new member
of every frontier. Exercise 209 has the details.

For example, let’s go back to Hamilton’s original graph G in (26). We get a
Hamiltonian m-path in G,,, = G|{1,...,m} for m < 8 by taking an appropriate
subpath of 4 — 3 —2—1—5—6 — 7 — 8 — 4, which is the 8-cycle
in the middle of (26). These are the only m-paths for m < 8, except that
4—3—6—>5—1—2 also works when m = 6. By omitting any one edge
of the 8-cycle, we get eight 8-paths for mm = 8; and there are two more, one of
which is 5—1—2—3—6—7—8—4. The total number of Hamiltonian
m-paths in G,,, for m = (2, 3, ..., 20), turns out to be respectively (1, 1, 1, 1,
2,1, 10, 3, 12, 3, 16, 6, 32, 7, 44, 84, 120, 276, 1620).

Wow! Algorithm E* allows us to go way beyond (40) and to obtain the
exact number of open knight’s tours of size 8 x 32:

20,279,590,726,014,132,421,141,646,018,182,968,888,437,777,
268,855,614,013,516,231,312,347,225,658,967,818,240.  (44)

(See OEIS A389760 and exercise 206.) It’s roughly 6785 times as big as (40).
While computing this value, which is PATH[256], hundreds of smaller totals were
of course also found, including PATH[64]:

9,795,914,085,489,952. (45)

This is the number of open knight’s tours on a normal chessboard, first computed
by A. Chernov and G. Stertenbrink in 2014 by taking a weighted sum of 136
individual counts for different choices of where to start and stop the tour.

The author’s computation of (44) was a bit of an adventure, lasting about
33 days on a machine with 2 terabytes of RAM. Again, periodic behavior began
to kick in when m passed 80, as in Fig. 126; but now the tries were about 8.61
times larger. Empirically, the number PATH[8n] of 8 x n open knight’s tours is
fairly well approximated by (.000000028 + .00000017n + .000000015n2) - 526.458"™
for 16 < n < 32. (See exercise 210.)
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Directed and bidirected graphs. So far we’ve been discussing Hamiltonian directed graphs—
paths and cycles only with respect to garden-variety (undirected) graphs. But g)tztr})filrldSCGO::;hBase

they’re quite important in directed graphs too. Ivy League
Let’s look, for example, at an 8-vertex digraph that can easily be analyzed 4-cube
by hand. It’s based on the following matrix of football scores:

Colum- Cor- Dart- Har- p Prince-

Brown bia nell mouth vard ton Yale

Brown . 17—-0 7-34 0-29 37-52 24-—-17 23-27 21-27
Columbia 0-17 . 0—-41 20—-34 6-9 6-21 17-15 7-31
Cornell 34-7 41-0 . 6—11 20—-17 21-15 17—14 41-31
Dartmouth 29—-0 34-20 11-6 . 17-0 6-16 23—6 27-—-17 (46)
Harvard | 52—-37 9-6 17-20 0-17 . 20—24 23-20 19-34
Penn | 17—24 21-6 15—21 16—6 24-20 . 20—-34 10-27
Princeton | 27—23 15—17 14—-17 6—23 20-—-23 34-20 . 7—34
Yale \ 27—21 31-7 31—41 17—-27 34—19 27-10 34-7

(The Stanford GraphBase includes data for the scores of all games played be-
tween the top 120 college football teams in the USA during the 1990 season —a
particularly memorable year. This matrix shows the “Ivy League” games. For
example, Brown beat Columbia, 17 to 0, but lost to Cornell, 7 to 34.)

We get a digraph with (g) arcs from (46) by observing who beat whom:
Brown — Columbia, Brown — Penn, Columbia — Princeton, Cornell — Brown,
Cornell —+ Columbia, Cornell - Harvard, Cornell — Penn, Cornell — Princeton,
Cornell — Yale, Dartmouth — Brown, Dartmouth — Columbia, Dartmouth — Cornell,
Dartmouth — Harvard, Dartmouth — Princeton, Dartmouth — Yale, Harvard — Brown,
Harvard — Columbia, Harvard — Princeton, Penn — Columbia, Penn — Dartmouth,
Penn — Harvard, Princeton — Brown, Princeton — Penn, Yale — Brown,

Yale — Columbia, Yale — Harvard, Yale — Penn, Yale — Princeton. (47)

Does this digraph have a Hamiltonian cycle? If so, it will have to include the
arc Columbia — Princeton, because that was Columbia’s only victory. It will also
have to include Penn — Dartmouth — Cornell, because those were Dartmouth’s
and Cornell’s only defeats. Then Cornell — Yale is also forced, because Yale’s only
other loss was to Dartmouth. ... We soon discover two solutions, one of which is

Yale — Harvard — Columbia — Princeton — Brown — Penn — Dartmouth — Cornell — Yale

and the other is the answer to exercise 211.
A vast number of interesting digraphs arises when we take an undirected
graph and assign an orientation to each edge. Consider, for example, the 4-cube,

——0000—-0001—-0011—-0010 —-

—~—0100<—0101 <—0111—<—0110 <

¥

—=—1100—-1101—-1111—-1110—-

¥ (i

—~—1000~<—1001 <1011 <1010 =

¥ 4

(48)

—
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whose vertices are the 16 binary vectors of length 4, adjacent when they differ in
just one bit position. (As in exercise 7.2.1.1-17, the 4-cube is represented here
as a torus, Cy 0 Cy, with arcs wrapping around from top to bottom and left to
right.) There are 64 Hamiltonian cycles with this orientation, one of which is

0000 —0001 —0011 —0010 —1010 —1011 —1001 — 1101 — 0101
—0100—0110—0111—1111—1110— 1100 — 1000 — 0000 .  (49)

(We know from Eq. 7.2.1.1-(26) that the non-oriented 4-cube has 1344 of them.)

A knight graph can be oriented in a particularly interesting way, if we insist
that the knight always moves counterclockwise with respect to some pivot point.
For example, the knight will continually whirl around the center of an ordinary
chessboard if and only if its moves have the following orientations:

. . =

Do such whirling knight’s tours exist? Yes indeed; but they’re rare. Even
rarer are the tours that whirl around a pivot that lies southeast of the center(!):

AT [>T N2y L2 ATy X L 7
' ]'«- S e - < ']'«- 5 ¢ \\ 4, >E S >;i<\ 7 Mg & >E S »i(\\:/ B /7‘ < '] e &
) X~ 7 hS < < \ N X \ AN NV SN
%\ N XX XA P27 XX Fos NN Ao K
N\ e\ (X (\) &V v (X L) \ VY X)
A / \i \ N \i X &\ \ AN/ K
\\ Y { \ { < ,/\\ \ ) \ —\ > /X \ Y /\
A Nt A\ X\ S PR\ X Fo R A\ frgsdif (51)
SN TTX 0D 7 \ /) { NN | &Ly
! \ W \ \ % / O \ VN
() AN |0 (A~ X X
X L\ ek XX Fr XX \i/fr a KK
(X / > X LX \ ¥, /% X / 7 X
Vi T k\ iy iy VA W B Nl //“\.« Tk e e /5
/ J \ J N N\ \ \4 N TN A\

Only 1120 tours of the former type exist, and only 4 of the latter. The lefthand
example is one of 16 that have central symmetry.

It turns out that all 1120 of the Hamiltonian cycles of the digraph defined
by (50) have the property that they whirl around the center exactly seven times.
Equivalently, exactly seven of their arcs cross the “plumb line” that extends
vertically from the center. In fact, the tour shown in the middle example of (51)
maintains a fairly steady angular velocity: The number of steps between its seven
plumb-line crossings always differs from 64/7 by less than 2. (This example, and
its left-right reversal, are the only such whirling knight’s tours. See exercise 228.)

The concept of whirling tours adds a new, relatively unexplored dimension
to the age-old study of the movements of chess pieces. Exercises 227-236 explore
some of the most basic questions related to them. Whirling kings are almost as
interesting as whirling knights! Many beautiful patterns arise.
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We will soon be discussing Algorithm B, a variant of Algorithm H that
quickly finds patterns such as those in (49) and (51). But it turns out that
Algorithm B actually does considerably more: It visits all of the Hamiltonian
cycles in an arbitrary bidirected graph, a vast family of graph structures that in-
cludes directed graphs as a very special case. Therefore it behooves us to become
familiar with bidirectedness, a concept that cries out to be better known.*

The idea is actually quite simple and intuitive: The arcs of a bidirected graph
essentially have two arrows in place of one. If u and v are vertices, four kinds of
bidirected relationships are therefore possible: Either u )) v or u (( v or u ){ v or
u () v. The first two cases are called directed edges, and they correspond to the
familiar relations v — v and u ¢—wv. (Our notation uses angle brackets ‘¢’ and
‘)” instead of arrows, because brackets look fairly nice and don’t take up much
space.) The third case, u )( v, is called an introverted edge; and the remaining
case, u {) v, is called an extroverted edge. In words, not symbols, we can verbalize
these four cases by saying “u to v” or “u from v” or “u intro v” or “u extro v.”

A single edge between u and v actually gives us only three different relations
between those vertices, despite having four cases, because u )) v means the same
as v (( w. Similarly, u ){ v means the same as v ){ u, and u () v means the
same as v () u. On the other hand, sixteen different relations between u and v
are actually possible, when u # v, because we might have any subset of the four
cases. For example, we might have u () v and u (( v, but not v )) v and not u X{ v.

A bidirected walk is obtained from a sequence of vertices joined by edges,
just as in an ordinary graph or directed graph; but we require the arrows next
to intermediate vertices to be identical. For example,

wlzUyOzdynadv (52)

is a bidirected walk of length 6 between u and v. Contrariwise, a sequence like
u {(( x )y isn’t part of any legal walk; the arrows that surround x don’t match.
A walk is said to be a trail if its edges are distinct. In an ordinary graph,
a walk between two vertices always implies the existence of a trail between
those vertices; but (52) shows that we can’t always make such an inference
in a bidirected graph, because it includes the edge x (( y twice.
More formally, a sequence

w=1tg loly t1 lilata lo---li—1 &1 11 & = v, (53)

where each [; is either ( or ), is a bidirected walk of length ! between v and v. It’s
called simple if {to,...,t;_1} are distinct and {#1,...,%} are distinct. A simple
bidirected walk is called a bidirected cycle if to = t; and lp = [;; otherwise it’s
called a bidirected path.

When all of the arcs of a bidirected graph are directed edges, it’s exactly
the same as a directed graph. When all of the arcs are introverted, the structure

* None of the textbooks on graph theory known to the author at the time this section was
written even mention the concept. Furthermore, some of them have unfortunately said that a
digraph is “bidirectional” if it has the property that v — v implies v — u.
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isn’t really interesting, because all walks have length 1. But we can get really
interesting structures when all of the arcs are either introverted or extroverted.

Indeed, suppose G and H are any two graphs on the same set of vertices.
Define u ){ v if u and v are adjacent in G; also define u () v if u and v are adjacent
in H. Then introverted and extroverted edges must alternate in any bidirected
walk. In particular, there can’t be any cycles of odd length.

For example, suppose G is the 4 x 4 grid on the 16 vertices {00,01,...,33},
and let H be the 4x4 knight graph on those same vertices. Then we have 00 )( 01,
00 )¢ 10, 01 )¢ 02, 01 X 11, ..., 32)( 33 from G; and 00 ¢ 12, 00 ¢) 21, 01 ¢) 13,
01 ¢ 20, ..., 23 () 31 from H. This bidirected graph has 180 Hamiltonian cycles,
strictly alternating between knight moves and grid moves, one of which is

00 (> 12)(22 0302 O 2313 (O 32X
33 0 21)(31010>(11 0 303(20 O 01)(00. (54)

Alternating patterns like this actually appeared very early in the history of
knight’s tours. A prominent Turkic polymath named Aba Bakr Muhammad ibn
Yahya ibn al-‘Abbas al-Siili wrote a book on chess, a few decades after others
had devised the tours that we saw in (1) and (2) at the beginning of this section.
Besides discussing strategy, he presented several closed tours, including these:

32(35(30|25| 8 | 5 |50(55 37(14|16|35|33(18|24|31 49(42|40|51] 9 |34(36|11
29|24|33|36(51|56| 7 | 4 15(36(34(17]19(32|30(25 47(52|54(45|39]|12|14(33
34(31|26| 9 | 6 [49(54|57 13|38|48|11|21|26|28|23 41]50(48|43|37|10| 8 |35
23|28|37]12| 1 [52| 3 |48 39(12|10(49|27]20|22|29 55|44(46|53(15|32|38 13' (55)
38(13|22(27|10[47]58(53 9 142(40(47|61|50(52|63 61]22{16/63| 5 [26]28| 7

19(16]11|64/61| 2 43|46 43| 8 |46|41|51|60(62(53 19|56/58|21|31|64| 2 |25
14(39(18|21|44|41|62|59 45/ 6|4 |59|57| 2 |64[55 17(62]60(23/29| 6 | 4 |27
17]20[15(40(63]60(45(42 7144/58] 5|3 |56[54| 1 59|20[18]57| 3 |24[30| 1

[His original treatise has been lost, but these tours were quoted by later authors.
See H. J. R. Murray, A History of Chess (Oxford, 1913), 171-172, 335-337.] The
knight’s cycle at the left is remarkable because, as observed by George Jelliss,
moves 26—40 are the top-down reflection of moves 11-25. The other two cycles
are even more remarkable, because they introduced a completely new idea, with
knight moves alternating with the moves of other ancient chesspieces called “fers”
and “alfil.” (A fers moves one step diagonally; an alfil hops twice as far.) Three
astonishing tours de force, constructed more than 1100 years ago!

The purpose of Algorithm B below is to visit every Hamiltonian cycle of
a given bidirected graph. But what exactly does that mean? In a bidigraph,
a (b c)ais quite different from a () b)) ¢ ) a. So we can’t just “visit the
cycle (abe)”; we’ve got to specify also the relations between consecutive vertices.

In general, Algorithm B is supposed to visit every subset of edges that can
be expressed as a bidirected cycle having the form (53), where [ is the total
number of vertices. A similar rule characterizes Hamiltonian paths: They’re the
subsets that can be expressed as bidirected paths according to (53), where [ + 1
(not 1) is the total number of vertices. (See exercise 242.)
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Any bidirected graph B on n vertices {v1,...,v,} can be represented as
an ordinary graph G on 3n vertices {v ,v,,v],...,v5,v,, v}, where the edges
of G are v, —uv,, —v,j for 1 < k < n together with

vy —uyf, if v o in B; vf —uyf, if v oy in B; (6)
vy —wog, ifv; O v in B; u;r—v,;, if v; )) vy, in B.

It’s easy to see that the Hamiltonian cycles in B correspond one-to-one with the
Hamiltonian cycles in G. (This idea, in the special case of directed graphs, is
due to R. E. Tarjan; see the famous paper by R. M. Karp, in Complexity of
Computer Computations (Plenum Press, 1972), pages 98 and 101.) Therefore
we don’t need a new algorithm; we could use our trusty old Algorithm H to visit
all the Hamiltonian cycles of B.

But we can do better than that, because every “unsigned” vertex vy, is always
surrounded by v, and v,:r when it’s in a Hamiltonian cycle. We can dispense
with those unsigned vertices by slightly reformulating the problem.

Let G(B) be the (ordinary) graph on 2n vertices {v;, v, ..., v, , v} } whose
edges are specified by (56). A Hamiltonian matching of G(B) is a set of n disjoint
edges for which the addition of n further edges v, —v,:r for 1 < k < n will form
a 2n-cycle. Hamiltonian matchings of G(B) correspond naturally to Hamiltonian
cycles of B; and we can visit them all by using almost the same method that
worked before, by simply adapting Algorithm H to the new setup.

Indeed, Algorithm B almost writes itself, because most of the former steps
need little or no change. As usual, it’s instructive to work out the details.

Let’s state Algorithm B first, and discuss its fine points later.

The bidirected graph input to Algorithm B, like the undirected graph G
input to Algorithm H, has vertices v identified by integers, 0 < v < n. But Algo-
rithm B actually works with the undirected graph G(B), which has 2n vertices;
vertex v of B corresponds to two vertices, v~ = 2v and vt = 2v+1, of G(B).

Algorithm B (All directed or bidirected Hamiltonian cycles). Given a bidirected
graph B on the n vertices {0, 1,...,n—1}, this algorithm uses the data structures
discussed above to visit every Hamiltonian matching of the related graph G(B).
During every visit, the chosen edges are EU[k] —EV[k] for 0 < k < n.

B1. [Initialize.] Set up the NBR and ADJ arrays (see exercise 250). Set the global
variables a <~ € i < | + T < 0. Also set VIS[v] < IVIS[v] < v and
MATE(v) < —1 for 0 < v < 2n. Set LLINK[2n] < RLINK[2n] < S < 2n.
Finally, for every vertex v with DEG(v) = 1, set TRIG[T] <~ vand T « T+1.

B2. [Choose the root vertex.] Let CURV be a vertex of minimum degree, and
set d < DEG(CURV). If d < 1, terminate (there is no Hamiltonian cycle).
If d =1, set CURV <+ —1, do step B4, and go to B6.

B3. [Force a root edge.] Set CURU <— NBR[CURV] [d — 1 — 4] (the last yet-untried
neighbor of CURV), and set EU[0] < CURU, EV[0] < CURV, e < 1. Then get
started with CURU joined to CURV, as explained in exercise 251, and go to B6.
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B4.

B5.

B6.
B7.

BS.

B9.
B10.
B11.

B12.

B13.

B14.
B15.

B16.

[Record the state.] Set CV(l) < CURV, I(I) « i, D(I) « d, E() « e,
SU) « S, TU) «+ T. For0 < k < 8, set u < VIS[k] and SAVE[2n! + u] +
(MATE (u),DEG(u)) (thereby leaving “holes” in the SAVE stack). Then set
u < RLINK[2n]; while u # 2n, set ACTIVE[a] + u, a < a+ 1, u «
RLINK [«]. Finally set A(l) + a.

[Choose an edge.] Set CURU < NBR[CURV] [i], CURT < MATE(CURU),
CURW ¢~ MATE (CURV), EUfe] <~ CURU, e - e+ 1. Call remarc(NBRLCURU] [£],
CURU) for k decreasing from DEG(CURU) —1 to 0. If CURT < 0 (CURU is bare),
makeinner(CURU), activate(CURU®1), and makemates(CURU®1, CURW). Oth-
erwise (CURU is outer), makemates(CURT, CURW) and deactivate(CURU).

[Begin trigger loop.] Set j«+ 0if[=0, else j < T(I—1). Goto B10if j =T.
[Clothe TRIG[j1.] Set v < TRIG[j1, and go to B9 if MATE(v) > 0 or
IVIS[v] > S (v isn’t bare). Otherwise go to B15 if DEG(v) = 0 (a Hamil-
tonian cycle is impossible). Set u < NBR[v][0], EU[e] « u, EV[e] <« v,
e + e+ 1, makeinner(v), and activate(v @ 1). Call remarc(NBR [u] [k],u)
for k decreasing from DEG(u) — 1 to 0, except when NBR[u] [k] = v.

[Take stock.] (We’ve just joined v to its only neighbor, u.) Update the
data structures as described in exercise 252, based on whether MATE (u) <0.

[End trigger loop?] Set j < j + 1, and return to B7 if j < T.
[Enter new level.] Set I <— 1+ 1, and go to B13ife > n — 1.

[Choose vertex for branching.] Set CURV < RLINK[2n], d < DEG(CURV),
k < RLINK[CURV]. While k # 2n, if DEG(k) < d reset CURV < k and
d < DEG(k); set k < RLINK[k]. Go to B14 if d = 0. Otherwise set
EV[e]l] «+ CURVand T+ T( —1).

[Make CURV inner.] Call remarc(NBR[CURV] [k],CURV) for 0 < k < d
(thereby removing CURV from its neighbors’ lists). Then deactivate(CURV),
set i < 0, and go to B4.

[Visit a solution.] Set w - LLINK[2n] and v <— RLINK[2n]. Go to B14 if
ADJ[u] [v] = 0co. Otherwise set EU[e] < u, EV[e] < v, e <~ n. Now visit
the n-cycle defined by arrays EU and EV. (See exercise 253.)

[Back up.] Terminate if I = 0. Otherwise set [ 1 — 1.

[Undo changes.] Set d < D(l) and i < I(I) +1. Go to Bl4if i > d.
Otherwise set I(I) < i, e «+ E(), k + (I > 0?7 A(l-1): 0), a « A(D,
v < 2n. While k < a, set u < ACTIVE[k], RLINK [v] < u, LLINK[u] < v,
v 4 u, k< k+ 1. Then set RLINK[v] ¢ 2n, LLINK[2n] < v, S < S(I),
T + T(). For 0 < k <8, set u < VIS[k] and (MATE(u),DEG(u)) «
SAVE[2nl 4+ u]. Finally set CURV < CV(l). Go to B5if [ > 0.

[Advance at root level.] Set CURU « EU[0]; remarc(CURV,CURU) and
remarc(CURU, CURV). (The previous edge CURU — CURV disappears.) If
DEG(CURU) = 1, set TRIG[O] < CURU and T ¢ 1; otherwise set T « 0. If
DEG(CURV) =1, set TRIG[T] « CURVand T+ T+ 1. Go to B3 if T = 0.
Otherwise set CV(0) < —1, e + 0, and go to B6. 1|
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Algorithm B invokes the miniroutines makeinner, remarc, activate, deact-
ivate, and makemates, which were defined in (19)—(23) for use in Algorithm H.
However, two changes are necessary: The condition ‘d = 2’ in (20) should become
‘d =1’; and the value ‘n’ in (21) should become ‘2n’ (three times).

The main novelty here is the shift of focus to finding a Hamiltonian matching
of the special graph G(B), which has two vertices v~ and v+ for each vertex of B.
This matching problem replaces the original goal of Algorithm H, which was to
find a Hamiltonian cycle of an ordinary graph.

For example, let’s consider a simple case where the given graph B has just
three vertices {0, 1,2} and six bidirected edges,

01, 001, 0»2, 0X2, 1«2 1»2 (57)

In this case, by (56), G(B) has six vertices {07,07,17,1%,27,2%} and six
(undirected) edges, which happen to form a cycle:

0" —1t—2 - —o0t—2t —1-—o0". (58)

A 6-cycle always has two perfect matchings, and they turn out to be Hamiltonian;
but Algorithm B doesn’t know this, so let’s watch how it discovers the two
solutions. No vertex of G(B) has degree less than 2; therefore step B3 chooses
a “root edge” to build upon. We shall assume that the root edge is ‘07 —17".
The final cycle, after we add the required edges 0~ — 0%, 1= — 117, 27 — 27T
to our Hamiltonian matching, will therefore contain the subpath

0f —0"—1"—17. (59)

This is the partial solution that is present when the algorithm first reaches
step B6. At that point 0~ and 1~ are inner vertices; the endpoints 07 and 1T
are outer vertices (and they are mates). The remaining vertices {27,2%} are
currently bare. However, vertex 27 has degree 1, because the edge 27 — 1~
that joins it to an inner vertex has gone away. Therefore 2™ goes onto the trigger
list, and step B7 soon extends (59) to

27 —2t—0t—0" —1" —17 . (60)

The algorithm now gets to level [ = 1, and goes to step B13. Aha — the endpoints
of (60) complete a cycle! Hence {27 — 07, 0° — 17, 1T — 27} is the first
Hamiltonian matching found. (See exercise 254 for the sequel.)

In practice, Algorithm B is almost always applied to the special case in which
the input is just an ordinary directed graph, without introverted or extroverted
edges. In that case steps B1 and B13, which govern input and output, can be con-
siderably simplified, and the interface with users becomes much more intuitive.
(Exercise 256 has the details.) It’s therefore wise to have two implementations:
one for directed graphs only, and another for bidirected graphs in general.

[fe[cloffolili dubilyleft]al3lulgnlulglhjrlofltnl Tefsicie1£]efz]: palrlefvlefessfildlifa
— SSDIHAM (26 October 2025)
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Who knows what I might eventually decide to say next? Please stay tuned.
I
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History. There’s something inherently satisfying about a path that “hits all
the bases.” For example, the ancient artist who carved the pattern of Fig. 777
in a mammoth’s tusk might well have been trying to create a Hamiltonian-like
path in an implicit grid graph, before the dawn of recorded history!

2
Fig. 777. A pattern from the Old Stone Age. This detail
from a Paleolithic ivory carving, found near the present-day >
village of Mizyn in northern Ukraine, illustrates interesting
ways to cover a grid, rotated 45°, with a nonintersecting path. »

Of course we cannot read the minds of people who lived c. 15,000 B.C.; but
we certainly can admire the wonderful sophistication that’s evident in this fas-
cinating artifact. [See M. Rudyns’kyj, Industrie en os de la station paléolithique
de Mizyn, interprétée par Fedir Vovk (Kyjiv: Vseukrains’ka Akademiia Nauk,
Kabinet Antropolohii im. F. Vovka, 1931), 66 pages, 32 plates.]

Fast forward now to 750 B.C., by which time “meander friezes” had become
well developed in many cultures, especially in Greek pottery (see exercise 360).

A few hundred years later, another kind of Hamiltonian pattern appeared
on icosahedra, as we saw near the beginning of this section. And considerable re-
search on knight’s tours began shortly after 800 A.D., as we’ve seen in (1) and (2).

But let’s jump to the computer age. The first reasonably successful algo-
rithm for visiting all Hamiltonian cycles of a given graph was published by S. M.
Roberts and B. Flores in CACM 9 (1966), 690-694; 10 (1967), 201-202. They
actually considered directed graphs; but of course their method also handled
undirected graphs, because each edge u — v can be represented by a pair of
arcs, {u —v, v— u}. Their procedure was an early instance of straightforward
backtracking: At each stage of the computation, a partial path v; —--- — vy,
was extended by trying all possible successors to v that hadn’t yet appeared.

Mark B. Wells, in §4.2.4 of his book Elements of Combinatorial Computing
(1971), presented a similar method, but for the task of visiting all Hamiltonian
paths, in undirected graphs. He explained how to detect certain impossible cases
early in the search, by backtracking whenever a partial path v; — --
wipes out all chances to reach a yet-untouched vertex v, namely when all of v’s
neighbors belong to {vy,...,v;}. He also considered the untouched v that have
exactly one neighbor in {v1,...,v;}: There must not be three such vertices; and
special restrictions apply when there are exactly two of them.

But Geoffrey R. Selby, in his Ph.D. thesis at Imperial College (University
of London, 1970), 264 pages, realized that an edge-oriented approach would be
much better. Instead of assigning vertices sequentially, he developed a “link algo-
rithm” for undirected graphs that has much in common with Algorithm H above.
Selby’s method was not as symmetrical as it could have been — he still retained
the concept of a “main” partial path v; — - - - — wvy; but he augmented that path
with a separate set of edges that it implies. Such edges, which form additional
partial paths, arise when an untouched vertex belongs to only two available edges.

- — Vg
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Selby’s co-advisor at Imperial College, Nicos Christofides, worked out a
similar “multi-path algorithm” for directed graphs, and presented it in §10.2.3 of
his book Graph Theory: An Algorithmic Approach (1975). Then S. Martello im-
proved the algorithm further by incorporating the MRV heuristic, when selecting
the initial vertex v; and when rank-ordering the neighbors of vy that are candi-
dates for vg+1. [ACM Trans. on Mathematical Software 9 (1983), 131-138.] (The
MRYV heuristic had also been mentioned by Wells, who pointed out that neighbor
ranking makes no difference to the total running time when we are visiting all
of the solutions, because we are going to consider all choices of vy anyway.
However, just as with Warnsdorf’s rule, MRV tends to find the first solution
much faster.) Curiously none of these authors realized that it would be much
better to use MRV symmetrically on the set of all endpoints of the current partial
paths or directed paths, as in Algorithm H or Algorithm B, instead of always
extending a “main” path by choosing a neighbor for v, at every stage. (Selby did
sometimes extend his main path at the left, if vertex v; had a forced neighbor vy.)

Frank Rubin [JACM 21 (1974), 576-580], unaware of Selby’s or Wells’s
work, but inspired in part by S. L. Hakami [IEEE Region Six Conf. Record
(1966), 635—643], proposed a similar algorithm that was in some ways weaker
and in other ways stronger. His method repeatedly extended a single path at
the right, while marking certain off-path edges as “required” and other edges as
“deleted.” (For example, edges that touch a vertex of degree 2 were “required.”)
But again, there was only a single main path. He also tested reachability between
the path vertices and the remaining vertices; and he discussed preprocessing,
whereby a graph could sometimes be partitioned into subgraphs whose Hamil-
tonian cycles could be pieced together to obtain the overall cycles.

William Kocay [Discrete Math. 101 (1992), 171-188] realized that Selby and
Christofides’s multi-path algorithm could be made symmetrical, by giving equal
status to every subpath. (Curiously, however, he still distinguished the left and
right endpoints of subpaths. Instead of using MRV, the vertex that he chose for
branching was a right endpoint of mazimum degree(!) — see exercise 129.)

Kocay also went further, by backtracking when the current subproblem could
not be completed to a Hamiltonian cycle because the current subgraph either had
an articulation point or was bipartite in an impossible way. (See exercise 130.)
This test was costly, but it could save considerable time in many cases.

Andrew Chalaturnyk (Master’s thesis, University of Manitoba, 2008, vi +
123 pages) made Kocay’s algorithm significantly faster by designing data struc-
tures that allow it to backtrack efficiently. He improved the method also by
invoking tests for articulation points or bipartiteness only at judicious inter-
vals, when chances for effective pruning of the search tree seemed most likely.
Without such pruning (which was optional), his program was rather similar to
Algorithm H, although considerably more complicated.

In unpublished experiments during 2001, Donald E. Knuth had developed a
symmetrical edge-based algorithm for Hamiltonian cycles in undirected graphs
that was comparatively simple. He called it HAMDANCE, because it used data
structures analogous to the dancing links of Algorithm 7.2.2.1X. Algorithm H,
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which is called SSHAM because it uses sparse-set structures instead, was devised
in 2024, and followed by Algorithm B (SSBIDIHAM) in 2025.

Counting of knight’s tours on rectangular boards began with a 4-page note
by J. J. Duby, Etude #8 (Paris: IBM France, 22 October 1964), stating that
the 6 x 6 board has 9862 cycles. Subsequent early work is summarized in The
Games and Puzzles Journal 2,15 (December 1997), 265.

David Singmaster [International Series of Numerical Mathematics 29 (Basel:
Birkh&user, 1975), 117-130] discussed Hamiltonian enumeration and gave a
heuristic ballpark estimate for the total number of 8 x 8 knight’s cycles: 10233,

Martin Lobbing and Ingo Wegener [Electronic J. Combinatorics 3,1 (1996),
#R5, 1-4 and comment] tried to count the 8 x8 cycles by applying extended BDD
methods to each of roughly 380 million subproblems. Unfortunately something
went wrong, because the answer they got—more than 33 trillion — was not a
multiple of 4. This error stimulated Brendan D. McKay to compute the correct
value, as mentioned above, but without actually visiting the solutions.

The idea of a census is due to Giinter C. Stertenbrink, who formulated the
“corner wedge” approach of exercise 152 in 2003, thereby gaining a factor of 8
because of symmetry. Andrew Chalaturnyk, as part of his thesis work in 2008,
generated the cycles for each of Stertenbrink’s 41790 canonical corner-bunches.
Working off and on, at times together with Yann Denef, Stertenbrink was able
in 2023 to compile a compressed database that contains representatives of all
13 trillion tours, occupying fewer than three terabytes of SSD storage. (See
http://magictour.free.fr.) A census based on central wedges was indepen-
dently devised by the author in 2010; see FGbook, pages 494 and 495.

Algorithm E is based on an approach that is often called the “transfer-
matrix method” by mathematicians and physicists, or “dynamic programming”
by computer scientists. Those ideas were first applied to Hamiltonian cycles only
in very special cases, such as the grid graphs P,, O P,; see, for example, Robert
Stoyan and Volker Strehl, J. Combin. Math. and Combin. Computing 21 (1996),
109-127. But Ville H. Pettersson [Electronic J. Combinatorics 21 (2014), #P4.7,
1-15] explained how to adapt the same methods to an arbitrary graph.

Indeed, the dissertation of André Ponitz (Dr. rer. nat., Tech. Univ. Freiberg,
2004) developed a highly general approach to graph computations that included
not only Hamiltonian cycles but also colorings, independent sets, acyclic orien-
tations, and other problems galore. His “composition” framework solves such
problems dynamically by building up a graph one vertex and one edge at a time.
[See Operations Research Proceedings (2002), 383—388.]

Algorithm E was also inspired by work on knight’s tours. Early in 1994,
Noam Elkies and Donald E. Knuth independently obtained generating functions
for the number of closed 3 x n knight’s tours. They learned of each other’s work
during a chance encounter in Berkeley, but didn’t publish the results at that
time. Knuth [FGbook, Chapter 42] eventually extended this analysis to open
3 x n tours, and to tours with various kinds of symmetry.

Euler had proved in 1759 that there are no closed tours on a 4 x n board.
Johan de Ruiter realized that m xn boards for fixed m > 4 were computationally
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feasible too; he obtained the results for m = 5 and m = 6 in 2010 (see OEIS
A175855, A175881). In the following year Yi Yang and Zhao Hui Du extended
the calculations to m = 7 and m = 8 (see OEIS A193054, A193055). They made
the key observation that it’s far better to use prior results by increasing the size
of the board by one cell at a time, not by one column at a time; so their method
was quite close to that of Algorithm E, in the special case of knight graphs.

Pettersson’s algorithm was sort of a dual to Algorithm E: Instead of working
with the frontiers F,, = {v | v > m and v — w for some w < m}, he worked
with the “anti-frontiers” B,, = {v | v < m and v — w for some w > m}. As in
Algorithm E, he passed from m — 1 to m by appropriately combining the sizes
of equivalence classes, characterized by mate tables. But instead of using tries,
he devised methods to compute the index of a weight directly from the mate
table of its class, in several families of highly structured graphs. For example, he
successfully enumerated not only the 26 x 26 rook’s tours (Hamiltonian cycles of
Pys 0 Pag), but also the 16 x 16 king’s tours (Hamiltonian cycles of Pig ® Pig),
and the tours on a triangular grid with 20 vertices on each side (Hamiltonian
cycles of simplex(19,19,19,19,0,0,0)).

An interesting precursor to Algorithm ET appears implicitly in OEIS se-
quence A083386, which enumerates the open knight’s tours on a 5 x n board for
n < 50. It was contributed by A. Po6nitz in 2003, as part of his thesis research,
curiously many years before the closed 5 x n tours had been counted.

Whirling knight’s tours were first considered by E. W. Bennett [Fairy Chess
Review 6,105 (February 1947), 72, problem 7159; 106 (April 1947), 82]. He
found a Hamiltonian path in the digraph (50), but was unable to construct a
Hamiltonian cycle. Almost 50 years went by before G. P. Jelliss discovered the
symmetrical cycle at the left of (51), as well as the three other classes of whirling
cycles that have circular symmetry [J. Recreational Mathematics 28 (1997), 234].

Bidirected graphs were named by Jack Edmonds, in the notes of some influ-
ential lectures that he presented at the University of Michigan [“An introduction
to matching” (Summer 1967), 41-42; https://web.eecs.umich.edu/ pettie/
matching/Edmonds-notes.pdf]. The concept was actually implicit in a series of
papers by Anton Kotzig [Matematicko-Fyzikalny Casopis Slovenskeij Akadémie
Vied 9 (1959), 73-91, 136-159; 10 (1960), 205-215], who considered the structure
of graphs that contain a perfect matching: The vertices of such graphs can be
named {vl,v{,...,vnﬂ,v;ﬂ}, where n is even and v; — v} for 1 < j < n/2;
and the nonmatched edges essentially define a bidirected graph on n/2 vertices.
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EXERCISES

1. [15] We could save ourselves three syllables and three letters by saying “spanning
cycle” and “spanning path” instead of “Hamiltonian cycle” and “Hamiltonian path.”
Textbooks on graph theory could save lots of paper. Why doesn’t everybody do that?

» 2. [17] Join every vertex of graph G to a new vertex, obtaining G' = G— K. True
or false: G has a Hamiltonian path if and only if G’ is Hamiltonian.

3. [M22] Reverse-engineer the rules by which Fig. 121’s vertices have been named.

4. [M30] The Hamiltonian cycle in Fig. 122(b) doesn’t look symmetrical. Show,
however, that it has fourfold symmetry when drawn on an undistorted dodecahedron.

5. [M20] A second glance at the graph depicted in Fig. 122(c) reveals that it actually
s obviously planar. Why?

6. [22] Draw the graph of the icosahedron in the style of Fig. 122(a), arranging the
vertices in three concentric rings.

7. [20] Draw the graph of the 4-cube in the style of Fig. 122(c), using Gray binary
code as the Hamiltonian cycle.

8. [HM25] Show that it’s possible to redraw the graph of the dodecahedron, Fig. 122,
in such a way that all lines between adjacent vertices have the same length.

» 9. [M21] A Hamiltonian cycle on a planar cubic graph, such as the dodecahedron
in Fig. 121(b), can be described as a sequence of Ls and Rs denoting “left turn” and
“right turn” at each vertex encountered during the cyclic journey.

a) Prove that no Hamiltonian cycle on the dodecahedron can contain any of the

following subsequences: (i) LLLL; (ii) LRRL; (iii) LRLRLRL; (iv) LLRLRLL;
(v) LLRLRR; (vi) LLRLL; (vii)—(xii), subsequences (i)—-(vi) with L <> R swapped.

b) Therefore there is essentially only one cycle (and its dual obtained by L <+ R).
10. [24] For which vertices v of Fig. 122(a) is there a Hamiltonian path from 12 to v?
11. [M32] The generalized Petersen graph GP(n, k) is an interesting cubic graph with
2n vertices {0,1,...,n—1,0",1',...,(n — 1)} and 3n edges

{i—(@GE+1)modn, i—i, i —(i+k) modn|0<i<n}.

Figure 122(a) is the special case ¢ = 5 of a general concentric-ring graph GP(2q,2).

For which vertices v does the graph GP(2g,2) have a Hamiltonian path from 0’ to v?
12. [HM28] How many Hamiltonian cycles exist in the graphs GP(2q,2)?
14. [22] The one-in-three satisfiability problem of exercise 7.2.2.2-517 is NP-complete.
For every such problem F', we shall construct a cubic graph G that is Hamiltonian if
and only if F is satisfiable. Every edge of G corresponds to a Boolean variable; values
of the variables for which the true edges form a Hamiltonian cycle will be called a win.

a) A cubic graph that contains K> 11 = 0<I>o as an induced subgraph also contains

the “Wheatstone bridge” , which has two edges that connect to other
vertices. Show that those connecting edges must be true in every win.

b) For every clause C = (z V y V z) of F, where z, y, and z are literals, include the

“clause gadget” below as part of G. Show that © +y 4+ z =1 in every win.

z g z T Y
l.l y/
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c) If two edges = and y of G are replaced by the “XOR gadget” = & y above, show XOR . gadget
that z = ', y =4, and * = ¢ in every win. g?dgets N
d) Suppose the clauses of F' are {C1,...,Cy}. Use the gadgets above to construct Sua;lar grap
the desired graph G, starting with - o . L{lgrl:;?agllraph
16. [29] What's the smallest connected cubic graph that is not Hamiltonian? faces
dodecahedron
18. [M20] True or false: If a planar graph has a Hamiltonian cycle, so does its dual. cycle cover
» 20. [M30] (T. P. Kirkman, 1856.) Let G be a planar graph with n vertices and Eiﬁf‘g}éﬂ;rﬁimumm
with exactly oy k-sided faces for k£ > 3 (including the unbounded exterior face). For edge coloring
example, the graph of the dodecahedron, Fig. 122, has n = 20 and «ay, = 12[k =5]. %111:;(; gg;a(fgl;st
a) If G is Hamiltonian, prove that integers aj exist such that 0 < ar < ap and pentagonal prism
> r_3(k —2)ar =n — 2. (For example, the dodecahedron has ax = 6[k=5].) generalized Petersen graphs

b) In a similar way, prove that the dodecahedron has no cycle of length 19.
c) Furthermore its vertices can’t be completely covered by two disjoint cycles.
d) Use (a) to prove that every Hamiltonian cycle in the planar 16-vertex ¢
cubic graph G shown here must include the edges a —b, c—d, e — f.
e) Use (a) to decide whether any of the following graphs are Hamiltonian:

21. [M25] Large graphs that contain no Hamiltonian cycles can often be useful bench-
marks. Construct infinitely many cubic planar graphs that fail to satisfy exercise 20(a).

a b

24. [M28] A cubic graph is called perfectly Hamiltonian if its edges can be 3-colored
in such a way that the edges of any two colors form a Hamiltonian cycle.
a) Which of the cubic graphs on 8 vertices are Hamiltonian? Perfectly Hamiltonian?
b) Prove that a planar cubic graph can be perfectly Hamiltonian only if there are
nonnegative integers (a, bk, ck, dx) for all k > 3 such that ar + br. + ¢, + di, = i
is the number of k-faces as in exercise 20(a), and ), (k — 2)ar = >, (k — 2)by =
Yok =2)er =3, (k —2)dr, = (n — 2)/2, where n is the number of vertices.

27. [M21] The Tutte gadget is a useful 15-vertex graph fragment

that can be obtained by removing vertex ¢ from the 16-vertex graph in exercise 20(d).
a) Prove that every Hamiltonian path in a graph that contains the gadget must use

the edge at the bottom of the T
b) Prove that no Hamiltonian path in the pentagonal prism GP(5, 1), @, includes
the edges of two nonconsecutive “spokes.”
) Therefore none of the following 38-vertex graphs are Hamiltonian:

TSR
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d) Are any two of those six graphs isomorphic to each other?

30. [20] Each letter in a Graeco-Roman icosahedron can be placed three ways within
its triangular face, depending on the choice of “bottom edge” (except that A and O
are symmetric). From this standpoint, the fact that II and Y share the same bottom
edge, in the text’s example from the British Museum, is a bit disconcerting.

Redesign that layout for the 21st century, so that (i) Roman letters A, B, ..., T re-
place the Greek ones; (ii) the bottom edge of a letter’s successor is always the upper left
or upper right edge of the current letter; and (iii) T is adjacent to A, completing a cycle.

33. [M20] Suppose G is an n-vertex graph that has H Hamiltonian cycles and h
Hamiltonian paths that aren’t cycles. (Thus, there are H sets of n edges whose union
is a cycle, and h sets of n — 1 edges whose union is a path but not a cycle.) Let
G' = {*} — G be the (n + 1)-vertex graph obtained from G by adjoining a new vertex
that’s adjacent to all the others. How many Hamiltonian cycles does G’ have?

35. [M25] A close look at (1) shows that al-‘Adlt’s closed tour is traced by a “thread”
that weaves alternately over and under itself at each crossing, forming a “knot.”
a) Prove that every closed knight’s tour can be drawn as such a knot.
b) On the other hand, the over-under rule is violated four times in Ibn Mani‘’s open
tour. Prove that every drawing of his tour must necessarily have at least four such
exceptions to the rule.

36. [22] Find 4 x 8 knight’s tours that (i) preserve the syllables of Rudrata’s sloka,
but differ from (2); (ii) preserve the fractured English syllables of (4).

37. [22] How many 4 x 8 knight’s tours are possible?
38. [25] Write a two-verse English poem for Rudrata’s 4 x 8 tour, analogous to (6).
40. [25] The variant of Chaturanga played in Rudrata’s day used a curious piece called

an elephant (gaja) instead of a chess bishop. This piece had only ,

five moves: One step forward or one step diagonally, representing ﬂ/ﬂ/ﬂ/ﬂ/ﬂM

the elephant’s trunk and its four legs. For example, an elephant

can tour a 4 x 8 board by following the (s, t)-path illustrated here. H\H\N\H\H\V\
Represent this half-tour with a two-verse poem in English. ¢

41. [M32] This exercise classifies all elephant’s tours on an m x n board, for m,n > 2.

a) Let E,,, be the m x n elephant digraph. How many arcs does it have?

Does Enn have a closed tour (a Hamiltonian cycle), for some values of m and n?

The open elephant’s tour in exercise 40 begins at the bottom left corner of Ess.

Show that there’s also an open tour that begins at the top left corner of Eys.

Prove that every elephant’s tour must begin or end in the top row, when m > 2.

)

) Similarly, prove that every such tour must begin or end in the bottom row.
) Characterize all m x n elephant’s tours that begin in the top row.
)
)

=3
~

Characterize all m x n elephant’s tours that begin in the bottom row.
Explain how to compute the number of Hamiltonian paths of E,,, that begin at
a given vertex s and end at a given vertex ¢t.

42. [30] Find a cycle of elephant moves on the 8 x 8 chessboard that (i) visits all but
two of the cells, and (ii) has the fewest “trunk moves” among all such cycles.

44. [18] Using the syllables (7), construct a knight’s tour quatrain that rhymes.

46. [19] Draw Someshvara’s tour (8) in the style of (1).

50. [19] The text describes only one scenario for moves 9, 10, ..., that might extend
the partial tour (10). What other paths are consistent with Warnsdorf’s rule?
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51. [21] What paths does Algorithm W construct when G is the graph of knight
moves on a 5 X 5 board, s is cell 00, r = 1, and ¢; is cell 44 (the corner opposite 00)?

52. [20] What is the behavior of Algorithm W if ¢; = ¢; for some i # j?

53. [M21] Randomize Algorithm W, by changing step W5 so that each candidate w is
chosen with probability 1/q when there’s a ¢g-way tie for the minimum number of exits.
Hint: There’s a nice way to do this “on the fly” without building a table of candidates.

55. [20] How many of the 63 moves in the historic knight’s tour (1) by Ibn Mani’
agree with Warnsdorf’s rule? Consider also the closed tour of al-‘Adli, with the same
opening moves v; and vz, as well as the open tour of Someshvara in exercise 46.

56. [20] Algorithm W sometimes moves to a “dead end” vertex (from which there’s
no exit), even though it could prolong the path by making a different choice. Discuss.

57. [21] Design an algorithm to compute the tree of all possible paths that might be
computed by Algorithm W, given G, s, and {¢1,...,¢-}. Also compute, for each path,
the probability that it would be obtained by the algorithm of exercise 53.

59. [21] What are the longest and shortest paths obtainable in the 8 x 8 knight graph
when the anti- Warnsdorf rule is used? (Move always to a cell with the most exits.)
Compare those results to the behavior of Algorithm W.

60. [22] Study empirically the behavior of Algorithm W on the concentric-ring graphs
R, = GP(2q,2) of exercise 11, for 6 < ¢ < 10. What is the probability of obtaining
(a) a Hamiltonian path? (b) a Hamiltonian cycle, when no target vertex is specified?
(c) a Hamiltonian cycle, when there’s a single target vertex with s —¢;7

62. [16] Prove that Algorithm W always finds a Hamiltonian path when G = P,,0P,
is the m x n grid graph, s = (0,0) is a corner vertex, and r = 0.

63. [M30] Prove that Algorithm W always finds a Hamiltonian path in the special
case when G = P, 0P, 0---0P; is an n-cube and 7 = 0.

65. [25] Is there a Hamiltonian graph for which Algorithm W always fails to find a
Hamiltonian path, regardless of the starting point and the ordering of arcs?

70. [11] Show that step F4 sometimes calls ‘update(u1, ..., us)’, which does nothing.

71. [M20] Euler believed that his method for discovering tours was “safe” and “in-
fallible”; but (16) is a case where it fails to find a cycle. Construct arbitrarily large
Hamiltonian graphs for which Algorithm F can in fact get stuck with paths of length 10.

73. [21] Discuss implementing the dictionary of Algorithm F with a hash table based
on linked lists. If the entry for each path links to the number of the previous path that
belongs to the same list, step F6 can regard all links < p» as null.

75. [M238] (One-sided flips.) Simplify Algorithm F so that it flips subpaths only at
the right, and doesn’t distinguish between paths and cycles; call the resulting procedure
“Algorithm F~.” (More precisely, Algorithm F~ never goes to step F5; it omits the
second update in step F4; and it doesn’t put paths into canonical form.)

a) Suppose Algorithm F~ is applied to a Hamiltonian path v1i —---—w, in a cubic
graph G. Show that it constructs a cycle of Hamiltonian paths, each beginning
with v1, and illustrate this cycle when G is the 3-cube.

Furthermore the number of cyclic Hamiltonian paths in that cycle is even.
Moreover, the number of Hamiltonian cycles containing any given edge is even.
Every cubic Hamiltonian graph therefore has at least three Hamiltonian cycles.
Every cubic graph with exactly three Hamiltonian cycles is perfectly Hamiltonian.

o o

(=8

)
)
)
)

@
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77. [M26] The Cameron graph C, of order n is a planar cubic graph on the 8n + 2
vertices {ij | 0 <i<n,1 <j<8}U{0,00} defined by the relations i7 — il —i2 —

i3 — i4 — i5 — i6 — i7 — i8 — 02, i3— (i+1)6, i4— (i+1)5, and i8 — (i+1)1 for
all integers ¢; replace all vertices ij for ¢« < 0 by 0, and all 45 for ¢ > n by co. For example,

a) Prove that the involution ij ¢+ (n—1—7)(9—j) is an automorphism of Cp.

b) Prove that C,, has exactly three Hamiltonian cycles (one of which is the “obvious”
cycle p, =0—01—02—03—---—oc0—"--— 07— 06— 05—0).

c) Compute the number ¢, of one-sided flips needed to go from ay, to its mate 3,
with respect to 0 — 01, in the sense of answer 75(c), for 1 <n < 9.

d) Surprise! Exactly ¢,—2 + 10 flips go from a,, to 8, with respect to 01 —0.

e) How many flips go from «,, to its mate -y, with respect to (i) 0—05? (ii) 05— 07
78. [22] Study empirically the behavior of Algorithm F on the concentric-ring graphs
R, = GP(2q,2) of exercise 11, for 6 < ¢ < 10 and g = 100. Let ¢ = 1, and choose
v1 at random; also randomize the order in which a vertex’s neighbors are examined.
Estimate the probability of obtaining (a) a Hamiltonian path; (b) a Hamiltonian cycle.
How many nontrivial calls of update are typically needed, before succeeding?

79. [M32] (N. Beluhov, 2019.) Say that two Hamiltonian paths or cycles are equiv-
alent if they can be transformed into each other by Algorithm F.

a) Find a graph with two inequivalent cycles.

b) Can a graph have arbitrarily many pairwise inequivalent cycles?

80. [M20] For which qi, ..., gs, t is the graph (K4, @ ---® K,,) — K; Hamiltonian?

81. [M27] (Forcibly Hamiltonian degrees.) Sometimes we can conclude that a graph is
Hamiltonian just by knowing that it has lots of edges. If n > 2 and the vertices of G have
respective degrees di < dz < --- < dj,, we shall prove that G is Hamiltonian whenever

1<k<n/2 and dp <k implies d,_r >n—k. (%)

a) If G satisfies (%) and has m < (TZL) edges, so that G is not the complete graph K,
prove that G contains two nonadjacent vertices {u, v} with deg(u) + deg(v) > n.
b) Continuing (a), let Go = G; and let Gr41 = G U {ur, — vi}, where up -~ vi,
and deg(u) + deg(vk) > n in Gi, for 0 < k < () — m. Explain how to
construct a Hamiltonian cycle in Gy, given a Hamiltonian cycle in Gy41. (Since

G(n)_m = K, is Hamiltonian, so too is Gy.) Hint: Use flips as in Algorithm F.

2
82. [M25] If condition (*) fails in G for at least one value of k, show that there’s a
non-Hamiltonian graph G’ whose degree sequence d} < d5 < --- < d/, satisfies d; < d,
dy <dj, ..., d, <d,. (In this sense exercise 81 is the best possible result of its kind.)

83. [M30] (C.S.A.Nash-Williams.) Let G be an r-regular graph with 2r +1 vertices.

a) Prove that r is even.

b) Prove that G has a Hamiltonian path wo —u; —- - —u2,.

c) If G isn’t Hamiltonian, show that uo—uj <= wuj_1 —ua,, for 1 < j < 2r.
d) If G isn’t Hamiltonian, show that it has a cycle vi — v — - - — v2, —v1.
e) Conclude that G is Hamiltonian. Hint: Suppose vg —vj <= j is odd.
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84. [M28] What’s the smallest number of edges for which condition (*) in exercise 81
forces an n-vertex graph to be Hamiltonian?

85. [HM21] (P. Erdés, 1962.) Let f(n,k) = (”;k) + k2, and g(n, k) = max(f(n, k),
f(n,[(n —1)/2])). Prove that if 1 < k < n/2, there’s a non-Hamiltonian graph with
g(n, k) edges and n vertices, where every vertex has degree > k. But every such graph
with more than g(n, k) edges is Hamiltonian. Hint: When is f(n, k) > f(n,k +1)?

» 86. [HM25] A graph is called traceable if it has a Hamiltonian path. Continuing
exercise 85, determine the largest possible number of edges in a nontraceable n-vertex
graph for which the degree of every vertex is k or more. Hint: Let the function
f(n, k) = ("7;7’“) + k(k + 1) play the role of f(n,k) in that exercise.

88. [M27] The length of a graph is the number of edges in its longest path. (For
example, the 4 x 4 knight graph has length 14.)
a) Let G be a connected graph whose n vertices each have degree k or more, where
k < n/2. Prove constructively that the length of G is at least 2k.
b) Prove that an n-vertex graph of length [ has at most nl/2 edges.
c¢) Exhibit an n-vertex graph of length I and at least nl/2 — (I + 1)%/8 edges.

> 89. [M31] The circumference of a graph is the number of edges in its longest cycle.
(For example, the 4 x 4 knight graph has circumference 14.)
a) Let G be a biconnected graph whose n vertices each have degree k or more, where
1 < k < n/2. Prove constructively that the circumference of G is at least 2k.
b) Prove that an n-vertex graph of circumference ¢ has at most (n — 1)c/2 edges.
¢) If ¢>2, exhibit an n-vertex graph of circumference ¢ and > ne/2 — (c+1)?/8 edges.

90. [16] True or false: The length of G is two less than the circumference of K; —G.

93. [M25] (J. W. Moon, 1965.) A graph that has a Hamiltonian path between every
pair of vertices u # v is called Hamiltonian-connected.
a) True or false: Every vertex of a Hamiltonian-connected graph has degree > 3.
b) Construct a Hamiltonian-connected graph on n > 4 vertices that has the smallest
possible number of edges (for example, 8 edges when n = 5; 9 edges when n = 6).

» 95. [M28] The Cozeter graph is a remarkable cubic graph
whose 28 vertices {a;,b;,c;,d; | 0 < j < 7} are connected by
the edges a; —d;, bj —dj, ¢; —dj, aj — ajt1, bj — bj42,
¢j —cjy3, for 0 < j < 7. (All subscripts are treated modulo 7.
Vertices ao, ..., as form the “outer ring” of the illustration.)

a) Determine its automorphisms, by finding a Sims table as in
Section 7.2.1.2. (Use the ordering (as, bs, cs, ds, - - -, ag, bo,
co, do); thus, for example, the permutations of S,_> = Sag
will fix the final vertex do.) Hint: There will be a surprise!

b) Show that it is a vertez-transitive graph: Given any vertices v and v', there’s an
automorphism that takes v — v'. (“All vertices are alike.”)

c) Show that it’s also an edge-transitive graph: Given any edges u— v and v’ — 1/,
there’s an automorphism that takes {u, v} into {u’,v'}. (“All edges are alike.”)

d) Furthermore, it’s a hypohamiltonian graph: It has no Hamiltonian cycle, yet it
does become Hamiltonian when any vertex is removed.

» 100. [HM30] Analyze the cycle covers of the flower snark graph J,, for ¢ > 2 (see
exercise 7.2.2.2-176). How many of them have exactly k cycles?

» 103. [M25] If a graph G has a Hamiltonian cycle H, show that there’s a very easy
way to test whether or not G is planar. Hint: See Algorithm 7B.
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105. [M18] Exactly how many Hamiltonian cycles are present in (a) the complete
graph K,? (b) the complete bipartite graph K, »?

106. [M26] Continuing exercise 105, enumerate the Hamiltonian cycles of Kj m p.

108. [24] According to the discussion in the text, every Hamiltonian cycle that con-
tains edge 37 of the 3 x 10 knight graph also contains the edge 93.
a) Given those edges, show that either 9% or 1§ must be chosen.
b) And if that choice is 3%, another edge is forced.
c) Continuing (b), show that edge 33 leads to a contradiction.
)

d) Continuing (c), consider the consequences of now choosing 93.

109. [15] After Algorithm H deduces the starting pattern % 500 for the 3x 10
knight graph, what are the values of MATE(0), MATE (1), MATE(2), MATE(3), MATE(4)?

111. [23] How much space should be allocated for the arrays TRIG, ACTIVE, and SAVE
in Algorithm H so that no memory bounds will be exceeded?

112. [26] Exactly what changes to the data structures should be made in step H8 of
Algorithm H when we have (a) MATE(u) < 0 and MATE(w) < 07 (b) MATE(u) < 0 and
MATE (w) > 07 (c) MATE (u) > 0 and MATE (w) < 07 (d) MATE(u) > 0 and MATE (w) > 07

113. [20] Design an algorithm to “unscramble” the cycle defined by arrays EU and EV
in step H13: It should find a permutation such that vy —ve — -+ —uv, — v1.

115. [M23] Describe the search tree of Algorithm H when G is the complete graph K.
116. [20] Find a Hamiltonian cycle in the graph binary(4,4,0) (see Table 7.2.1.6-3).

117. [M22] (V. Chvétal, 1973.) The toughness t(G) of graph G is min |U|/k(G\U),
where the minimum is taken over all sets of vertices U such that G\ U is disconnected,
and k denotes the number of components. (If G is the complete graph K., no set U
disconnects it, and we have ¢t(K,) = co.) We say that G is “tough” if ¢(G) > 1.
a) True or false: t(G) = 0 if and only if G isn’t connected.
b) Show that ¢(G \ e) < t(G) for all edges e.
c) Prove that every Hamiltonian graph is tough.
d) Evaluate t(K,,») when m < n.
e) What’s t(G) when G is the Petersen graph (which isn’t Hamiltonian)?
118. [M27] Continuing exercise 117, determine ¢(K,, 0K, ), when m,n > 1.
119. [M24] Read the SGB source code of raman and explain the edges of graph E.
120. [M27] Let Go be the graph with vertices {i, j, k, u,v,w,z,y,2, U, V,W, XY, Z}
and the following 24 edges: ¢t —j —k—i;u—i—U,v—j—V, w—Fk—W,
v —U—2—X—v—V—y—Y —wvw—W—2—7 — u
c—Y, y—2Z7Z, z—X.
a) Prove that Go has twelve automorphisms and exactly two Hamiltonian cycles.
b) Let (p17p2:p3) = (i:jy k): (q1:q27q3) = (u,v,w); (Q17Q27Q3) = (U:V7W)7 and
(P1, P2, P3) = (Z,X,Y). For 1 <t <3, let G(()t be a copy of Go with vertices
i® .., Z® . Obtain graph G; by appending th) to G¢—1 and then doing this:
(i) remove vertex ¢¢; (ii) remove the edges q; — Q¢ and ') — X'®; (iii) replace
the edges pr — ¢+ and P, —q; by p: —2® and P, —X(t); (iv) add edges from
Q: to all the vertices of G(()t) except itY j(t), kD, (Graph G} therefore has 15+ 14¢
vertices and 24 + 34t edges.) Prove that G; has exactly two Hamiltonian cycles.
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» 122. [M27] A Halin graph can be defined in two complementary ways: (i) Let T be a
tree in which no node has degree 1, and the root has degree > 3. Let the leaves of T be

o1 ...xq—1 in preorder, and let C be the cycle zo — 21 — -+ —2¢—1 — 0. Then
H =TUC is a Halin graph. (ii) Let C be a regular g-gon with vertices 0, 1, ..., g —1.
Let {i1 —J1, ..., it — j¢} be nonintersecting chords of C; they partition the interior

of C into t+1 regions. Let H be the graph of order ¢+t +1 whose vertices are the sides
of C, together with those regions. Two sides are adjacent in H if they are consecutive;
a region is adjacent to the sides on its boundary and to the regions with which it shares
a boundary. Then H is a Halin graph. Notice that, under either definition, a Halin
graph must be planar, and each of its vertices must have degree 3 or more.
For example, here are structures that respectively illustrate (i) and (ii) with ¢ = 7:
0

a) Prove that the corresponding graphs are isomorphic, by finding a correspondence
between vertices {a,b,...,1} and vertices {A,B,...,L} that preserves adjacency.

b) If H satisfies definition (i), prove that it also satisfies definition (ii).

c) If H satisfies definition (ii), prove that it also satisfies definition (i).
123. [M30] How many nonisomorphic Halin graphs have n vertices, for n < 10007
124. [M25] A graph is uniformly Hamiltonian if, for every edge e, it contains a
Hamiltonian cycle Ct with e € C1 as well as a Hamiltonian cycle C~ with e ¢ C™.
Prove that every Halin graph is uniformly Hamiltonian.

125. [20] Use the decimal digits (mo.7m172 ... )10 of 7 to define ¢ nonintersecting chords
(11 — j1, ..., %t — j¢) of a regular 100-gon for 0 < t < 98, by letting ir = TarTar41
and jr = mar4+27ar4+3, where r is as small as possible with respect to previous chords.
For example, the sequence begins (31 — 41, 59 — 26, 53 — 58, 97 — 93, 23 — 84,
62—64, ...); the next chord cannot be 33 — 83, because that one overlaps 31 — 41.
These chords define Halin graphs H,(,t) with 101 4 ¢ vertices, by exercise 122.
What is the final chord, ig7 — jor?

127. [20] There’s obviously no Hamiltonian path in the graph 7.1.4-(133) from ME to
any of the other states of New England (NH, VT, MA, CT, RI), because NY is an articulation
point. Is there a Hamiltonian path from ME to every other state?

» 128. [20] Which of the 14 benchmark graphs in Table 1 are planar?

» 129. [24] The MRV heuristic used in step H11 to choose a vertex for branching prefers
small degree d, because the search tree has a d-way branch. On the other hand, one
can argue that large d is actually good, because step H12 removes d edges —and that
might force a contradiction, or it might cause more vertices to become clothed.
Experiment with a modified step H11, which mazimizes d in cases where d < 2
is impossible, by testing the modified algorithm on the benchmarks of Table 1.
130. [20] At the beginning of step H11, define the “current graph” G’ to be the graph
whose vertices are the currently visible vertices, and whose edges are (i) the edges of G
that haven’t been deleted, and (ii) the edges v — MATE(w) for all outer vertices v.
Prove that we could safely jump to step H14 if G’ isn’t Hamiltonian.
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133. [M20] Can a knight’s cycle on an n x n board have diagonal symmetry?

134. [M20] Continuing exercise 133, show that a knight’s cycle on an m X n board
can have vertical symmetry only if m/2 and n are odd. (We require (i, j) — (7', j') to
be an edge of the cycle if and only if (m —1 —4,j)— (m — 1 — i, ;') is also an edge.)

135. [22] Given m and n, with m/2 and n odd, construct a graph whose Hamiltonian
cycles correspond to the vertically symmetric m X n knight’s cycles.

136. [23] Centrally symmetric m x n knight’s cycles can be surprisingly subtle:

1140(11)36|25(38|27 714]19(16/33| 2 |31

129 |42|39|28|35|24 20(15] 6 | 3 |30|17|34

41| 2(13|10(37(26|29 5| 821|18| 1 |32]29

5 (16/31|34/23|20 14(11]42|25|22{35|38

9(26|13|40(37|28|23

8
3 (14| 7 [18]21]30|33
6

17] 4 15|32|19|22 12|41|10|27|24(39/|36

On the left, the symmetry shows up because the step numbers of opposite cells always
differ by 21: |1 — 22| = |40 —19] = |11 = 32| = --- = |29 — 8| = 21. (This 6 x 7
tour begins in one corner, travels to the opposite corner in 21 steps, then repeats its
motions — but rotated 180°.) The symmetry on the right, however, is quite different,
although most of the edges are the same: The step numbers of opposite cells now sum
to43: 7+36 =4+39 =19+24 =--- = 29+14 = 43. (It has to be seen to be believed!)
After the right-hand tour has gone halfway, it moves backwards over the paired cells.
Given m and n, with m even and n odd, construct a graph whose Hamiltonian cy-
cles correspond to the centrally symmetric m xn knight’s cycles. Hint: See exercise 135.

137. [28] Continuing exercise 136, show that centrally symmetric m xn knight’s cycles
are even more subtle when m and n are both even. How can all of them be found, with
the help of a suitable graph G? Explore the case m = n = 8 in detail.

138. [24] Use the results of exercises 134-137 to compute the exact number of sym-
metrical m x n knight’s cycles, when m mod 4 = 2, n is odd, and mn < 100.

139. [21] Find all the 10 x 10 giraffe tours that are symmetric under 90° rotation.
141. [16] Exactly how many 8 x 8 arrays like (9) define a closed knight’s tour?

142. [M22] If C is a closed knight’s tour in bunch aiazasas, what bunch contains
(a) C’s top-bottom reflection? (b) C’s left-right reflection? (c) C’s transpose?

143. [16] What bunch contains the closed knight’s tour formed from Ratnakara’s half-
tour (2)? What is its canonical bunch?

144. [12] True or false: abAB is a canonical bunch of multiplicity 4.
145. [15] Why can’t ‘a’ appear in the name of a closed knight’s tour’s bunch?
146. [20] List all canonical bunches whose multiplicity is 2.

149.

151. [25] The knight’s census described in the text is based on the wedges formed at
cells {33, 34,43,44} of an 8 x 8 board, where ij denotes the cell in row 7 and column j
for 0 <7,5 < 8. Explain how to carry out a similar census, based instead on the wedges
formed at {03, 04, 30, 37, 40,47, 73, 74}.

152. [25] Do exercise 151, but with the wedges formed at {12, 15, 21, 26, 51, 56, 62, 65}.

[
[
148. [M21] Use “Burnside’s Lemma” to determine the number of canonical bunches.
[25] Explain how to visit every closed giraffe’s tour on a 10 x 10 board.

[
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154. [19] To which of the thirteen topological types in Fig. 124 does al-‘AdIt’s classic topological types
2 S al-‘Adlt
tour (1) belong? Hint: See (9). knight graph
155. [25] The classification of knight’s cycles in Fig. 124 applies only to square boards. equivalence classes
Show that additional topological types arise on m X n boards when m < n. (r:(;:itlsn and/or reflection
156. [24] Compute the exact numbers of 8 X 8 knight’s cycles of each type in Fig. 124. ?iYﬁrse knight’s tours
elliss
» 157. [24] The set of all knight moves on a chessboard — that is, the set of all edges on angles of a knight move
the 8 x 8 knight graph —is partitioned into 21 equivalence classes of size 8, when we gaéngf’lltl:d
say that two edges are equivalent if rotation and/or reflection takes one into the other. 1:2 cuts
Each move can therefore be given a label from A to U, indicating its class: X cuts
self—inteltsections
RN c\ ] ] cﬁ ] PPPP /o 08 8 000 Per!)endlcular cuts
T s, pomerer A Fonusate
S GONe aamnn oo
NI SN aiiy cEgoees
S NN e oo
\O\JIH\S \J\ﬁou\) Jc/cucu CECrCE
PSB85 o EETEF

Use a census to determine how many 8 x 8 knight’s cycles (a) have at least one move
of each class; (b) have at least two moves of each class; (c) have all eight of the moves
in six different classes. (Every cycle contains all eight of the class A moves.)

» 158. [29] (G.P. Jelliss, 1976.) According to Fig. 123, six different angles {6, 90°—6, 90°,
90°+0,180°—#,180°} can occur in a wedge. For every such angle «, determine the
maximum and minimum number of times a can occur among the 64 moves of a
closed knight’s tour. Determine also the maximum and minimum sum of all 64 angles.
Furthermore, discover exactly how many tours achieve those maxima and minima.

159. [34] Every knight’s move “tarnishes” the two cells that it jumps over, by invading
their space. A corner call cannot be tarnished; and the other 24 cells on the border of a
chessboard can be tarnished at most twice. The 36 interior cells can each be tarnished
at most seven times (not eight!).

Use a census to discover as many interesting facts as you can about the multisets
of 128 tarnishments that can arise in closed tours.

160. [39] Knight moves can intersect each other in essentially four ways: (i) perpen-
dicular, ‘7 (i) 1:3 cuts, ‘.~<; (iii) 1:2 cuts, ‘><; and (iv) 1:1 cuts, ‘><’, also called
X cuts. Perpendicular cuts are asymmetrical, with one arm having a cut ratio of 3:2
while the ratio in the other is 1:4. The other types are symmetrical, having the stated
cut ratios; the angles at the crossing point are # and 180° — 6 for (iii), but 90° + ¢ for
(ii) and (iv). Notice that every knight move has exactly one “conjugate,” with which it
makes an ><. What interesting facts about intersections can you turn up, censuswise?

» 163. [40] Closed tours can also be depicted by changing color when the path is crossed:

'y .
ﬁ:z
(i) i
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In such harlequinesque patterns, we cross the knight’s path an odd number of times
when we travel from a shaded region to the edge of the board. (Graphic designers know
this as the “eofill” operation, short for “even-odd filling.”)

Examples (i) and (ii) are the 6 X 6 tours with minimum and maximum shaded
area, % =~ 9.11667 and % = 15.15, out of the total conceivable area of 5 x 5 = 25.
(The extremal tours that achieve those limits are in fact unique, up to symmetry.)

Suppose C' is an oriented cycle that divides the plane into regions when it crosses
itself. The winding number of a point p with respect to C, when p ¢ C, is the net
number of times by which C encircles p in the counterclockwise direction. All points
of a region have the same winding number. The shaded area of C is the sum of the
areas of regions whose winding number is odd.

The swept area of C is the integral of the winding number over all p ¢ C;
equivalently, it’s the sum, over all regions, of the area of that region times the winding
number of that region. Example (iii) is a cycle whose regions have winding numbers
{0,1,2,3,4,5} (or {0,—1,—2,—3,—4,—5}, depending on which way we traverse that
cycle). It’s the unique cycle whose swept area achieves the maximum value (namely
61); its shaded area is 222 &~ 12.067. On the other hand, the cycle in example (iv) has

a swept area of zero. (Its regions have winding numbers {—2,—1,0,1,2}.) Among all
8 - 13 such cycles, it uniquely has the smallest shaded area: 3—32 ~ 10.667.

Use a census to explore these aspects of 8 x 8 knight’s cycles. How large and
small can the shaded area be? What is the maximum swept area? How many of the

49 internal corner points can have winding number zero? And so on.

164. [M30] Prove that the swept area A of an m xn knight’s cycle is always an integer,
and it can be computed in at least two ways:

a) A is the sum of the winding numbers at the (m —1)(n —1) internal corner points.
b) A= %(ioﬁ —i1jo +i1j2 — d2j1 + +* + bmn—1Jmn — Gmnjmn—1), when the tour is
(iO:jO) - (ilajl) - (imn:jmn) = (io,jo)-

165. [22] (T. Parmentier, 1891.) Every knight move has four possible slopes, namely
—1/2, —2, +2, and +1/2, as exhibited in exercise 157. Is there a knight’s tour that has
exactly 16 moves of each slope?

170. [20] What 14-configs of Hamilton’s graph (26) belong to class 111007
171. [10] How many l-configs does a graph have?
172. [M15] Describe the (n — 1)-configs of an n-vertex graph.

173. [20] According to the text, Algorithm E discovers that the dodecahedron graph
(26) has exactly six 16-classes, namely (1101, 1111,0110, 1001, 1011, 1212), of respective
sizes (4,6,2,6,4,10). What then are the 17-classes, and their sizes?

174. [15] Explain the last step, ‘111 —15 Ca0’, of (32).

176. [M20] An involution is a permutation whose cycles all have length 1 or 2. A
marked involution is similar, but each 1-cycle is either “marked” or “unmarked.” For
example, the marked involutions of order 2 are (1)(2), (1)(2)’, (1)'(2), (1)'(2)’, and (12).
a) Let ¢, and T, be the number of involutions and marked involutions of order n.
(The first few values are (to,...,t9) = (1, 1, 2, 4, 10, 26, 76, 232, 764, 2620) and
(To,. .., To) = (1,2,5,14,43,142,499,1850,7193,29186).) Show that T, = >, (})t«.
b) Prove the recurrence relation 7, = 275,—1 + (n — 1)1 —2, for n > 2.
c) Suppose ¢ = |ﬁm| is the number of elements in the extended m-frontier of a
graph. Show that the total number of m-classes in that graph is at most 7.
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177. [HM28] Study the asymptotic behavior of T}, by deriving a formula for marked
involutions that’s analogous to Eq. 5.1.4—(53) for ordinary involutions.
178. [18] Why is it wise to use marked involutions, encoded in the form a; ...aq, as
class names, instead of using a MATE table directly?
179. [20] In a MATE table such as (35), MATE[j] = (-1, 0, kK > 0) means that u; is
respectively (bare, inner, mated to ug).

a) Convert a given marked involution a; ...aq to an equivalent MATE table.

b) Conversely, convert a given MATE table to an equivalent marked involution.

181. [20] Explain (37) by considering two cases: (i) m+1 € Fpo1; (ii) m+1 ¢ Fy.
183. [20] List (by hand) all relations « —, 3 that are valid for the complete graph K.
184. [M23] Find all « such that a —,, Cp, when G is the graph K, and n > p.

-
185. [M25] Suppose G is the complete graph K,. What is F/(m,r,s,t), the size of
an m-class for which (r, s, 2t) elements of the extended frontier F, = (m +1,...,n)
are respectively (inner, bare, outer)? (Here m +r + s+ 2t = n.)

187. [24] Give details of how Algorithm E moves from F,_; to F, when it updates
FR, IFR, qo, and q in step E2. Also compute o and 7 for (36)—(38); r and NBR for (39).

189. [20] Explain how Algorithm E can traverse its “old” trie in steps E3 and ES8.

» 191. [21] Design a subroutine ‘contribute()’ for use by Algorithm E. It should insert
the m-class defined by the MATE table into the current trie of m-classes, if that class
isn’t already present in the trie; and it should add OWT [p;,] to that class’s current size.
Note: As stated in step E2, the trie has p nodes and w lieves.

» 192. [M20] True or false: If OMATE[1] > 0 in step E4, then BMATE[OMATE[1]o] = 0.

» 193. [30] Design a subroutine ‘try(i, j)’ for use by Algorithm E. It should contribute()
if we can legitimately connect u; with w; within each m-config in the class of the BMATE
table. It should also update CYC[m'], if that connection would close a suitable m’-cycle.

» 195. [20] How large should A be, when Algorithm E works on the 8 x 32 knight graph?

196. [20] When the cells of a chessboard are ordered columnwise as in (41), the first
26 cells make a curious sub-board, which consists of two rows of length 4 above six
rows of length 3. Find, by hand, a knight’s cycle on that sub-board.

» 197. [20] If you use the Stanford GraphBase to create the 8 x 32 knight graph for
Algorithm E, should you make board (8,32,0,0,5,0,0) or board(32,8,0,0,5,0,0)?
198. [24] Watching Algorithm E, answer the following about the computation of (40):

a) Every m-class enters its trie via the contribute() subroutine of exercise 191. Some
classes are contributed once; others are contributed many times. How often was
that subroutine called, as a function of m mod 8, assuming that 72 < m < 2407

b) Continuing (a), how often did the subroutine try(i,j) of exercise 193 update
CYC[m'] instead of calling contribute()?

c) What is the smallest weight of an m-class when (i) m = 327 (ii)) m = 647
(iii) m = 967 (iv) m = 1287

d) What is the largest weight of an m-class, for those m?

e) What’s the largest m for which some m-class has weight 17

f) What’s the smallest m for which some m-class has weight > 10°?

g) What is the lexicographically smallest (72 + r)-class, for 0 < r < 87

200. [23] Consider the eight transitions in the cycle (42). What will a1, a2, ..., ar
be, when (a) ao = 12342143000000007 (b) ap = 01123145050040237
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201. [21] What 8-classes a; ...ai6 of the 8 x 32 knight graph have a1, ..., ais > 07

202. [25] Construct a periodic knight’s tour, analogous to those of (43), in which the
knight changes direction sizteen times as it traverses the cycle.

204. [25] Notice that the trie in Fig. 125 can be reconstructed by just knowing the
null-versus-nonnull patterns of the node fields: Writing 0 for a null link and 1 otherwise,
the root’s pattern is 1110, and its leftmost child’s pattern is 0010, and so on; the
patterns in preorder are 1110, 0010, 0110, 0010, 1000, 0010, 0010, 0100, 0101, 0110,
0010, 1000, 0010, 0001. From these patterns, we can deduce the names of all six lieves,
and we can visit the lieves in lexicographic order —needing no link fields whatsoever!
(See Theorem 2.3.1A.) In particular, the space needed in Algorithm E’s OMEM for the
calculation of (40) can be reduced from 40 bytes per node to just 10 bits per node.
What revisions to Algorithm E will exploit this compression scheme?

205. [20] Let G be the Petersen graph, GP(5,2) in the notation of exercise 11, with
its vertices arranged in the order (0, 1, 2, 3, 4, 0', 1/, 2', 3’, 4"). How many m-cycles
and m-paths of G are found by (a) Algorithm E? (b) Algorithm E*?
206. [21] The text observes that 256 gigabytes of RAM were needed for the compu-
tation of (40). Discuss the memory requirements for computing (44).

207. [30] When a trie with P nodes is implemented as in Fig. 125, every node contains
A link fields that hold integers in [0..P]. Therefore, if P > 23%, each of those fields
must have more than 32 bits (and will typically be an octabyte with 64 bits).

Suppose P = 235, Devise a way to represent P-node tries whose link fields fit in
32 bits, thereby needing only about half as much RAM. Hint: Use randomization.

209. [26] Design Algorithm E*, a modification of Algorithm E that computes the
numbers PATH[m] for 2 < m < n, where PATH[m] is the number of Hamiltonian paths
in the induced graph G |{1,...,m} and G is a given graph on vertices {1,...,n}.
210. [HM/6] Let Sm,, be the number of closed m x n knight’s tours, namely the
number of Hamiltonian cycles in the graph of knight moves on an m x n board; and
let Sim(2) = 50 Sm,nz" be the corresponding generating function for boards with
m rows. The periodic nature of Algorithm E proves that Sm(z) = Pn(2)/Qm(z) for
certain (huge) relatively prime polynomials Py, (z) and Qn(2).

Similarly, if S}, is the number of open m x n knight’s tours (the number of
Hamiltonian paths), with generating function S, (2) = 3,5, S/ .2", the periodic
nature of Algorithm E* shows that Sj;(2) = P (2)/Qf(2).

Prove or disprove that Q},(z) is a multiple of Q™ (z)® when m > 5.

211. [18] What is the other Hamiltonian cycle of the digraph (47)?

212. [21] The digraph (47) is an example of a tournament (an orientation of K,).
True or false: Any tournament for which no vertex has in-degree 0 or out-degree 0 has
a Hamiltonian cycle.

213. [35] The 8 x 8 matrix (46) is just part of a 120 x 120 matrix in the Stanford
GraphBase, which contains all of the scores of the American 1990 college football
season. When the full matrix is converted to a digraph on 120 vertices, there clearly is
no Hamiltonian cycle— because, for example, Fullerton won no games.

We do get a plausible digraph if we include two-way arcs for the close games, by
saying that w — v also when the difference between their scores is less than 10. (For
example, (47) would gain 11 more arcs: Brown — Princeton, Brown — Yale, Columbia —
Harvard, Cornell — Dartmouth, Harvard — Cornell, Harvard — Penn, Penn — Brown,
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Penn — Cornell, Princeton — Columbia, Princeton — Cornell, Princeton — Harvard.) The
resulting digraph, football-to110.gb, is available online.
Prove that football-to110.gb has a Hamiltonian path but no Hamiltonian cycle.

215. [21] One of many interesting ways to orient the edges of the n-cube, illustrated
for n = 4 in (48), is the following: Let v — w, where v = v1...v, and w =
V1 ...Vj—1U;Vj41 ...V, is the same as v but with the jth component complemented,
if and only if v either has even parity (that is, v1i + - - + v, is even) and j is even, or
v has odd parity and j is odd.

Use Algorithm B to enumerate the Hamiltonian cycles for this orientation when
n = 5. How does this compare to the undirected case (graph @ in Table 1)?

216. [M20] Another orientation of the n-cube stipulates that v — w if and only if
v either has even parity and j = k, or v has odd parity and j # k, where k is fixed.

Prove that the number of 2"-cycles with this orientation is exactly twice the
number of 2" *-cycles in the unoriented (n — 1)-cube.

217. [21] Consider the graph II,, whose vertices are the n! permutations of {1,...,n},
and whose edges v — w connect permutations that differ by interchanging adjacent
elements: v =v1...v, and W = V1 ...V 1V;41V;Vj42 ...V, for some j, 1 < j < n.

As in exercise 215, we can orient II,, by letting v — w if and only if v either is
an even permutation and j is even, or v is an odd permutation and j is odd.

Find, by hand, a Hamiltonian cycle of II4 with this orientation.

218. [27] Continuing exercises 216 and 217, we can also orient II,, by letting v —w
when v either is even and j = k, or v is odd and j # k, for fixed k.
a) Prove by hand that I14 has no Hamiltonian cycle with this orientation when k = 1.
b) Find by computer the number of Hamiltonian cycles of IIs when k is (i) 1; (ii) 2.

220. [52] (F. Stappers, 2025.) Chess moves lead to interesting digraphs in yet another
way: Place either a bishop (B), king (K), knight (N), queen (Q), or rook (R) on each
cell of a board, and create a cycle where (i) every piece can capture its successor; and
(ii) no piece captures a piece of the same kind.

Cousider, for example, the following three placements on a 5 x 5 board:

Boo Ko1 No2 Qg3 Roa Boo Ro1 Bo2 Qg3 Bos Boo No1 Qg2 Nos Qpg
Kio N11 Qy2 Ri3 Bia Rio B11 Ni2 Bi3 Qi4 Bio Ni11 Q2 Ni3 Ria
N2o Q3; Ro2 B2z Koy R2o N21 Ka2 Na3 Qoy ; K20 K21 Roo Qo3 Roa .
Q30 R31 B32 K33 N3y R30 N31 K32 N3z Q34 Q30 K31 R32 R33 B3s
Rao Ba1 Kao2 Naz Qyq Rao Ka1 Ka2 Ka3 Qqq K40 K41 B4z Bgz Nyg

The first example yields 2,016,000 cycles, and (BOO K33 B23 Kp1 No2 Bia Q03 N43 Kog N3y
K2 R31 N11 B32 Qo1 R22 Q1o R13 K10 N2o Ba1 Qzp Rao Quq Roa Boo) is lexicographically least.
a) Find one of the 29201 cycles for the middle example.
b) Can you find the unique cycle for the rightmost example?

221. [22] Continuing the previous exercise, construct (by hand) a 4 x 4 placement
that (i) uses each of the five allowable pieces at least once, and (ii) has a unique cycle.

223. [28] (Shift and save or bump.) Let SB(m,n) be the digraph whose vertices
are the m-ary strings z122...x, with 0 < 2 < m for 1 < k < n and whose arcs
are 1Tz ...Tn —>T2...Tnx1, T1L2...Ln —>T2.. .:cn:ci"', where 7 = (z + 1) mod m.
(Notice that there are self-loops whenever 1 = x2 = -+ = xTp.)
a) True or false: Every vertex of SB(m,n) has in-degree 2.
b) Find a connection between the Hamiltonian cycles of SB(m,n) and something
else that has been studied in Section 7.2.1.1.
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c) Prove that SB(m,2) has no Hamiltonian cycles when m > 2.

d) Find a Hamiltonian cycle of SB(3, 3).

e) Let C be a Hamiltonian cycle of SB(m,n). Prove that there’s a set S of m-
ary strings yi ...yn—1 such that 122 ... 2 — 22 ...xpz1 is in C if and only if
To...Tn €S.

f) How many Hamiltonian cycles are in SB(m,3), for 2 < m < 7?7

224. [46] Prove or disprove: SB(3,n) has no Hamiltonian cycles when n is even.
225. [46] Construct a Hamiltonian cycle in SB(m,3) for all m > 1.

227. [M20] When does a move from cell (4,j) to cell (i',j') of a rectangular board
go “counterclockwise” with respect to a given pivot point (p,q)? State the answer as
an algebraic relation in terms of 4, j, ¢/, ', p, and q.

228. [17] How can the middle example in (51) be “uniquely steady” (in the sense of
nearly equal distances between plumb-line crossings) when it isn’t symmetrical?

229. [33] An m x n whirling knight’s tour is a Hamiltonian cycle on the following
digraph: There are mn — [mn is odd] vertices (4,j) for 0 < i < m and 0 < j < n,
omitting (Z5%, 2-1) when mn is odd. The arcs are (i,5) — (i’,j') when we have
(i —i")? + (j —4)% =5 and (i, ') is counterclockwise from (i,5) with respect to the
pivot point (2%, 2=1) 'in the sense of exercise 227. The cycle has c coils if it crosses
a plumb-line above the pivot point exactly c¢ times. Let Wi = > .5y Wﬁf,)n, where
Wy(rf,)n is the number of m x n whirling knight’s tours with ¢ coils. -
a) Can there be a knight move for which neither (i, ) — (¢', §') nor (7', j') — (3, 5)?
b) Prove that Wy,,, =0 when n > 2m — 1.
c) If m < mn, prove that Wr(nc)n =0 when ¢ < m/2 or ¢ > m.
)

d) Use Algorithm B to compute W,gf)n for m <n <10 and n/2 <c< n.

230. [15] True or false: The transpose of a whirling knight’s tour is also a whirling
knight’s tour, when traveled in the opposite direction.

231. [87] Find n x n whirling knight’s tours that have exactly (a) n/2 (b) n coils.
(The computations of exercise 229 show that no such tours exist when n < 12.)

232. [%0] Find infinitely many solutions to problem 231(Db).

235. [M30] An m xn whirling king’s tour is a Hamiltonian cycle on a digraph like the
one in exercise 229, except that king moves replace knight moves; more precisely, the
statement ‘(i —i')% 4+ (j —j')? = 5’ is replaced by ‘1 < (i—4')2+(j—j)? < 2°. Let Xm0
and Xr(,f)n count whirling king’s tours, by analogy with W, , and Wr(,fn in exercise 229.
a) Prove that X, , > 0 for all n > 1. (When n = 1 there are no vertices!)

b) Furthermore X\, # 0 and X,(,f’T)L # 0 implies ¢ = .

c) Furthermore X, ,, =0 when m is odd and n > m + 1.

d) Furthermore X, n = Xm,n—2 when n > 2m.

236. [21] Continuing exercise 235, compute X, , for m <n<8. Look for symmetries!
240. [05] True or false: A bidirected path or cycle is always a trail.
241. [16] Construct a bidirected graph that has a trail between u and v but no path.

242. [M22] The “complete bidirected graph” on vertices {vi,...,vn} has v; ) vj,
v M vj, and v; O v; for all ¢ # j.

a) How many Hamiltonian (i) paths (ii) cycles does it have?

b) How many does it have if we omit the directed edges?

c) How many does it have if we omit the extroverted edges?
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244. [20] Using Algorithm B, determine the number of closed tours on an 8 x 8 board
that alternately make the moves of a knight and (a) a fers; (b) an alfil. (See (55).)

245. [17] True or false: The graph G(B) in Algorithm B is bipartite <= B is directed.

246. [25] Extend the trick of (54) from undirected graphs to directed graphs: Given
any two directed graphs G and H on the same vertices, construct a bidirected graph B
whose Hamiltonian cycles are in one-to-one correspondence with the Hamiltonian cycles
that strictly alternate between arcs of G and arcs of H. (For example, suppose the
vertices are {0,1,...,9} and the arcs of G are v — (v + 1) mod 10 and the arcs of H
are v = (v + 3) mod 10. Then there are two strictly alternating Hamiltonian cycles:
0514258292236+ 7=0and0=>3—=24=>7=28=1—-2=
5—6 =9 —0.) Hint: B can have more vertices than G and H.

247. [21] Find all of the “whirling” 8 x 8 cycles that strictly alternate between knight
moves and grid moves (as in (54)), always counterclockwise with respect to the center.

250. [22] The Stanford GraphBase represents a directed graph by specifying, for each
vertex v, a linked list of the arcs from v to its successor vertices. Every element of
this list is an “arc node,” and each arc node a has fields TIP(a) and NEXT(a). If the
successors of v are w1, wa, ..., wq, the list contains arc nodes a1, as, ..., aq, where

ARCS(v) = a1, TIP(a1) = w1, NEXT(a1) = a2, TIP(a2) = w2, ...,
TIP(aq) = Wd, NEXT (aq) = A.

(See, for example, 7-(31) and Algorithm 7B, near the beginning of Chapter 7.)

Arc nodes also contain more. For example, there’s a LEN field: An arc of length [
from v to w is represented by an arc node with TIP(a) = w and LEN(a) = 1.

To represent a bidirected graph, we can use the two low bits of each LEN field, by
representing a bidirected edge between v and w as an arc of length [ from v to w, where

v)) w <= [l mod4 = 3; v X w <= Il mod 4 = 2;
v {w<<=Ilmod4d =1; v () w<= Ilmod4=0.

(Since v ») w means the same as w (( v, we could represent that edge also as an arc with
Imod4 =1 from w to v. Both arcs could, in fact, be specified. Note that LEN(a) has
no connection whatsoever with the LEN field of Algorithm 7.2.2.1X and its cousins.)

Explain how to initialize the NBR and ADJ arrays in step B1 of Algorithm B, when
the bidirected input graph B is represented in this way.

251. [25] How should the data structures be set up in step B3 of Algorithm B so that
the first edge of the partial Hamiltonian matching is CURU— CURV?

252. [22] Exactly what changes to the data structures should be made in step B8 of
Algorithm B when we have (a) MATE(u) < 07 (b) MATE(u) > 07

253. [26] When Algorithm B discovers a Hamiltonian matching in step B13, what’s
a good way for it to “unscramble” the corresponding Hamiltonian cycle of the input
graph and to print it in a format like (53)7? (Compare with exercise 113.)

254. [20] The text sketches the steps that lead to (60) and the first Hamiltonian
matching of (57). What happens next?

256. [21] Customize Algorithm B to the special case where the input is simply an
ordinary directed graph, by showing that the answers to exercises 250 and 253 can be
significantly simplified in that case.
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» 270. [22] If G is a digraph on n vertices, define G by adding two vertices s and ¢, with
2n additional arcs s —v and v—¢ for all v in Gj also t —»s.
a) Show that G has a Hamiltonian path if and only if G has a Hamiltonian cycle.
b) Prove that if G has no cycles, it has at most one Hamiltonian path.
c) True or false: Algorithm B will handle G in linear time when G is acyclic.

271. [M25] If G is a digraph with m arcs, n vertices, and p cycles, show that we
need at most O(n?(m + n)) steps to test whether or not G has a Hamiltonian path.

272. [22] How can Algorithm B be used to visit all Hamiltonian paths of a bidigraph?

275. [41] Develop a dynamic enumeration algorithm, analogous to Algorithm E, that
counts the number of Hamiltonian cycles in B|{1,...,m} for all 1 < m < n, when B
is a given bidirected graph on n vertices.

298. [20] Given a bipartite graph G with n vertices in each part, construct an exact
cover problem with 3n primary items v, u™, v: two for each vertex w in the first part,
and one for each vertex v in the second part. Let the options be ‘4™ v w™’, for all
triples with w — v —w and u # w.

a) What do the solutions to this exact cover problem represent?

b) Experiment with this construction when G is the 6 x 6 knight graph.

299. [27] How many 8 x 8 closed knight’s tours have the property that moves k and
32 + k occupy the same column, for 1 < k < 32?7 Hint: Define an exact cover problem.

300. [24] Find a knight’s tour whose step matrix has
a1 =1, a1 =16, asz2 =64, as2 =32, ar1 = 33, ass = 34,

and such that 1 < a;; < 18 implies ag_;)9—;) = 50 — a;;. (The latter condition means
that moves 1, 2, ..., 18 are rotated 180° from moves 49, 48, ..., 32.)

301. [24] (G. E. Carpenter, 1881.) Find a knight’s tour for which the top row of the
step matrix is ‘1 4 9 16 25 36 49 64°.

350. [M27] Exactly how many Hamiltonian cycles are possible in the Sierpiriski gasket
graph S$7 (See Fig. 113, near 7.2.2.3-(69).) Hint: There is a fairly simple formula.

360. [25] An m x n meander frieze is a Hamiltonian cycle of P, 0C), that isn’t also
a Hamiltonian cycle of P, OP,. For example, a few of the possibilities are

(Such friezes were often used as ornamentation on Greek vases of the “late Geometric”
period, c. 750 B.C. For example, the famous Dipylon Amphora was decorated in part
with the unusual frieze (vi) and several copies of (i) and (v).)
a) The margins of a meander frieze are the sequences v ...vm—1 and h1 ... hy,, where
there are v; edges between rows ¢ — 1 and ¢ and h; edges between columns j — 1
and j. For example, the margins of (iv) are viv2vs = 242 and hihohshs = 1331.
True or false: v; is always even and h; is always odd.
b) Prove that no m x n meander frieze has m even and n odd.
c) A meander frieze is reduced if it doesn’t have v; = vi1 = nor hj = hj;1 = m
for any 4 or j. (For example, (ii) reduces to (i) because it has hy = hz = 3.) Find
an example of an unreduced frieze for which vs = vs = n.
d) Draw all the meander friezes with m < 8 and n = 3. Are any of them symmetric?
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e) An m x n meander frieze is periodic if it’s the same as d copies of an m x (n/d)
meander frieze, for some proper divisor of n. Draw all of the nonperiodic, reduced
meander friezes with m = 3 and n < 8. Which of them are symmetric?

) How many automorphisms does the graph P, 0C), have, when m,n > 37

g) Count the nonisomorphic, nonperiodic, reduced meander friezes with 3 <m,n < 7.

h) How many of the friezes in (g) are symmetrical?

i) Draw all of the friezes in (g) that have fourfold symmetry.

las)

361. [M21] Describe the nonisomorphic Hamiltonian cycles of the torus CsoCjy.

369. [22] (8D knight’s tours.) The I xmxn knight graph has vertices ijk for 0 < i < I,
0<j<m,0<k<nand edges ijk—i'j'k' where (i —i')> +(j—4) +(k—FK)>=5.
If a,b,c € {0,1}, say that the abc-complement of ijk is

ik = (a? l—=1—i: ) (b? m—1—j: j)(? n—1—k: k),

and the abc-complement of edge ijk—i'j'k is (ijk —i'j'k')*%¢ = ijkabe — ' j k' @b,

a) A cycle C in the I x m x n knight graph has central symmetry if (v —ov)'*! € C
whenever u — v € C. Find a centrally symmetric 2 x 3 x 4 knight’s cycle.

b) Do centrally symmetric 4 x 4 x 4 knight’s cycles exist?

c) Find a symmetry of the 4 x 4 x 4 knight’s cycle (000 012 031 133 213 023 121 331
233 113 323 221 202 003 011 032 130 210 020 122 101 300 312 232 033 021 002
100 220 010 112 131 330 322 301 203 123 313 211 001 103 223 013 111 132 333
321 302 200 120 310 212 231 030 022 102 303 311 332 230 110 320 222 201).

d) Indeed, 48 of the 64 edges of that cycle form a set S that’s “fully symmetric,” in
the sense that every abc-complement of every edge in S is also present in S.

e) How many 4 x 4 x 4 knight’s cycles include all of the edges in that set S?

370. [M30] The Grabarchuk graph is the graph on 4 = 64 vertices zyz, 0 < z,y, 2z < 4,
where zyz — 'y’ 2’ <= the Euclidean distance between (z,y, z) and (z',y', 2') is 3.

a) Prove that the Grabarchuk graph is bipartite, and regular of degree 6.

b) What are its symmetries (automorphisms)?

c) Find three Hamiltonian cycles that, together, contain all of its edges.
372. [20] (R. Wolf, 1894.) Choose a uniformly random square of the chessboard and
mark it ‘1’. After a square has been marked ‘k’, choose a uniformly random unmarked
square that’s a knight’s move away, and mark it ‘k+1’; but stop if there’s no such square.

Empirically estimate the probability that (a) the final square is marked ‘k’,

given 1 < k < 64; (b) the final square is in row ¢ and column j, given 0 < 4,5 < 8;
(c) the final square is a knight’s move away from the starting square.

999. [M00] this is a temporary exercise (for dummies)
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After [this] way of Solving Questions, a man may steale a Nappe,
and fall to worke again afresh where he left Off.

— JOHN AUBREY, An Idea of Education of Young Gentlemen (c. 1684)

SECTION 7.2.2.4

1. Established conventions promote communication, so they outweigh convenience.
[And we could save even more syllables by saying “HC” and “HP.” Many authors now
save two syllables by saying just “Hamilton cycles” and “Hamilton paths.”]

2. True (except in the trivial case where G has a single vertex). In fact, the number
of Hamiltonian paths in G is the number of Hamiltonian cycles in G’; the number of
Hamiltonian paths between u and v # u in G is the number of Hamiltonian cycles in G’
that include the edges by which v and v are joined to the new vertex.

3. The 12 vertices of Fig. 121(a) are named ij for i # j and 1 < ¢,j < 4. We define
12—23,12—24, and 12—43. If ij —1'j" then ji— j'i’ and (ia)(jo) — () (j' @),
where « is any even permutation of {1,2,3,4}. These rules define all of the edges.

The 20 vertices of Fig. 121(b) are named ij for i # j and 1 < 7,5 < 5. We define
12—35, 12—43, and 13 —24. If ij — '’ then ji — j'i’ and (io)(jo) — (i'0)(j'0),
where o is the permutation (12345). These rules define all of the edges.

We can get from the dodecahedron graph of Fig. 121(b) to the icosahedron graph
of Fig. 121(a) by first removing the eight vertices whose label includes ‘5’. Each of
the twelve vertices that remain can then be joined to its five nearest neighbors, which
were at distance < 2 in the original graph. (This attractive labeling scheme for the
icosahedron was suggested by G. Rote in 2025.)

Delightful patterns are abundant here! For example, if 1 <1 <5, exactly eight of
the dodecahedron’s vertices have a label containing [; and those eight vertices actually
are the corners of an inscribed cube. In fact, the four vertices with left coordinate ¢ are
equidistant, and they’re the corners of the ith “inscribed left tetrahedron”; similarly,
the four with right endpoint j define the jth inscribed right tetrahedron. Thus vertex
ij is the intersection of two inscribed tetrahedra.

[See M. Briickner, Vielecke und Vielfliche: Theorie und Geschichte (Leipzig, 1900),
§105; A. Kowalewski, Sitz. Akad. Wiss. Wien (Ila), 126 (1917), 67-90, 963-1007;
P. Du Val, Homographies Quaternions and Rotations (Oxford, 1964), §2.11. See also
exercise 7.2.2.1-136 for a 3D-geometry-based representation scheme.]

4. It remains unchanged after 180° rotation about any of the following lines: (i) from
13445 fo 2454, (ji) from L4E23 o ALE3B. (jij) from 12£31 o 51442

There also are remarkable threefold symmetries of a different kind: Color the edges

of the cycle alternately red and green; color the other edges blue. Then a 120° rotation

about any of the lines from 21 to 12, 23 to 32, 24 to 42, or 25 to 52 will permute the

colors cyclically(!). That will yield green-blue and blue-red cycles (see exercise 24).

5. We can redraw the edges {12 — 35, 51 — 24, 45 — 13, 21 — 34, 53 — 42}
so that they lie outside the circle. Alternatively, via stereographic projection we can
regard a planar graph as a graph embeddable on the surface of a sphere. In this sense
Figure 122(c) shows the Hamiltonian cycle on the equator; we can imagine that half of
the other edges lie in the hemisphere below. [A cubic planar graph with a Hamiltonian
cycle can always be drawn as a circle, with some of the unused n/2 noncrossing edges
inside and the others entirely outside. See exercise 103 for more about planarity.]
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To determine the distances and angles needed for the third drawing above, assuming
that vertex ‘12’ is point 1 in the complex plane and that ‘35’ is point re'?, solve
1 —7re)? = |1 — /5 = |re? —re’®=27/5)|2 The answer (see exercise 1.2.8-19) is
r= 571/44571/2 /R .5257,0 = § — % arctan% ~ .55636. [E. H.-A. Gerbracht, Kolloquium
iiber Kombinatorik, Universitdt Magdeburg (15 November 2008).]

9. (a) We can assume by symmetry that the cycle begins at vertex 12, having just
come from 35. Case (i) takes us to 54, 23, 41, 35; oops! In case (ii) it’s 54, 31, 25, 14;
now 43 is stranded. In case (iii) the moves to 54, 31, 42, 53, 21, 45, 13 force the cyclic
path 51 — 43 — 25 — 14 — 32 — 51. The opening moves 54, 23, 15, 34 in cases
(iv)—(vi) force the ending to be ..., 51, 24, 13, 52, 41, 35; so those cases are ruled out.

(b) The only remaining possibilities are (LLLRRRLRLR)? and (RRRLLLRLRL)?.

10. All but 23, 24, 25, 31, 41, and 51. (There are 20 Hamiltonian paths from 12 to 35,
in spite of the “uniqueness” of exercise 9. There are only six such paths from 12 to 21.)
11. Let a; = (2j)', b; = 24, ¢; =25 +1, and d; = (2j +1)". Notice that GP(2¢,2) is a
graph for ¢ > 3, a multigraph for ¢ < 3. The ungeneralized Petersen graph is GP(5, 2).

A Hamiltonian path P can be characterized by its endpoints and its 3-bit “states”

sj = [aj—a; € P)[c;—bj € P][dj—d;; €P], 0<j<gq, j =(j+1)modg.

For example, with endpoints {ao, a1} and ¢ = 3, the states (so, s1, s2) = (011,111, 010)
can arise only from the path ag — by —c2 — do — diy — do — co — b1 —c1 —
b2 — a2 — a1. Moreover, the states (so, s1,...,8¢-2,5¢—1) = (011,111,...,111,010)
yield a path from ao to a1 whenever ¢ > 3. (Adding the edge a1 — ao then gives a
Hamiltonian cycle.) Those same states also define a Hamiltonian path from ao to c;.
Only certain state transitions s; — s;; are possible. For example, parity is pre-
served if {a;/,b;:,cjs,d;' } contains no endpoint; and the only such legal transitions are

001 — 100, 001 — 111, 010 — 111, 100 — 001, 111 — 010, 111 — 100, 111 — 111;
000 — 101, 011 — 110, 101 — 000, 101 — 011, 110 — 011, 110 — 101.

Certain additional restrictions also apply. For example, 110 — 011 can be used at most
once, or it will “disconnect” the path. The sequence 001 — 111 — 010 forces a 5-cycle.
Parity is preserved also when both endpoints lie in {a;/,b;,c;jr,d; }. For example,
we get a path from ao to do for all ¢ > 2 from the sequence (111,...,111,010).
Transition rules at parity changes are also easy to work out. For example, if a;: is
an endpoint the legal transitions are

000 — 001, 011 — 010, 011 — 100, 011 — 111, 110 — 001;
001 — 000, 001 — 011, 010 — 011, 010 — 101, 111 — 000, 111 — O11.

It turns out that Hamiltonian paths from ao to v exist except when v lies in By,
where By = {a; | jmod3 =10,0 < j < g} when ¢gmod3 =0; By = {a; | jmod3 = 2,
0<j<q}when gmod3=1; and B, = {a; | jmod3 #1,0<j < q}U{co,cq-1}U
{bj | jmod3=1,0<j < g} when gmod 3 =2. (Unless ¢ < 4: B3 = {b1,b2}.)
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12. Consider the state transitions in answer 11. The legal cycles of odd-parity states
are of two kinds, namely (010,111%,111)* and (001,111%,100)*; here ‘111*’ stands
for zero or more repetitions of 111. Two legal cycles of even-parity states exist when
q = 3k + 2, namely (000,101, (011,110, 101)*) and (110, (011,110,101)%,011).

The number of Hamiltonian cycles is the number of legal cycles of states, and
we can enumerate them by using generating functions. The answer turns out to be
2L, — 2 + 2gq[g mod 3 =2], where L, = Fy41 + F,_1 is the gth Lucas number.

14. (a) In fact, let H be any induced subgraph whose vertices all have degree 3 except
for exactly two vertices of degree 2. The other edges from those two must be true in
every win, or we’d have a cycle entirely within H.

(b) The connecting edges are 1, and so are many of the internal edges. Thus
internal cycles will appear when x +y + 2 is 0, 2, or 3. (But if z +y + z = 1 we easily
have a path through all the internal vertices.)

(c) The long horizontal edges must be true, because consecutive true vertical edges
would yield a short cycle. Hence the edge values at the left and right are z, z, z, z, «
and y, ¥, ¥, ¥, y. If £ =y we’d have a 4-cycle or two 8-cycles.

(d) Hook C, to C1. Then insert XOR gadgets to ensure that all appearances of
the same variable have consistent values. [This construction can be extended so that
G is not only cubic but planar, and triconnected, with at least five sides on every face.
See M. R. Garey, D. S. Johnson, and R. E. Tarjan, SICOMP 5 (1976), 704-714.]

16. (1,2, 5, 19) connected cubic graphs on (4, 6, 8, 10) vertices are essentially distinct
(not isomorphic); we’ll study how to generate them in Section 7.2.3. They all are
Hamiltonian except for two of order 10. One of the latter is the famous Petersen graph
(Fig. 2(e) near the beginning of Chapter 7), which also is nonplanar.

The other “smallest” non-Hamiltonian example is actually planar: M
[Arun Giridhar verified in 2015 that a 16-vertex variant of this graph,

consisting of three 5-vertex diamonds joined to a central vertex, is (uniquely) the
smallest cubic graph that has no Hamiltonian path.]

18. False. For example, consider  —1—2—3—4—5—0, 0—2—4—0.
20. (a) The condition holds when ay, is the number of k-sided faces inside the n-cycle.
For it’s certainly true when there’s just one such face (ar = [k=n]). And if a new
chord is added to the graph, breaking an inner p-face into a g-face and an r-face where
g+r=p+2, 3, (k—2)ar changes by (¢ —2)+(r—2)— (p—2) =0.

[The number aj, = «; — a; of k-faces outside the cycle is also a solution to
Kirkman’s conditions. Indeed, we always have £ 3, (k —2)ax = £ >, ko — >, o =
(edges) — (faces) = (vertices) — 2 in a connected planar graph.]

(b) We can assume that the missing vertex is outside the cycle; and 3as can’t
equal 19 — 2. (The dodecahedron does have cycles of lengths {5, 8,9, 10, ...,17,18}.)

(¢c) We can assume that neither cycle is inside the other. A cycle that contains
exactly a pentagons has length 3a + 2; and (3a + 2) + (3b + 2) can’t equal 20.

(d) Let G' be G without the edge a — b, and with two additional vertices of
degree 2: one inserted between a and f, another between b and ¢. Any Hamiltonian
cycle in G that omits a — b corresponds to a Hamiltonian cycle in G'. But G’ isn’t
Hamiltonian, because aj, = [k =4] + 7[k =5] + [k =11] and 2a} + 3aj + 9a’; # 18 — 2.

(e) Graph (i) has ar = [k=4] + 20[k=5] + 2[k=11]; graph (ii) has ar =
[k =4]+18[k =5]+4[k =8]. So both of them fail Kirkman’s test (a). Graph (iii), with
oy = 18[k =5] + 3[k =6] + 3[k =8], passes the test only if ag¢ = 0 or 3. But the three
6-edged faces can’t all be inside or outside the cycle, since they share a common point.
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[Historical notes: As noted near the beginning of this chapter, Kirkman actually
studied full-length cycles in convex polyhedra before Hamilton began to toy with
such ideas. [See Philosophical Transactions 146 (1856), 413-418.] Graphs (ii) and
(iii) in part (e) are due to E. Ya. Grinberg, Latviiskii Matematicheskii Ezhegodnik
4 (1968), 51-58, who rediscovered Kirkman’s long-forgotten criterion. Graph (i) was
found as part of an exhaustive computer search by G. B. Faulkner and D. H. Younger,
Discrete Math. 7 (1974), 67-74, who also established that Grinberg’s (iii) is the unique
smallest cubic planar graph that is cyclically 5-connected: It cannot be broken into
two components each containing a cycle unless at least five edges are removed. (Graph
(ii) clearly has four automorphisms; and graph (iii), obtained by adding a single edge,
actually has six, although that isn’t obvious from the diagram. If we add another edge
at the right, in the mirror-image position, we get a 46-vertex graph with 36 Hamiltonian
cycles Of course each of those cycles uses both of the edges that were added to (ii).)]

. Among many possibilities, the simplest are perhaps the (20n + 2)-vertex graphs

made from n copies of an 18-vertex gadget I8}, where graph in exercise 20(e) is
FY, and {8} is illustrated there. In general, FY, has ar = [k 4] + 10n[k =5] +
2[k =5n + 1]; so it fails Kirkman’s test whenever n mod 3 = 2. Further analysis, based
on the fact that each of the four graphs

I —Tlorl—1® © E o E o R ?
O O O O o) O
Taltald HEREN, s{eiz{els. {sfes]
O O O O
O O

also fails Kirkman'’s test, shows that FY,, is actually non-Hamiltonian for all n > 1.
(Faulkner and Younger went on to show that the 78m-vertex graphs

are not only non-Hamiltonian, they can’t be covered by fewer than m disjoint cycles.)
Grinberg’s paper of 1968 described non-Hamiltonian cubic planar graphs having

(14 -4° — 10 - 3°)(3t — 1) vertices, for any s,¢t > 0. His graphs are noticeably harder

than FY,, for a computer to analyze; even the case (s,t) = (2,1) is quite a challenge.

24. (a) K4 & K4 is disconnected (and Ky is perfectly Hamiltonian). The others are
at least Hamiltonian, and we can number the vertices so that 0 —1—---—7—0.
There are five nonisomorphic possibilities: Case 1, 0—2,1—3,4—6, 5—7: 16
auts, 4H. [Translation: 16 automorphisms and 4 Hamiltonian cycles.] Case 2, 0 —2,
1—5,3—6,4—7: 12 auts, 6H, perfect (two sets of three). Case 3, 0—2, 1—35,
3—7,4—06: 4 auts, 3H, planar, perfect. Case 4,0—3,1—6, 2—25,
auts, 6H, planar [the 3-cube]. Case 5, 0—4,1—5, 2—6, 3—7: 16 auts, 5H.

(b) Let ay, be the number of k-faces inside none of the three Hamiltonian cycles; let
bk, ¢k, di be the number that are inside cycles {1, 2}, {1, 3}, {2, 3}, respectively. Then
Kirkman’s criterion for cycle 1 is satisfied by bx + cx and ax + di, the number of faces
respectively inside or outside. Similarly, it’s satisfied for cycle 2 by by, +dy and ax + cx;
for cycle 3 by cx +dy, and ay +bg. Let A=3", (k—2)ay, ..., D =3, (k—2)dy; we've
shown that A+B = A+C = A+D = B4+C = n—2. [See Grinberg’s paper in answer 20.]

[Similarly, an r-regular graph is perfectly Hamiltonian if its edges can be r-colored
in such a way that all (;) pairs of colors yield Hamiltonian cycles. (The 4-regular
6-vertex “Star of David” graph L(K4) is a good example; so is the 5-regular Kg.) Such
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graphs are also called P1F, “perfectly 1-factorable,” because two 1-factors —also known
as perfect matchings — are called perfect if they yield a Hamiltonian cycle, and because
an r-regular graph with x(L(G)) = r is called 1-factorable. The pioneering explorations
of A. Kotzig (see Theory of Graphs and its Applications, ed. by M. Fiedler (1964), 63—
82) have led to a large literature with many provocative problems still unsolved (see
A. Kotzig and J. Labelle, Annales des Sciences Math. du Québec 3 (1979), 95-106); for
an excellent survey see A. Rosa, Mathematica Slovaca 69 (2019), 479-496. Answer 124
below, Case 2, proves incidentally that cubic Halin graphs are perfectly Hamiltonian.]

27. (a) This follows directly from exercise 20(d). (In general, we get a “forcing” gadget
from any graph that has a “forced” edge, by removing any vertex of that edge.)

(b) Insert a degree-2 vertex into each of those spokes and apply 20(a).

(c) Two nonconsecutive spokes are forced to be in any Hamiltonian path.

(d) No. One of the five 4-faced regions touches the unique 9-faced region. Its other
neighbors have respectively {5, 8,8}, {5,7,7}, {5,7,8}, {7,8,8}, {7, 7,7}, {7, 7,8} faces.

Historical notes: A cubic graph that can be disconnected by removing
one edge is clearly non-Hamiltonian. Many cyclically 2-connected planar cubic
graphs, such as the example shown, also have no Hamiltonian cycle. However,
P. G. Tait investigated numerous cyclically 3-connected planar cubic graphs —
the “true” polyhedra—and found Hamiltonian cycles easily. So he conjectured that
such cycles always exist, and he pointed out that the famous “Four Color Theorem”
would then follow. (See §15 and §16 of his paper cited in answer 35.) Tait’s conjecture
was believed for many years, until W. T. Tutte [J. London Math. Soc. (2) 21 (1946), 98-
101] found a 46-vertex counterexample by putting together three Tutte gadgets. The
smaller graphs in (c) were found independently in 1964 by D. Barnette, J. Bosak, and
J. Lederberg; those graphs are the only counterexamples with fewer than 40 vertices
[see D. A. Holton and B. D. McKay, J. Combinatorial Theory B45 (1988), 305-319].
Every counterexample has a face with more than 6 vertices [F. Kardos, SIAM J. Discrete
Math. 34 (2020), 62-100]; in particular, all “fullerene graphs” are Hamiltonian.

30. We can use the Ls and Rs of answer 8 as a guide:

N
4

N
G
Ny

50y
)

o\
WD

A2 I
G
A7
Y

(The author cherishes a 3D-printed object like this, received as a surprise gift in 2016.)

33. nH+h— one for every Hamiltonian path in G (cyclic or not). (Thus an algorithm
that finds all Hamiltonian cycles can readily be adapted to find all Hamiltonian paths.)

35. (a) The tour lines divide the plane into regions. Every such region can be assigned
a rank, representing its distance from the outside. (More precisely, the rank is the
minimum number of tour lines crossed by any path in the plane that goes from a point
in the region to a point outside the chessboard, without passing through any of the
tour’s intersection points.) Then, as you walk along the tour, make your thread go on
top at an intersection if and only if the region on your left has odd rank. [See P. G. Tait,
London, Edinburgh, and Dublin Philosophical Magazine 17 (1884), 30-46, §19.]
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(b) One endpoint is in the outside region, but the other is in a region of rank 4.
Any artificial path that connects the two, and crosses k tour lines, will lead to a drawing
with k exceptions when the artificial path is removed. Conversely, the exceptional tour
segments in any drawing can be crossed by an artificial connection path together with
zero or more artificial cycles; so there must be at least 4 exceptions.

(There’s no problem in (2), because each endpoint lies in the outer region.)

36. In (i), 022 ¢ 024 and 025 <> 027. In (ii), ‘lots’ matches ‘lost’:

ST N AN ST

: . \\ 7/ VA . AAAT NNV /N VNV

(1) ‘\\‘\/' N (ii) P AL ‘\x; R
g \\\y; “ /. \« /. \« ,/ X y’f \

VR VNN VSN

37. Starting at cells (1, 2, 3, 4) of row 1 we obtain respectively (7630, 2740, 2066,
3108) tours. Starting at cells (1, 2, 3, 4) of row 2 we obtain none. Thus there are
exactly 4 - (7630 + 2740 + 2066 + 3108) = 62,176 tours, all of which are open because
they begin and end in the top or bottom row. (Among all such tours, 1904 cannot
be represented by a single Rudrata-style sloka because all 32 syllables of such a sloka
would have to be identicall Only the example in answer 36(ii), and its reversal after
180° rotation, are representable by a sloka that has 12 distinct syllables.)

38. One knight jumps like three rookwise steps.
Past sore too mean; so, just for free,
Hops here, turns there, flies each goose now.
Can’t place last word? Won't find the sea.
One, two, three, four! See each word here:
Jumps so wise now find their place passed.
Terns can’t soar, like flies the free rook;
Goose steps just won’t mean knight hops last.

40. Meet me, you fool; trip some word up;

Eat, see if autumn is a mess.

To forgo this ordeal, I cheat:

Won three games like dice, card-trick, chess.

One, two, three, four! Games go like this:

Dice or card deal, tricky chess cheat,

Mess up; a word is some dumb trip.

Awful if you see me eat meat.
[Sloka 16 in Rudrata’s Kavyalanikara can be interpreted as two poorly joined quarter-
tours of an elephant. See Murray’s History of Chess, pages 54 and 55.]

(A “silver general” in shogi (Japanese chess) has the same moves as an elephant.)
41. (a) There are (m — 1)n “trunk” arcs from (¢, 5) to (i — 1, j), plus 4(m — 1)(n — 1)
“leg” arcs from (4, j) to (i £ 1,7 £ 1); total (m — 1)(bn —4).

(b) Yes: If and only if m = 2 and n is even. (Use just two trunk moves.)

(c) In fact, the solution in Fig. A-18(a) is the only such Hamiltonian path on Eys.

(d) If not, every vertex of row 1is of type A (&) or B ({\,) or C (LX) or D ( A\)
within the path. There’s a B at the left and an A at the right. The adjacent pairs
AD, BD, CA, CB are not permitted, nor are the near-adjacent pairs BoA, BoC, CoD,
DoA, DoC (with one vertex intervening). Furthermore the substrings B(CD)*A =
{BA,BCDA,BCDCDA,...} are forbidden, because these are closed cycles and m > 2.
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But no string of A’s, B’s, C’s, and D’s obeys all of those restrictions.

(e) The same proof works, with types A (\{), B (}), C (), and D (\¥").

(f) The vertices of (d) are joined by one of type E (,°) or F (%). The leftmost
is either B or F; the rightmost is either A or E. Cases BoE, DoE, FoA FoC are
excluded, in addition to those of (d). Exactly n[neven] such sequences are possible,
having the forms F(CD)"A, B(CD)*ED(CD)"A, B(CD)*CF(CD)"A, or B(CD)"E.

Each of these has exactly one unsaturated vertex in row 2. Thus there are one or
two possible moves to row 3, and we’ve effectively reduced m to m — 2.

(g) Now the vertices of (e) are joined by one of type E (") or F (/) or G (). The
leftmost is either B, F| or G; the rightmost is A, E, or G. The new forbidden substrings
are AE, BE, CG, FA, FB, GD, CoE, FoD. Six species of solutions exist, namely
GA*(CD)"A, B(CD)*B*G, B*FD(CD)*A, BCD(CD)*B*FD(CD)"A, B(CD)*CEA", and
B(CD)*CEA"(CD)*CDA. The solutions containing A® or B* work when n is odd.

Again we reduce m to m — 2 and continue. (By induction, m must be even.)

(h) Let A be the n x n matrix where al('-") is the number of Hamiltonian paths
from (1,1) to (m, j); let BU™ be analogous, where bg;") counts paths from (m, ) to (1, 7).
(These matrices are symmetric about both diagonals, because the left-right and top-
bottom reflections of any elephant path are elephant paths, possibly reversed.) We have

a{) = (li=j=1]+[i=j=n] +[|i — j|=1 and max(i, ) odd])[n even],
B2 _ { [¢ odd][j even][i < j] + [j odd][¢ even][j <i], if n is even,
i [i odd][j odd] max([i =1],[i =n], [i #j]), if n is odd,

by (f) and (g). Moreover, by considering moves between two-row subgraphs,
Almam) — A0m) x 40D ang B = B (X 4+ 1)B™) | where i = [[i — j| =1].
For example, there are Y- A 4+ S"B™ = 14 + 120 = 134 tours on a 4 x 8 board.

VW

(a) (b) (c)

Fig. A-18. Noteworthy paths and cycles for elephants.

42. The technology of exercise 7.1.4-226 can be extended to directed graphs in a
straightforward way. It constructs a ZDD of about 1.3 meganodes for all oriented cycles
in the 8 x 8 elephant digraph, and shows that there are exactly 277,906,978,347,470 of
them. The generating function by cycle length is 982 +205z* 4+ 6982° +38532% +-- - +
501285592°° + 65442%2. If we say that trunk moves have weight 2 while other moves
have weight 3, we find (by computing maximum-weight cycles) that exactly four of the
6544 62-cycles have only eight trunk moves. All four of these solutions are equivalent
under reflection to Fig. A-18(b).

(Figure A-18(c) shows an interesting symmetrical 60-cycle that omits the corners
and has just four trunk moves.)
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44. We can use Rudrata’s half-tour twice: Rudrata
open tour
Bah dee boo dai hao fuh hoe fay, bee doo bai fao huh foe hay dah? closed tours
Fee hah day boe foo hai dao buh, fai bao duh hoo doe bay fah hee. &’Erx‘;ﬂ“
Lah mee loo mai sao nuh soe nay, lee moo lai nao suh noe say mah? Rudrata
Nee sah may loe noo sai mao luh, nai lao muh soo moe lay nah see! gagnkﬁkara
eslka

de Jaenisch

(This is an open tour. See exercise 199 for closed tours that rhyme just as perfectly.) von Warnsdorf

46. This tour is rather like that of Ibn Mant‘ in (1):

[G. S. S. Murthy, in Resonance 25 (2020), 1095-1116, comments further on the
work of Someshvara, and gives excellent translations of the Sanskrit verses by Rudrata,
Ratnakara, and Vedanta Desika.]

50. In fact, the text’s “merry chase” need not end at cell 22; by swapping 23 < 25

we get a tour that ends at 02. The other seven choices of 9 and 10 can lead, similarly,

to either 22 or one of {02, 11,13, 20, 24, 31, 33}. Each case completes an open tour.
[See page 280 of de Jaenisch’s book, for his analysis of 5 x 5 paths.]

51. Again vivovzvs = 00 12 04 23 without loss of generality. Now t1 = 44 forces
vs = 31, and there’s a tie for vs. If vs = 43, the path continues vr...v15 = 24 03 11 30
42 34 13 01 20; and vie is 32 or 41. The former case forces vi7 = 40, hence “shutting
out” 44; it leads to four paths, each ending at v»24. But the latter case leads to three
paths, two of which end with ves = 44 (yea) and one that ends with v21 = 44 (boo).

On the other hand if v¢ = 10 we get vy ...v13 = 02 14 33 41 20 01 13 and then
v1av15v16 = 21 40 32 or 32 40 21. Either case shuts 44 out. Ten continuations are
possible, each of which involves 24 vertices—all but cell 44 (close but no cigar).

(The randomized algorithm of exercise 53 will yield a Hamiltonian path with
probability . If we set {t1,t2,t3} = {23, 32,44} and r = 3, this probability rises to 2.)

52. The algorithm acts just as if a double-target vertex ¢ has been entirely removed
from the graph, because DEG(¢) will never be less than 2n in step W5.

53. W5'. [Is DEG(u) smallest?] If t < 0, set § < t, v < u, ¢ « 1. Otherwise, if t = 6,
set ¢ < g + 1, then set v « w with probability 1/q.

55. Ibn Mant‘ broke Warnsdorf’s rule first when choosing vi4 = 41 instead of 06. His
choices for wvag, v2r, Uss, U39, V45, vag, and vss also broke the rule. But altogether, his
“hug the edge” strategy followed it % =~ 87% of the time, so he probably had some of
the same intuition that von Warnsdorf acquired later. Similarly, Someshvara deviated
ounly eight times. But al-‘Adli broke the rule 15 times, clearly thinking other thoughts.

56. If there’s no remaining exit from w, there’s no remaining entrance to u. Therefore
Algorithm W will not find a Hamiltonian path unless it moves to u. We might as well
do that, if our goal is simply to find a Hamiltonian path. But maybe we really want
to find as long a path as possible, via Warnsdorf-like rules; then we can do better.
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Vertex u is a dead end if and only if DEG(u) is 0 or n. Suppose vr has just two
neighbors, u and u', where DEG (u) = 0 and DEG(u') = n. We presumably should choose
vg+1 = o' in such a case, because u’ is one of the designated targets.

Thus we can improve the algorithm by changing ‘¢ < 6’ in step W5 to ‘ f(t) < f(0)’,
where f(0) =2n+1, f(n) =2n, f(t) =t+2 for t > 2n, and f(t) =t otherwise.

57. This is a simple backtrack algorithm, following the outline of Algorithm 7.2.2B.
Leaves of the search tree correspond to the paths of Algorithm W. The probability of
each node is the probability of its parent, divided by the family size.

59. Build 64 anti-Warnsdorf trees, as in exercise 57. There are 8 paths viva...v20
of length 19 (equivalent to each other via rotation/reflection), each occurring with
probability 27937% ~ .0000027; they actually turn out to be cycles of length 20. At
the other extreme, there are 24 anti-Warnsdorf paths as long as 53, of which 8 have
probability p = 2729375 = .0000000039 and 16 have probability 3p; representatives are
shown below. The mean path length is =~ 34.8, and the standard deviation is ~ 5.3.

By contrast, Algorithm W will find a path that’s longer than every anti-Warnsdorf
path, more than 99.8% of the time. Its worst case has length 39; there are eight such
paths, equivalent to the one shown, each obtained with probability 2721 (And if we
use the modification of answer 56, the worst case length rises to 46; there are 40 such
paths, of which the one shown is the most likely —its probability is 27'837%. The total
probability of all 40 cases for length 46 is 169 - 2723372 & .00000075.)

20 32| 1 [54[29] |43 32[ 14229 |53 45|32/49 2 (194 |21 14 3136/ 5 23
18| 1 53(30(33(44[41[28] 43(30|33|52|41|28 46|31]48| 1 |20]33|50|37 5122|1 15 6[43]2 24
19] |11)8]5(2 31[34[15] 2| 7 |10[45|42| [31|34|15]2 | 7 [10|51|54| [17|44/19]10|5 |36|21|34 18/3 )20 13] |37]4 35 22
17)14|3 |10[ 7 52|21| 8 |5 [12] 3 |40|27| |44]21|8 |5 [12| 3 |[40(27| [30/47|16|7 |2 |9 |38|51 23| 6 16 44( 7 42| 1 25
12[9 6154 35[16[23|14]| 9 | 6 [11]46] [35]16/23|14| 9 [ 6 [11|50| |43|18|27|4 |11| 6 |35]22 32|17|30 12 41]38]45(34 21|26
16|13 22[51|20|17] 4 |13[26]|39| [22]45|20|17| 4 [13|26]39| [26]29|12|15|8 |3 52|39 7124[33] |29 38| [8[31]10[39]46/29[18|15
36]49(24]19|38}47 36|47|24(19|38]49 42|25|2813]40|23|54 34(31[26| 9 |36]39|28|11| |11]40|33|30|13|16[27|20
50 |18]37]48]25 46| [18|37]48|25 14/41|24]53 25| 8 [35/40]27]10|37, 32[ 9 [12|47]28]19(14/17|

60. A tree constructed as in exercise 57 has two different forms, depending on whether
s is a variable of type {a, d} or {b, c}, because Rs doesn’t have as much symmetry as Rs.
(a) ~ (.86,.74,.65,.57,.50) when s = ao; =~ (.90,.81,.71,.63,.56) when s = bq.
[For ¢ = 100 these probabilities drop to about .000044 and .000050.]
(b) =~ (.06,.05,.05,.04,.04) when s = ag; =~ (.07,.05,.05,.04,.04) when s = bq.
(c) ~ ((.33,.29,.29, .24, .22), (.26,.26,.24, .19, .17)) when s = ao, t1 = (bo,a1); and
~ ((.27,.23,.23,.18,.17),(.28, .21, .18, .15, .13)) when s = by, t1 = (ao,co)-

62. There are two choices for v2; and the next moves must hug the edge. Thus the
graph reduces either to P, _; 0P, or P, 0PF,_1, and we succeed by induction.

[It’s necessary to require r = 0; for example, the algorithm can fail when m =n =
4, s =(0,0), t1 = (0,3). The start vertex must also be a corner; consider m =4, n =5,
s = (0,2). A similar proof shows that Algorithm W never fails on the convex triangular
grid graphs produced by SGB’s generator simpler(n,ni,n2,ns3,0,0,0), when starting
at a corner. It also succeeds on the dual of that graph, provided that ni,n2,n3s < n
and that a suitable starting vertex is specified; this is the graph whose vertices are the
triangular faces inside the polygon, all of which have degree 2 or 3.]

63. Notice first that the standard Gray binary code g(0), g(1), ..., g(2" — 1) is one
of the paths that satisfy Warnsdort’s rule. For example, when n = 3 and s = 000, this
path is 000, 001, 011, 010, 110, 111, 101, 100; and it has the delta sequence dy ...ds =
0102010 of the ruler function p (see 7.2.1.1-(24)). Warnsdorf’s rule for the 3-cube allows
any do € {0,1,2}; if o = 0, it allows 61 € {1,2}; if dod1 = 01, it forces 203 = 02; if
00010203 = 0102, it allows 64 € {0,1}; and if o ...ds = 01020, it forces d50¢ = 10.
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In general one can prove that if dp_1 = p(k) for 1 < k < r, then Warnsdorf’s
rule allows 4, to be any coordinate in the interval W, = [p(r)..p'(r)), where p'(r) =
p(r & (r — 1)) is the index of the next-to-rightmost 1 in the binary representation of r.
(If r is a power of 2, p’(r) is undefined; in such cases we use n instead of p'(r) in the
formula for W,.) For example, if r = (1010010)> and n > 7, we have p(r) = 1 and
p'(r) =4, hence W, =[1..4) = {1,2,3}.

Moreover, the residual graph of unvisited vertices, when it is time to choose 9., is
always symmetrical with respect to every coordinate in W,. Therefore we can choose
0 = p(r) without loss of generality; all other Warnsdorf paths can be mapped into the
standard path by permuting coordinates. For example, the Warnsdorf paths for the 3-
cube have the delta sequences 0102010, 0102101, 0201020, 0201202, 1012101, 1012010,
1210121, 1210212, 2021202, 2021020, 2120212, 2120121.

[Algorithm W always succeeds in the graph P; 0 P; 0 Ps; when s = (0,0,0); but
not always in P, 0P;0P,. It sometimes fails in P30 Ps0P;0P; when s = (0,0,0,0).]

65. Yes: m (Is there a smaller one?)

70. It happens when k =t — 1 in the first call, and when k = 2 in the second call. (A

little time can be saved by detecting these special cases. Similarly, ‘update(u, ..., u¢)’
arises in step F5 when k = j = 1. Such updates weren’t counted in the author’s tests.)
71. Let the edges be 1 —2 —---—n—1and 1 —5, 3 — (n—2), (n—4) —n;

consider the path2—1—5—4—3—(n—2)— (n—3) — (n—4) —n—(n—1).

73. Assign a random 32-bit weight to each edge of the graph, and let each path have
a “long hash code” H that’s the sum of its edge weights (modulo 23?). Let there be 2b
hash lists; a path with long hash H will go into list H mod 2°. If ¢ vertex names can be
packed into an octabyte, the dictionary entry for (vi,...,v:) will occupy B = 1+ [t/c]
octabytes: one for the link and H, the others for the vertices (which are examined in
detail during a search only when the long hash code is correct). Store the gth path in
positions (¢B + s) mod M of a large array of octabytes, for 0 < s < B, where M is a
large power of 2. (Overflow occurs if we try to write into position (p2B + B) mod M.)

75. (a) Let H be the graph whose vertices are the Hamiltonian paths of G that start
with v1, adjacent if they differ only by flipping a subpath. Since G is cubic, every vertex
of H has degree 2. So H consists of cycles, and Algorithm F~ constructs the cycle that
begins with the given path. For example, when G = P, 0 P> 0O P>, we can represent the
vertices (000, 001, ..., 111) by (0, 1, ..., 7), and H has two cycles: 01326754 —
01326457 — 01375462 — 02645731 — 02645137 — 02673154 — 04513762 —
04513267 — 04576231 — 01326754; 04623751 — 01573264 — 01546247 — 01546732
— 02376451 — 02315467 — 02315764 — 04675132 — 04623157 — 04623751.

(b) Let « = v1 — v2 — - - - — v, be a Hamiltonian path with v, — v1. One of
its two neighbors in H is v; — v, — - - - — v2, which is the reflected cycle a®. The
other neighbor will have vz unchanged. So the cyclic paths come in pairs.

(c) Consider maximal segments of the cycle in H whose paths begin with v; — vs.
The first and last of these paths are Hamiltonian cycles, which we can regard as mates
of each other. (For example, the mate of 01326754 with respect to 0 — 1 is 01375462.)

(d) If @ is a Hamiltonian cycle containing the edge e, its mate § is a Hamiltonian
cycle containing an edge e’ ¢ «. Hence v, the mate of 8 with respect to €', is a third.

(e) Color the n edges of « alternately red and green; color the other n/2 edges blue.
The blue edges of 8 and + are the same; suppose there are n/2 — z of them. Let
B have r red and g green; hence v has n/2 — r red and n/2 — g green. We have
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r+g+n/2—z=(n/2—-r)+(n/2 —g)+ (n/2 —z) = n; hence z = 0. Therefore no
two consecutive edges of o can appear in 3 or «y; they must all be the same color.

[Historical notes: The theorem in (c¢) was discovered via algebraic reasoning
by C. A. B. Smith, about 1940, but not published until later. See Combinatorial
Mathematics and its Applications (Oxford conference, 1969), 259-283; W. T. Tutte,
Graph Theory As I Have Known It (1998), 18, 48, 94. A. G. Thomason, in Annals of
Discrete Mathematics 3 (1978), 259-268, introduced one-sided flips and used them to
give an algorithmic proof of Smith’s theorem.]

77. (a) Easily verified. (This is the only non-identity automorphism, when n > 1.)
(b) Any Hamiltonian cycle containing 05 — 0 — 01 mustn’t contain 0 — 06; hence
07 — 06 — 05 but not 05 — 04 or 01 — 07; hence 03 — 04 15, 01 — 02, 08 —
07 — 06, not 02— 08; hence 11 — 08. Replacing all ‘05’ by ‘1’ yields a Hamiltonian
cycle containing 15— 1 —11 in a graph isomorphic to C,—1. By induction, it’s ay.
Similarly, the only Hamiltonian cycles containing 06 — 0 —01 and 05 —0—06 are
Bn = 0—01—07—08—02—03—16— --- — 15— 04— 05— 06 —0;
Yo = 0—06—07—01—02—08—11— --- —16—03—04—05—0.

(c) (11, 65, 265, 1005, 3749, 13927, 51683, 191735, 711243). [But an appropriate
sequence of only 4n two-sided flips will take us from o, to B, or Bn t0 Yn, OF Y t0 @y .]

(d) When n > 2, the first five flips yield 01 —0—05—06 —07 — 08 — 02 —
03—04—15—16—17—11 — 12 — 18 followed by a sequence 21 — 22 — - --
that’s the same as the suffix 01 — 02 — - - - of the second path obtained with respect
to 0 — 01, except that all entries are increased by 20, and ‘14 — 13’ appears between
25 and 26. The next ¢,—2 — 1 flips mimic (c¢); then six more flips give the reverse of 3.

(e) When n > 1, the number is ¢,—1 + 5 in both cases(!), proved as in (d).

[The graphs C,, were introduced by K. Cameron, Discrete Math. 235 (2001), 69—
77, who simplified a similar construction by A. Krawczyk and proved that ¢, > 2".
In 2020, Filip Stappers discovered that the generating function c(z) = >, c.2" is
p(2)/q(2), where q(z) = (1 —2)(1 — 3z — 222 — 22° — 2* — 2°) and p(z) = z(1 + 2)(11 +
1024622 4+42° 4+ 2*). He also proved that the number of one-sided flips to go from 3, to
its mate v, with respect to either 0 — 06 or 06 —0, is ¢,, where )~ &,2" = p(2)/q(2)
and p(z) = 22(3 + 2z + 2> — 223). Consequently the actual limiting ratio cn41/cp is
p = 3.709398, the real root of z° = 32* +22% + 222 4+ 2+ 1. Asymptotically, ¢, ~ cp” —8
and é, ~ ép", where ¢ = 5.349 and é,/cn ~ p(p)/p(p) =~ 0.3959. In Bull. Aust. Math.
Soc. 98 (2018), 18-26, L. Zhong introduced a family of graphs on 16n vertices for which
the number of flips to get from a certain Hamiltonian path to its mate with respect to
0—1is ezactly 6-2" —10. However, that number with respect to 1—0 is only 4(!).]

78. (a,b) In contrast to exercise 60, success occurs with probability ~ 100% when
q < 10. Furthermore, a Hamiltonian cycle is usually found soon after finding the first
Hamiltonian path. The average number of updates before that first cycle, observed in
100 runs for each q, was ~ (81, 141, 146, 240, 295).

But ¢ = 100 was a different story. Here a 400-cycle was successfully found in
only six of ten cases—sometimes after as few as 18 thousand updates, sometimes
after as many as 8.3 million. In one of the other cases, millions of Hamiltonian paths
(not cycles) were found; but memory overflow, with more than 2 million paths in the
dictionary, aborted the run. Memory overflow also arose in the three other cases, once
before achieving any paths longer than 365.

We conclude that Algorithm F can have wildly eccentric behavior, and it should
probably be restarted if it spins its wheels too long.
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79. (a) Let there be 12 vertices {0,...,11}, with k — (k+1) for 0 < k < 12 and
3k — (3k+5) for 0 < k < 4 (modulo 12). This graph has two equivalence classes, each
containing one Hamiltonian cycle and 12 Hamiltonian paths that aren’t cycles.

(b) Let there be 13n vertices ij for 0 < i < n and —1 < j < 12, with ik — ik’
whenever k — k' in (a); also i1 — 40 and il — ((i+1) mod n)1. This graph has 2"
equivalence classes, each containing one cycle and 17n noncycles.

80. If and only if s <t (except when s =¢ =¢; = 1). [See J. A. Bondy and U. S. R.
Murty, Graph Theory (2008), Theorem 18.1.]

81. (a) Choose nonadjacent {u,v} with deg(u) < deg(v) so that deg(u) + deg(v) is
maximum, and assume that deg(u)+deg(v) < n. Let k = deg(u). Then k > 0, because
there are no isolated vertices when d,—1 = n — 1. Exactly n — 1 — deg(v) > k vertices
# v are nonadjacent to v; these must all have degree < k, by maximality. Similarly,
exactly n—k > deg(v) vertices are nonadjacent to u, and they all have degree < deg(v).

But ds; <t if and only if at least s vertices have degree < ¢t. Hence we have proved
that 1 <k <n/2, d, <k, and d,,_ < deg(v) < n — k, contradicting (x).

(b) Each G}, satisfies (%), so Gr4+1 exists. Let (wowi ...wn—1) be a cycle in Gg41
that’s not also a cycle in Gj. We can assume that wo = uj, and w,_1 = vg. There are
deg(ur) values of j with wo — wj41 in Gx. And wn—1 — w;j for at least one such j,
because deg(wn—1) > n — deg(wop). Thus (wo ... wjwp_1...w;t+1) is a cycle in Gy.

[Condition () was discovered by V. Chvétal, J. Comb. Theory B12 (1972), 163—
168. This proof is due to J. A. Bondy and V. Chvétal, Discr. Math. 15 (1976), 111-135.]

82. Let G’ be the graph (kK1 ® K,_2r) — K}, whose degree sequence has d;— = k for
0<j<k,d;=n—-1-kfork <j<n—k,d; =n—1forn—k < j < n. (See exercise 80.)

83. (a) There are (2r + 1)r/2 edges. (b) Use exercises 2 and 81.

(c) If up — u; and uj—1 — ua2r, a flip will create a cycle. So r vertices uj_1 cannot
be adjacent to wus,; the remaining r candidates must be us,’s neighbors.

(d) If the neighbors of uo are ui, ..., ur and the neighbors of us, are u,, ...,
u2r—1, we have a (2r 4+ 1)-cycle. Otherwise let j be minimum such that uo - u; and
wo — u;j+1. Then u;_1 —us,, and we have a 2r-cycle that excludes vg = u;.

(e) Assuming the hint, we can make a cycle vi — -+ —v2p_1 — Vo — V2k+1 —
-« —w1 that excludes vy, for any k; hence vop — v; for all odd j. But then v; has
degree r + 1. [This result was announced in Lecture Notes in Math. 186 (1971), 201.]

Notice that Hamiltonicity is not implied by exercise 81, even though that exercise
is “best possible” according to exercise 82. No efficient way is known to test whether
all graphs with a given degree sequence are forcibly Hamiltonian.

84. Let t = [n/2], and consider 2'~% cases a1 ...a; where a1 = a; = 0 and a), =
[dr <k] for 1 < k < t. Then it’s easy to see that the minimum d; + --- + d, in case
ai...a; occurs when k < t and ar, =0 impliesd, = k+ 1, dp—r = dp—k—1; ar = 1 im-
plies dy = dg_1, dr—r = n—k; also dp, = dp—1. (For example, if n =11 and a1 ...as =
010110, we have di ...d11 = 22444677999.) Let s(ai...a:) denote this minimum sum.

Suppose j is minimum with a; = 1, and k is minimum with ¥ > j and ar = 0. One
can show without difficulty that s(0¥ " ay ...a:) < s(0°=*1¥Jay ... a¢), except that the
inequality is reversed when n is odd and j = ¢ — 1. Consequently the overall minimum
sum occurs uniquely for di ...d, = 23...(t—1)t'""? when n is even, 23 ... (t—1)(t—1)t'
when n > 3 is odd. Increase d, by 1 if the sum is odd.

The resulting sequence of degrees is graphical, by exercise 7-105. Hence the answer
turns out to be | (3n® + 61)/16] when n is even; | (3n® + 8n — 3)/16] when n is odd.
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85. The quadratic function f(n, k) satisfies f(n, k) > f(n, k+1) if and only if k < 25+
Thus g(n, k) = max,<icny2 f(n,t). Every graph (t K1 @ K, _2¢) — K, for k <t < n/2
is non-Hamiltonian, with degree sequence t'(n — 1 — )"~ **(n — 1)" and f(n,t) edges.
Furthermore, every graph with d; < ¢ has at most t? edges that involve its first ¢
vertices and at most (";t) edges that don’t. Hence a graph with d; > k and more than
g(n, k) edges must have d; >t for k <t < n/2. And exercise 81 calls it Hamiltonian.
[Magyar Tudomdnyos Akadémia Matematikai Kutaté Int. Kozl 7 (1962), 227-228.]

86. Every graph ((t +1)K1 ® K,—1-2;) — K, for k <t < (n — 1)/2, is untraceable.
So we can achieve §(n, k) = max(f(n, k), f(n, [n/2] — 1)) edges, when 0 < k < [n/2].

On the other hand, by exercises 2 and 81, a graph is traceable whenever its degree
sequence d; < --- < d,, satisfies the following condition:

1<t<(n+1)/2 and di <t implies dpy1-¢ >n—t. (+)

In particular, a graph with minimum degree di > |n/2] is always traceable. If k <
|n/2] and (+) fails for some ¢, we have ds <t —1for 1 < s<#¢ds <nmn—t—1for
t<s<mn+l—-tjandds <n—1forn+1—t<s<mn Hence (d+ - +dn)/2 <
f(n,t —1) < §(n, k). (The last inequality holds because k < t —1 < [n/2] —1.)
88. (a) Let vg—---—w; be a longest path, and assume that [ < 2k. We will prove
first that there’s actually an [-cycle, using the fact that all neighbors of vg and v; must
lie on that path. Indeed, let {v; | i € I} be the neighbors of vo, and let {v;_1 | j € J}
be the neighbors of v;. Then I and J are subsets of {1,...,l}. They can’t be disjoint,
because |I| > k and |J| > k. Therefore there’s some j € I N J; and we have the cycle
Vvo—  —UVj—1 — U — - —U; — Vo-

But there can’t be an [-cycle! Sincel < n—2 and G is connected, there must be ver-
tices w and w’ not on the cycle, with v; — w —w’ for some j. So there’s a longer path.

(b) The result clearly holds for n <1+ 1, because the number of edges is < (}) <
nl/2. Also for larger n, if G isn’t connected; for if there are r components, with n;
vertices and m; edges in component j, each n; is less than n. By induction, the number
my + -+ + m, of edges is at most (n1 + -+ + n,)l/2 = nl/2.

Assume therefore that n > [ + 1 and G is connected. Let k = |I/2] + 1. Then
2k > 1, so there’s no path of length 2k. Hence by (a), there’s a vertex v of degree < k,
unless n = 2k = [ + 2. And v exists even in that case; otherwise exercise 81 tells us
there would be a cycle of length 2k, hence a path of length 2k — 1 > [.

Now G'\ v has at most (n—1)[/2 edges; so G has at most (n—1)I/2+k—1 < nl/2.

(€) [n/(I +1)] K11 & Ky mod (14+1), a graph with [n/(l 4 1)] components. (The
same number of edges is achieved by the much more interesting graph K;/o — K, _;/2,
if I is even and n > [ and nmod (I +1) € {1/2,1/2 + 1}!)

89. (a) Let I be the length of G, and consider a longest path vo — vi — -+ —u;
where v; — v, and p is as small as possible. The resulting cycle has length ¢ =141 —p;
so we assume that ¢ < 2k. A vertex vy will be called “bounded” if its neighbors all
belong to the cycle. We shall prove that v, is bounded whenever p < g < [

The idea will be to construct a longest path vg — -+ —v, — v 41 — - —1y,
where {vp41,...,0} = {vpt1,..., v} and v; = vg. Then vy must be bounded, because
! is maximum and p is minimum. Vertex v; is clearly bounded; so is vertex vp41.

Suppose vg+1 is bounded, and let the neighbors of vy4+1 and vg41 be {v; | 7 € I'} and
{vj |j€J}. Then IUJ C {vp41,...,v+1}, where we set vi41 = vp. Also [I|,|J] > k.

IficlTandi<gandi—1€ J,let vpUpyy ... V] = V41 ... Vgp1Vizl ... Upp1Vi...Vq.
Ifielandg<i<landi+1€J,let vvp1...0] = Vig1...Vig1Vg41...0i —
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Up41...0q. One of these constructions must work; otherwise we’d have ruled out at
least k — 1 of the ¢ potential elements of J, and we also have ¢ +1 ¢ J.

But {vp41,...,u} can’t all be bounded! If p = 0, the graph G would be discon-
nected; otherwise vertex v, would be an articulation point.

(b) The result clearly holds for n < ¢, because the number of edges is < (’2’) <
(n —1)c/2. Also for larger n, if G isn’t connected; for if there are r components, with
n; vertices and m; edges in component j, each n; is less than n. By induction, the
number mp + - - - + m, of edges is at most ((n1 — 1) +--- 4+ (n, —1))¢/2 < (n —1)c/2.

Assume therefore that n > ¢ and G is connected. If G isn’t biconnected, there’s an
articulation point v that divides G into a bicomponent G’ containing v and a connected
graph (G \ G') Uwv. If G’ has n' vertices, G has < (n' —1)¢/2 + (n — n')c/2 edges.

Finally, assume that G is biconnected and n > ¢. The proof follows as in exercise
88(b), because there exists a vertex whose degree is less than k = [¢/2] + 1.

() K1 — ([(n — 1)/(c = 1)] Kee1 ® K(—1) mod (c=1))- (The same number of
edges is achieved by a traceable graph: Put |[(n — 1)/(c — 1)] copies of K. and a
K14 (n—1) mod (c—1) in a row, then paste them together; %@%M if (n,c) = (12,4).)

Historical notes: These results and those of the previous exercise are due to
P. Erdés and T. Gallai [Acta Mathematica Academise Scientiarum Hungaricee 10
(1959), 337-356]. R. J. Faudree and R. H. Schelp [J. Combinatorial Theory B19 (1975)
150-160] proved that the lower bound of exercise 88(c) is sharp: The upper bound in
88(a) can be replaced by the size of those graphs. Similarly, D. R. Woodall [Acta Math.
Acad. Sci. Hung. 28 (1976), 77-80] proved that the lower bound in (c) is sharp.

90. True, except when G has no edges (and length 0). See exercise 2.

93. (a) True, unless there are fewer than 4 vertices.

(b) Graphs like @ and @ for n = 9 and n = 10 work in general.

[Mathematical Gazette 49 (1965), 40-41. These cubic graphs for even n are also
perfectly Hamiltonian. A more symmetrical graph, whose edges are k — (k + 1) and
k— (k +n/2) (modulo n), can also be used when n is a multiple of 4.]

95. (a) Powers of the “obvious” permutation o = (aoaiazasasasas)(bobib2bsbabsbe)
(cocieacscacscs) (dodidadsdadsds) will take dg +— d; for any j. There’s also a “sur-
prise,” p = (aobo) (a1b2) (az2d2)(asc2)(ascs) (asds) (acbs) (brbe) (bsds) (bad1) (c1da) (cods);
one can verify that up — vp whenever v — v. (Notice that co, c3, c4, and do are
fixed by p. Coxeter called this “an apparent miracle.”) When p is premultiplied and
postmultiplied by appropriate powers of o, we can take dop into any desired vertex.

The mapping a; — bs;, bj — cs5, ¢j = asj, d;j — ds;, namely the permutation
T = (aoboco) (a1b504a6b203) (b105a4b602a3) (cla5b4caa2b3) (d1d5d4d6d2d3), is another
automorphism that fixes dog. When dp is fixed, we must take its neighbor ¢y into a
neighbor; hence we can let Sog = {(),7,7°}. And when ¢, is also fixed, we can let
S2s5 = {(), p}, because by must map to itself or ag. Clearly Ssq = {()}.

Finally, can we move anything else when do, co, bo, ao are all fixed? Aha— there’s
just one possibility, namely 7%, which swaps a; <> a_j, bj <> b_j, ¢j <> c—j, d; <> d_j,

for 0 <j < 7. Thus Ss3 = {(),T3} and Sop =--- =81 = {()}
(b) Part (a) explains how to map v + do — v'.
(c) In fact, part (a) shows that u— v — w can be mapped to any v’ —v' —w'.
(d) Algorithm H quickly shows that there are no Hamiltonian cycles. But there
are 12 cycles, such as a1 —ap —as —as —a4s —az—a2s —dz —c2 — 6 —
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de —bsg — by — by —ds —c3—co—c4 —dg — by — by —bg — b5 — d5 —
Cs —C1 —d1 —ai, that omit (say) do.

Historical notes: The Coxeter graph was first discussed in print by W. T. Tutte
[Canadian Math. Bulletin 3 (1960), 1-5], who proved it non-Hamiltonian. Eventually
H. S. M. Coxeter wrote about “his graph” [J. London Math. Society (3) 46 (1983),
117-136], identifying its vertices with the (3) = 28 unordered pairs {z,y} of the set
D ={0,1,2,3,4,5,6,00}. His new names for vertices ag through d; were respectively
25, 36, 04, 15, 26, 03, 14; 34, 45, 56, 06, 01, 12, 23; 16, 02, 13, 24, 35, 46, 05; 0co, 1oo,
200, 300, 400, 500, 600 (abbreviating {z,y} by zy). If 0 < z < y < 7, the neighbors
of vy are {2z — y,3z — 2y}, {2y — ,3y — 22}, and {4z + 4y, oo}, using arithmetic
mod 7. He showed that the 72 — 7 = 336 automorphisms correspond to the mappings
{z,y} — {f(z), f(y)}, where f is a fractional linear transformation on D; that is,
f(z) = (ax + b)/(cx + d), where 0 < a,b,c¢,d < 7 and (ad — bc) mod 7 # 0 and either
c¢=1or (¢,d) = (0,1). (In this computation, z/co = 0, /0 = oo, and f(c0) = a/c.
The automorphisms o, p, 7 above correspond respectively to f(z) =z + 1, 1/z, 5z.)

100. (Using ideas of N. Beluhov.) When C is a cycle cover, let s; = 4[t;—t;4+1 € C]+
2[vj—wj41 €C] + [wj—wv;41 € C] encode its edges between indices j and j + 1
modulo g. A simple case analysis shows that s; # 0; s; € {1,2,4} = sj41 = T;
sj =3 = sjt1 € {5,6}; 5, =5 = sj11 € {3,5}; 5 =6 = s;41 € {3,6}
s; =7 = sj4+1 € {1,2,4}; and that the sequence s1s> . .. s, completely determines C.

Thus there are two kinds of covers: Type A, where s; is alternately 7 and an
element of {1,2,4}; or type B, where each s; is an element of {3,5,6}. Type A covers
arise only when g is even, and they have k 4+ 1 cycles when there are k occurrences of
sj = sj+2 # 7. Type B covers always have exactly 2 cycles.

Let g(w,z) = Y wlo=alt—Han1=anlnlg, —q,] summed over all ternary se-
quences aoai . ..an, and let h(w, z) be similar but requiring ag # an. Then g(w,z) =
3+wzg(w,z)+zh(w, z) and h(w, z) = 2zg(w, z) + (1 +w)zh(w, z). So we find g(w,z) =
31-(1+wz)/(1-(w-1)2)1—(w+2)2)) =2/(1—(w—1)2) +1/(1 — (2 +w)z).
Consequently the number of type A covers with k cycles is 2[w* 129/%] g(w,z) =
41(,;1£21)(2‘1/2_’c — (—l)q/Q_k) when g is even. (In particular, the number of Hamiltonian
cycles is 4(29/271 4 (=1)%/2).)

Turning to type B, let there be f.y» sequences ao...an, with ag = x, an =y,
and each a; € {3,5,6}, having no consecutive 33 or 56 or 65. We find by induction
that foyn = (2" — (=1)")/3 + 0uyn, where dyn = 1 when n is even and z = y,
0zyn = —1 when n is odd and zy € {33,56,65}, otherwise dy» = 0. Hence there are
fasq + fs5q + fesq = 27 + 2[q even] covers of type B.

103. Let H = vo — v1 — -+ — v, = vo. Every edge of G \ H has the form
eij = v;—wv; for some 0 <4 < j < n. When G is drawn in the plane with no crossing
edges, two edges e;; and e;;» with i < 7' < j < j' cannot both lie inside H, nor can
they both lie outside H. Therefore the graph E whose vertices are the e;;, with e;;
adjacent to e; ;; when ¢ <4’ < j < j', must be bipartite. Conversely, if E is bipartite,
G is clearly planar. (And bipartiteness is readily tested by Algorithm 7B.)

Historical notes: This criterion for planarity was discovered by G. Demoucron,
Y. Malgrange, and R. Pertuiset [Revue Frangaise de Recherche Opérationnelle 8 (1964),
33-47] and independently by W. Bader [Archiv fiir Elektrotechnik 49 (1964), 2-12], at
the time when planarity of printed circuits began to be important. A graph is planar if
and only if its blocks (biconnected components) are planar; and in practice, a block that
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isn’t a single edge is almost always Hamiltonian. Notice that the nonplanar graphs K5
and K3 3 have Hamiltonian cycles, and the corresponding graphs E aren’t 2-colorable.

105. (a) [n>3]n!/(2n), one for every pair {m, 7~} where 7 is a cyclic permutation.
(b) [m=n>2]n!?/(2n).

106. [This problem is scheduled to appear in the American Mathematical Monthly, so

the answer is “embargoed” until the deadline for reader submissions has passed.]

108. (a) Those are the only remaining ways to include vertex 28 in the cycle.

(b) & would form a short cycle; so 08 must be covered by 3.

(c) 14 must be covered by {$ and i¢; but then 26—14—06— 18—26

(d) We must choose 33 to avoid the contradiction, after which 93 leaves 23 —
04 — 25 and 05 — 24 — 16 as the only ways to cover 04 and 24. Then T is forced,
and almost everything is nailed down. Hence there are two Ways to complete a cycle
after the choices of (a), (b), and (d): either {93, 35, 34} or {5, %%, 33

109. (In this graph we have NAME(0) = 00, NAME(1) = 01, ..., NAME(29) = 29.)
MATE(0) is > 0; MATE(1) = 21; MATE(2) = 22; MATE(3) = 23; MATE(4) = —1.

111. TRIG needs at most n locations, because no vertex can be a trigger more than
once (when its degree drops to 2). ACTIVE needs at most ("}') locations, because
at most n — [ vertices are outer in level [. SAVE needs at most n? slots, where each
“slot” holds a mate and a degree, because there can be at most n levels.

112. (a) activate(u); activate(w); remarc(u, v); remarc(w, v); and makemates(u,w).
(b) activate(u); remarc(u,v); purge(w,v); makemates(MATE (w), u); deactivate(w).
Here ‘purge(w, v)’ means ‘remarc(NBR [w] [k],w) for k decreasing from DEG (w) —1 down
to 0, except when NBR[w] [k] = v’; it removes w from the lists of its non-v neighbors.
(c) activate(w); remarc(w,v); purge(u, v); makemates(MATE (u),w); deactivate(u).
(d) Do nothing if e = n. Otherwise purge(u, v); purge(w, v); makemates(MATE (u),
MATE (w) ); deactivate(u); deactivate(w).
113. Set z[k] < —1 for 0 < k < n. Then do this for 0 < k < n: If [EU[k]] < O, set
z[EULK]] < EV[K]; else set y[EULK]] < EV[k]. If z[EV[k]] < O, set x[EV[k]] < EU[K];
else set y[EV[k]] < EULk]. Finally set v; < 0, v2 < z[0], and for 3 < k < n set
v & (vk—2 = x[vr—1]? y[vk—1]: T[vk_1]).
115. Assume that n > 4. The root has degree n—2. The kth subtree, for 1 <k < n—2,
isT(n—1—k,n—3,n—2,...,2); and the last subtree is T'(n —3,n —2,...,2). Here
T (do,...,dr—1) denotes the complete tree with d;-way branching at level [ for 0 <1 < r.
(The kth subtree has (n —1 — ! of the (n — 1)!/2 solutions.)

1”%@@%%§ﬁﬁ@@ﬁ@?m%

is one of the six ways to do 14 suitable rotations of those binary trees. (These are
also the Hamiltonian cycles of an associahedron; see exercise 7.2.1.6-29.)

117. (a) True. (¢(G) = 0 if and only if U = ) disconnects G.)

(b) If |U|/E(G\U) # |U|/k(G\e\U), edge e joins two components of G\e; hence
kE(G\U) = k(G\e\U) — 1 (and the term for this U leaves the ‘min’ if k(G\U) = 1).

(c¢) This follows from the monotonicity proved in (b), since ¢(Cy) > 1.

(d) After cutting out m' vertices of the smaller part and n' vertices of the larger
part, the residual graph that’s left is connected unless m’ = m or n’ = n. The smallest
ratio (m' +n')/(m —m' +n —n') is m/n in such cases. (See exercise 105.)

(e) 4/3, by cutting 4 independent vertices. (Let N be the “net” graph, [{cgn\o the
smallest non-Hamiltonian tough graph is K1 — N. A 42-vertex non-Hamiltonian graph
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with ¢(G) = 2 was (surprisingly) constructed by D. Bauer, H. J. Broersma, and H. J.
Veldman, in Discrete Applied Math. 99 (2000), 317-321; it’s tough for Algorithm H!)

(Let N¢,m be the graph (t4+1)K,,, — K;; graph D in Table 1 is the special case
Ns,3. We have ¢(N¢,m) < t/(t + 1); hence Ny, is non-tough. Chvétal’s original paper
about toughness appeared in Discrete Mathematics 5 (1973), 215-228.)

118. (Solution by V. Chvétal.) Let the vertices of G = K, 0 K, be V x W, where
|V| = m and |[W| = n. Given p > 1, the smallest set U that makes k(G \ U) = p has
the form (V x W)\ (VixWi U---UV,xW,), where Vi U---UV, and Wy U---UW,
are set partitions of V and W. Hence |U| = mn — min; — -+ - — mpn,, where the sizes
|V;| = m; and |Wj| = n; are positive integers that sum to m and n. It is minimized
when m; =m+1—p, n1 =n+1—p, and all other m; and n; are 1; in other words,
the smallest such |U| is mn — (p—1) — (m+1—p)(n+1—p) = (p — 1)(m +n — p). Hence
(@) = min™ ™™ (p — 1) (m+n—p)/p= (m+n—2)/2.

p=2

119. They take v (£250) mod 47, where (a,b, ¢, d) = (20,15,17,27), (20,17, 15,27),
(31,19,21,16), and (31, 21,19, 16). (We have 1/oo =0, 1/0 = 0o, and co ++ < mod 47.)
120. (a) The automorphisms are generated by (i, j, k, u, v, w, z,y, 2, U, V,W, XY, Z) —
(j7 k? 1;7 V7 W7 UJ X7 YJ Z7 v7w7 u7 ZJ w7 y) or (i7j7 k? U7 ‘/7 W7 ZJ X7 YJ u) v7w7 y7 Z7 w)' The cy_
clese—U—t—u—2—y—V—j—v—X—z—W—k—w—Y —=x
and  —v—t1—U—2—X—0v—)—V—y—Y—vw—k—W-—2—27
are quickly found by Algorithm H (just 50 nodes in the search tree).

(b) Since G(()t) has a unique Hamiltonian path from z* to X®, this construction
uses it as a “gadget” to prevent any of the edges between @; and G(()t) from appearing in
any Hamiltonian cycle of G¢. The proof relies on the fact that ¢ —p: — Q¢ —qr — P;.

(See H. Fleischner, J. Graph Theory 75 (2014), 167-177, Lemma 1. He goes on
to define G4 and G5, thereby removing the degree-3 vertices Y and z in a similar way;
those reductions introduce many more cycles, yet only one of them includes the edge
u—U. Another trick removes y and Z, in a graph Ge that’s half of his tour-de-force!)

122. (a) For example, the triangles {b,e, £}, {g,k, 1}, {d, i, j} must correspond some-
how to the triangles {A,B, J}, {F,G,H}, {C,D,L}. Hence the other vertices {a,c,h} and
{E, I,K} must also correspond to each other in some order. The solution is

(a7 b7 C) d7 e7f)g) h7 i)j)k7 1) H (I7 J’ K7 H7 A) B) L7 E) F) G7 C’ D)'

[It’s unique, because this happens to be the “Frucht graph,” one of the smallest
cubic graphs that has no automorphisms except the identity. See R. Frucht, Canadian
J. Math. 1 (1949), 365-378. Halin graphs were introduced by R. Halin, Combinatorial
Mathematics and its Applications (Oxford conference, 1969), 129-136.]

(b) For each nonleaf of T except the root, introduce the chord i — ((j+1) mod q)
when its descendant leaves are x; ...z;. (The chords for b, c, d, g in the example are
0—2,2—5,5—0, 2—4, because zo...zs = efklhij.)

(c) Choose any region to be the root. The other regions and sides will form a
tree T', when we ignore the adjacencies between sides of C', because the other adjacencies
form no cycles. The children of each region in T are its adjacent regions and sides,
except for the parent, in (say) clockwise order. For instance, if we choose root I in the
example, the children of I might be (J,K,H); the children of J are (A,B); the children
of K are (L,E); etc.; we could also have decided to let the children of I be (K,H,J) or
(H,3,K). Or we could have chosen root K, with children (E,I,L) or (I,L,E) or (L,E, I);
then the children of I would be (H, J), etc.
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123. The answers for 4 <n < 16 are 1, 1, 2, 2, 4, 6, 13, 22, 50, 106, 252, 589, 1475,
computed by using definition (ii). See A. Howroyd, OEIS A346779 and A380362 (2025).
124. By induction on the size of T in exercise 122(i). The result is clear when tree T" has

depth 1. Otherwise some nonroot vertex v € T has d > 2 children u; ... uq4, all leaves.
Case 1: d > 2. Let Hp be the Halin graph obtained by deleting leaf u». Then

Hy has the subgraph

Since u> has degree 3, the Hamiltonian cycles of H have three possible forms:
U2 —V—x— Ul — U2, U2 —V— X — U3 —u2, U2 — Ul — X— U3 — U2,

where the middle part is a Hamiltonian path of Hy. And such paths in Hy arise from

Hamiltonian cycles that respectively include the edges v — w1, v — w3, u1 —wu3. So

H has cycles that include/exclude us — w1, up — u3, u — v. Furthermore, a Hamil-

tonian cycle of Hy that excludes wi — w3 must include u; — v — ugs; so we obtain

Hamiltonian cycles in H that include/exclude v — w1, v — us, and the edges from

and us to their anonymous neighbors. It’s easy to include/exclude the other edges.
Case 2: d = 2. Now obtain Hy by changing v to a leaf; in this case

Hj has the subgraph @ where H has the subgraph @@@ , letting up = v.

By threefold symmetry, the Hamiltonian cycles of H that avoid edge w; — u; corre-
spond precisely to the Hamiltonian cycles of Hy that avoid the “opposite” edge from v.

[Considerably more is also true; see Z. Skupiedi, Contemporary Methods in Graph
Theory (Mannheim, 1990), 537-555. Uniform Hamiltonicity was introduced by C. A.
Holzmann and F. Harary in STAM J. Applied Math. 22 (1972), 187-193.]

125. t97 — jor = 58 — 54 = 77800478005 —— M78006 7778007 -
127. GA is impossible, because the arcs AL — FL — GA and GA — SC—NC are forced.
128. C, H, P, and U. (See exercise 103.)

129. (In the modified step H11, we can terminate the loop immediately if we encounter
a vertex of degree 0 or 1.) The modified algorithm works surprisingly well: It wins
convincingly on graphs A, G, and U (58 My, 2762 Gpu, and 27 Gpu); it ties or does
slightly better on graphs C, H, and T'. It’s slightly slower on graphs B, P, and @; and
it’s more than 25% slower on graphs D, E, F, R, S.

On the 8 x 8 knight graph, min-remaining-values takes about 6.0 petamems to
find all 13 billion solutions, compared to 6.7 petamems for max-remaining-values.

130. In other words, if the present state of the computation can lead to a Hamiltonian
cycle C, the current graph G’ must have a Hamiltonian cycle C'. Indeed, that C’' can
be exhibited by replacing each subpath in C' by the corresponding virtual edge of G'.

(Conversely, every Hamiltonian cycle of G’ that actually uses every virtual edge
corresponds to a unique Hamiltonian cycle C' of G. There might, however, be other
Hamiltonian cycles in G'. This graph G’ was defined by W. Kocay in his paper of 1992,
but he doesn’t seem to have realized its full potential for pruning the search.)

One can, for example, discover whether or not G’ has an articulation point by
using Hopcroft and Tarjan’s efficient depth-first algorithm for bicomponents (Algo-
rithm 7.4.1.2B, or BOOK_.COMPONENTS in The Stanford GraphBase).
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133. No! Let C be a cycle (0,0) = vo —v1 — - —w,2 = (0,0) for which u—wv is
in C if and only if ua—wva is also in C, where (i, j)a = (4, %) denotes reflection about
the main diagonal. Let £ > 0 be minimum with v, on the diagonal; that is, vy = vra.
Then vg4+1 = vk—1a, because vi_1a — vr« is the other edge of C that touches vy.
Similarly, vg+2 = vr_2a, and so on; we find vor = vo. Hence 2k = n?, and only two
elements of the diagonal are in C. Contradiction.

The same argument shows more generally that no nontrivial automorphism « of
a rectangular board can be a symmetry of a knight’s cycle when « has fixed points.

134. Let (¢,j)a = (m—1—14, j), and let the cycle begin (0,0) = vo—v1 — - — v} =
(m—1,0). Notice that m is even; otherwise ((m — 1)/2,0) would be a fixed point of a.
Therefore k is odd. Case I: via = vg41. Then vg42 = va2a, ..., and vy, = vy = vo.

So mn/2 = k is odd. Case 2: vp—1 = via. Then vp_; =vjafor 0 < j <k =20+1.
But we can’t have both v;4+1 —v; and vi41 = via.

[Similar conditions apply to central symmetry, as we’ll see in exercise 136. These
results are due to G. P. Jelliss, Chessics 2,22 (Summer 1985), 64.]

135. Let graph G have N = mn/2 vertices, one for each pair {zy,Zy} of equivalent
cells; here 0 < z < m/2, 0 <y < n, and T = m —1 — z. The neighbors of
{zy, Ty} in G are {z'y’,z'y’'} for all knight moves zy — 'y’ with 0 < 2’ < m and
0 <4y < n. (For example, when m = 10 we have {30,60} — {41, 51}, since 30 — 51
and {51,41} = {41,51}.)

Given a Hamiltonian cycle {00,00} = vo — v1 — -+ — vy = {00,00} in G,
there’s a unique knight path 00 = zoyo — z1y1 — -+ — znyn with z,yr € vy for
0 < k < N. We must have zxyn = 00, because N is odd. Therefore we get an m x n
knight’s cycle by defining znyryn+r = Tryr for 0 <k < N.

136. We'll need names for these two kinds of symmetry. The right-hand species of
symmetry is called Bergholtian, because it was discovered by Ernest Bergholt [British
Chess Magazine 38 (1918), 104, 195; see also The Games and Puzzles Journal 2,14
(16 December 1996), 234]. The left-hand species is called Eulerian, because Leonhard
Euler gave many examples of such cycles in §25-§34 of his 1759 memoir.

As in answer 135, we define a graph G with N = mn/2 vertices; but this
time the vertices represent pairs {zy, Ty}, where Ty = (m — 1 —z)(n — 1 — y). The
neighbors of {zy, Ty} are, similarly, the vertices {z'y’, z'y’} obtained from knight moves
xy —x'y’. Now, however, there’s a slight problem: There are two “self-loops,” because
we can have vy — z'y’. (More precisely, we have up — wuo and u1 — w1, where
wo = {(252) (252), (2)(25)} and = {(272)(2£2), (2)(252)}.) It may seem best
to simply disallow those self-loops; after all, a self-loop can’t be in a Hamiltonian cycle.

But further analysis reveals that the Bergholtian solutions correspond precisely
to the Hamiltonian paths between up and ui. Indeed, from a path uwo = vo — -+ —

uvny—1 = u1 in G, we get xoyo — -+ — n_1yn—1 with each zryr € v, where zoyo =
(252)(%52). Then woyo — - — &N-1yN-1 — TN-1YN—1 — - - - — Tofo — LoYo is
a Bergholtian cycle.

On the other hand, a Hamiltonian cycle in G, say {00,00} = vo— -+ —ovn =
{00,00}, will lead similarly to 00 = xoyo — - - — @~ yn. And it will yield an Eulerian

cycle if and only if zxyny = 00, which happens if and only if N is odd.

We conclude that if n mod 4 = 2, we should add the special edge up —wu1 to G.
Then its Hamiltonian cycles will correspond precisely to all of the centrally symmetric
m X n knight cycles; they’re Bergholtian if the special edge is used, Eulerian otherwise.
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But if n mod 4 = 0, there aren’t any mxn Eulerian cycles. We get the Bergholtian multigraph
ones by adding two special edges, uo — ! —u1, where ‘!’ is a new vertex. de Jaenisch

137. Again we construct G with N = mn/2 vertices {zy,Ty}. But there’s a new
complication: G is a multigraph, with four edges that occur twice! Indeed, when z =
oty =224k o' =22 andy = 22 +k, where 0 < k < 4and k' = (k+2) mod 4,
we have both xy —z'y’ and zy — z'y’. Hence {zy, Ty} — {z'y’, z'y'} is a double edge.

For example, G has 32 vertices when m = n = 8, namely %, %, ..., %, &9, &
-y 60, .-, 10- (We write ‘%" as a convenient shorthand for vertex ‘{wz,yz}".) The
double edges for this case turn out to be 22 — 34 2235 21 32 28 3% and

G also has 76 single edges. Algorithm H needs fewer than 800 megamems to visit each
of G’s 2,451,830 Hamiltonian cycles, one of which is

00 21 35 30 26 07 15 36 20 01 13 34 24 05 17 25 04 16 37 32 11 03 22 14 06 27 31 10 02 23 33 12 00
77 56 42 47 51 70 62 41 57 76 64 43 53 72 60 52 73 61 40 45 66 74 55 63 71 50 46 67 75 54 44 65 77 -

This cycle doesn’t use any of the double edges; so we can uniquely extract a corre-
sponding knight path that begins at 00, proceeding from left to right:

00 21 42 30 51 70 62 41 20 01 13 34 53 72 60 52 73 61 40 32 11 03 22 14 06 27 46 67 75 54 33 12 00 .

Hmmm. Bad luck. Only 32 cells have been touched before the knight has returned to
its starting point, 00; hence this Hamiltonian cycle of G doesn’t correspond to a valid
knight’s cycle of the full 8 x 8 board. (Its complement tours the other 32 cells.)

Let’s try again. Here’s another Hamiltonian cycle that’s double-move free:

00 21 35 30 26 07 15 36 20 01 22 14 06 27 31 10 02 23 04 16 37 25 17 05 13 34 24 03 11 32 33 12 00
77 56 42 47 51 70 62 41 57 76 55 63 71 50 46 67 75 54 73 61 40 52 60 72 64 43 53 T4 66 45 44 65 77 -

This one brings better news when we extract the corresponding knight path:
00 21 42 30 51 70 62 41 20 01 22 14 06 27 46 67 75 54 73 61 40 52 60 72 64 43 24 03 11 32 44 65 77 ;

aha, it ends in 77! We get a full knight’s cycle by appending the complementary steps.

Consider now a Hamiltonian cycle of G that does use one of the double edges:

00 21 35 30 26 07 15 36 20 01 13 05 17 25 04 16 37 32 11 03 24 34 22 14 06 27 31 10 02 23 33 12 00
77 56 42 47 51 70 62 41 57 76 64 72 60 52 73 61 40 45 66 74 53 43 55 63 71 50 46 67 75 54 44 65 77 -

(The culprit is ‘35 — 227, aka ‘22 — 32°.) Knight-path extraction is now ambiguous,

00 21 42 30 51 70 62 41 20 01 13 05 17 25 04 16 37 45 66 74 53 34 =22 14 06 27 46 67 75 54 33 12 00 ,

because 34 can be followed by either 22 or 55. We’d better choose 55; that will
complement all of the subsequent steps, and we’ll end up with 77 as desired.

Next let’s look at the path in G that corresponds to a famous knight’s cycle that
C. F. de Jaenisch [Traité des applications de I’analyse math. au jeu des échecs 2 (1862),
35-37] proudly called “seven-fold reentrant”:

00 21 33 32 24 03 11 30 35 23 04 16 37 25 17 05 13 01 20 36 15 07 26 34 22 10 02 14 06 27 31 12 00
77 56 44 45 53 T4 66 47 42 54 73 61 40 52 60 72 64 76 57 41 62 70 51 43 55 67 75 63 71 50 46 65 77 -

This one has three double edges, hence 2* = 8 ways to resolve its ambiguities:
00 21 33 45+ 24 03 11 30 42+ 23 04 16 37 25 17 05 13 01 20 41 62 70 51 43+ 22 10 02 14 06 27 46 65 77 .

Four of those eight will produce 77 at the right.

Can all four of the double edges participate? Yes, but such cases are much rarer:

00 21 35 23 04 16 37 32 24 03 11 30 26 07 15 27 06 14 02 10 31 34 22 01 20 36 17 05 13 25 33 12 00
77 56 42 54 73 61 40 45 53 74 66 47 51 70 62 50 71 63 75 67 46 43 55 76 57 41 60 72 64 52 44 65 77 -

Eight of the sixteen knight-path extractions are therefore fruitful in
00 21 42 +23 04 16 37 45+ 24 03 11 30 51 70 62 50 71 63 75 67 46 34 » 22 01 20 41 60 72 64 52«33 12 00 .

Altogether the Hamiltonian cycles of G include exactly 1076876 without double
edges, of which 536360 are unlucky; plus (978316, 341706, 52192, 2740) that have
respectively (1, 2, 3, 4) doubles. That makes 1076876 — 536360 + 978316 + 2 - 341706 +
452192 + 8 - 2740 = 2432932 centrally symmetric tours, which form 608233 sets of 4.
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138. (Each value of m is accompanied by the totals for n =3,5,7, ... .)

Vertical symmetry. m = 6: 0, 4, 530, 20582, 994660, 45129332, 2082753196.
m = 10: 4, 2266, 18480426, 56275825112. m = 14: 24, 722396, 539780910056. m = 18:
276, 238539296. m = 22: 2604. m = 26: 25736. m = 30: 248816.

Eulerian symmetry. m = 6: 0, 0, 526, 22210, 1477090, 100121632, 6606415888.
m = 10: 0, 1212, 16330492, 49470226538. m = 14: 16, 498926, 529843978930. m = 18:
124, 167812624. m = 22: 1404. m = 26: 12824. m = 30: 126696.

Bergholtian symmetry. m = 6: 0, 0, 38, 3724, 363594, 19156740, 1265006728.
m = 10: 4, 494, 3346312, 19308979910. m = 14: 8, 123028, 101557666784. m = 18:
152, 47966908. m = 22: 1200. m = 26: 12912. m = 30: 122120.

(We might as well also record here the other cases of Bergholtian symmetry.
m = 8: 0, 22, 21968, 17072474, 8868635684. m = 12: 0, 8858, 452675596. m = 16: 48,
3145086. m = 20: 352. m = 24: 3752. m = 28: 34768. m = 32: 346128.)

(Algorithm H’s running time for these graphs G is roughly 500 mems per solution.
The totals for (m,n) = (6,15) and (14,7) were obtained by Algorithm E.)

139. Let G be a graph with 25 vertices, one for each class of four cells {zy, yZ, g, jz}
that are rotationally equivalent, where & = 9—x. Adjacency is defined by giraffe moves;
we must omit the self-loops from {23, 37, 76, 62} and {32, 26,67, 73} to themselves. Fur-
thermore, we remove one of the two edges between {22, 27,77,72} and {33, 36, 66,63}.

This 51-edge graph has 56 Hamiltonian cycles (found in just 33 Kpu); but the
actual number is 100, because 44 of those cycles include the double edge. That yields
100 ways to cover a 10 x 10 board with symmetrical Hamiltonian cycles.

A cycle and its transpose are both counted. Hence there are exactly 50 essentially
distinct solutions. [They were first discovered by T. W. Marlow, shortly after he had
enumerated the 415902 essentially distinct 10 x 10 knight cycles with 90° symmetry.
See The Games and Puzzles Journal 2,16 (15 May 1999), 288-291.]

141. Multiply the number of Hamiltonian cycles of the 8 x8 knight graph (= 13 trillion)
by 64 (to place ‘1) and by 2 (to place ‘2’): 1,698,222,644,548,096.

142. (a) If B is the wedge at 44 in C, then 7 is the wedge at 34 in the reflection. And

ag = Bp. So BT = aupppT = asTp = &4. Continuing in this way we obtain as@s@sa;.
(b) @ararasas. (c) as@2a1aq.

143. dDdD reflects to cCcC; the canonical bunch is CcCc, by (25).

144. False. In its equivalence class {abAB, bABa, ABab, BabA}, the smallest is ABab.

145. It would force a 4-cycle with two edges at the nearby corner.

146. aaaa for a € {B,C,D,E,F,G,H,I,J,K,w,y}; afap for af € {AL,Aa, Al1,Bb, Cd, Dc,
Eh,Fg, Gf,He, Ij,Ji,Kk,La,L1,al,wx,yz}.

148. For example, the fixed point ajasazas = @s@2a1 @4 occurs if and only if a; = as,
a2 = @2, and a4 = a4 (28 -4 - 4 cases). Summing over all eight fixed points yields the
answer (28" + 28 +28% +28 + 287 +28-4 -4+ 28% +28-4-4)/8. Similarly, without ‘a’,
it’s (27 4+ 27 + 272 + 27 + 272 +27-3-3 + 272 +27-3-3)/8.

149. A census based on the 28* possible central wedges works well, as it did for knights.
(Notice that a giraffe’s wedge a subtends the angle ' = arctan % ~ 61.93°, which is
significantly wider than the angle 90°—6’ subtended by its wedge c.) As with knights, we
deal with 66771 canonical bunches; but this time we exclude code A instead of code a. It
turns out that 33975 of those canonical bunches —more than half! —have no solutions,
often because of subtle constraints that lead to nontrivial search trees. Of the remaining
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32796 cases, bunch CdCd has the fewest solutions (110); bunch Baby has
a median number of solutions (847479); and bunch aaaa has the most
(= 4.5 billion). (Bunch aaaa, which has multiplicity 8, also happens to
be the graph G in Table 1 whose central wedges define a Cossack cross,

one of which is pictured here. Bunch CdCd has multiplicity 4.) The total
number of tours, taking multiplicities into account, is 1,018,865,516,976.

151. Now a bunch is defined by a sequence of eight wedge codes aif1azB2a38304 34,
where a1 and (3 are the wedges at 03 and 04; then a» and > determine the wedges at
30 and 40 in a similar way, after we rotate the diagram 90° clockwise, etc. Therefore
aifrazfrasBzaafa, axfBrasfsaafiarfi, asPsaafiarfrasfBe, asfaarfrazBrasfs are
equivalent bunches. (The only codes that can appear in the top row are {A,B,C,E, G, I}.)
For example, al-‘Adll’s closed tour (1) belongs to bunch EGABCAIG, which is
equivalent to ABCAIGEG, CAIGEGAB, and IGEGABCA, as well as to EGEIBCAB, EIBCABEG,
BCABEGEI, and ABEGEIBC after reflection. These bunches all have 83,205,370 solutions;
the census looks only at their canonical (lexicographically smallest) bunch, ABCAIGEG.
There are 210,771 canonical bunches altogether. But 29,984 of them have no solu-
tions, usually for obvious reasons. For example, a1 32 = AB forces a 4-cycle; a1 S2a384 =
IIIT forces a 6-cycle; a1 82334 = CCCC forces a 12-cycle, for three choices of each of 5,
a2, B3, and ag. Canonical bunch CCCECECE has a unique solution; and so does CCCECCGE!
At the other extreme, EGEGEGEG has a whopping 3,046,049,272 solutions. The median
canonical bunch, AEEIECGC, has 859,162. (1,676,968,941,608 solutions are visited.)

152. Again we’ll have eight wedge codes ai1f1a2B2a383a4B4 for the eight designated
wedges. We'll base o181 on the wedges at 15 and 26; then a2 will define the wedges
at 21 and 12, after rotating the board 90° so that 21 — 15 and 12 — 26; and so on.
Bunch a;81a282a383a484 will then be equivalent to bunch s B2z BsaaBacxr 1, as well
as to 54074530735207251 @i under reflection. The edges 15 — 07 — 26 are always present;
therefore the possible wedges at 15 are (D, F, i, K, w) and the possible wedges at 26 are
(c, g, J, k, x), in increasing order of their angles. Reflection takes D — c, F — g, etc.

For example, al-‘Adli’s closed tour (1) belongs to bunch KcFgFxiJ, which is
equivalent to FgFxiJKc, FxiJKcFg, and iJKcFgFx, as well as to iJwgFgDk, wgFgDkiJ,
FgDkiJwg, and DkiJwgFg after reflection. These bunches all have 11,550,362 solutions;
the census looks only at their canonical (lexicographically smallest) bunch, DkiJwgFg.

There are 5% bunches, of which 49225 are canonical. However, it’s easy to see
that a bunch with «;8; = Kk forces a 4-cycle; we might as well omit all such cases.
That leaves us with 244 bunches, of which 41790 are canonical (see exercise 148).

Among those 41790, bunch wxwxwxwx has the fewest solutions, with only 2112;
bunch 1JiJiJiJ has the most, with 5,609,440,068; bunch DkFgFkig is a median, with
11,856,607. Altogether 1,692,674,826,245 solutions are visited.

154. The interconnecting steps of (9) are 2..14, 16..49, 51..59, and 61 ..64. Rotating
the diagram by 180° shows that this is type XII.

155. Only types I, II, III, X, and XI are unchanged by transposition (reflection about
a diagonal). The other eight types must be split into two subtypes: IV and | A
XIII and XIIIT, yielding 21 altogether. [The original 13-type classification in Fig. 124
is due to G. P. Jelliss, The Games and Puzzles Journal 2,16 (15 May 1999), 288.]

156. (357732461664, 166744766276, 483660455968, 498605611352, 333697459256,
812965778520, 1547585659448, 986042635376, 1513974300904, 1183196364192,
806039244560, 2491945752744, 2085173920272) for types (I, II, ..., XIII).
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[These results are unexpected. Why does Type II occur less than half as often
as Type I7 But the totals are otherwise roughly in line with the prediction that a type
with k-fold symmetry will occur about 1/k times as often as the unsymmetrical types
XII and XIII. (The respective values of k are (8, 8,4, 4,4,2,2,2,2,2, 2,1, 1).)]
157. (a) 431,873,707,240. (b) 0! (No explanation for this lack of solutions is known.)

(c) Although six full classes force 48 of the 64 edges, there actually are 6720
solutions. For example, Fig. A-19(c) has all the edges of classes A, C, E, F, G, S.

[G. P. Jelliss devised Fig. A-19(b), whose moves of slope +2 solve (a), in Chessics
2,22 (Summer 1985), 66. He observed that a magician who memorizes a single solution
to (a) can perform the following trick: A spectator places a white knight and a black
knight anywhere on the board, a knight’s move apart; the magician then captures the
black knight with the white knight, the slow way, after first visiting every other square.]
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exceptional knight’s cycles.

158. We conduct two censuses, first to determine the maxima and unknown minima
and then to count the extreme solutions. Since extreme solutions are rare, the second
census needs to examine fewer than 2000 bunches. Most of the minima are obvious and
findable by hand; Jelliss proved (surprisingly) that at least two 90° moves are needed.
Proof. Suppose there’s a tour without any right-angle moves. We must make the
eight moves of class A in exercise 157. Edge 01 — 22 is also forced; otherwise we’d have
20 — 01 —13. Similarly, all eight edges of class G are forced. Then 03 — 15 is forced,
because we can’t have 11 — 03 — 24; we must have all of class D. Hence 02 — 14
(and all of class C) is forced. The central wedges are now determined, giving us all of
class U. We must also have class B, because 13 — 32 makes a right angle. That forces
class M, which forces class E. It’s a nice kaleidoscopic pattern, with 8-fold symmetry;
but it’s not a tour! Sharper analysis shows that a single 90° angle is also impossible.
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Each of the six possible angles « can occur surprisingly often in a single tour.
Their maxima, (29, 30, 39, 33, 25, 19), are achieved respectively (136, 432, 48, 176, 32,
112) times among the 13 trillion solutions, and examples appear in (g), (h), (i), (j), (k),
(1) of Fig. A-19. On the other hand the minima, namely (4, 0, 2, 0, 0, 0), aren’t difficult
to achieve, except for Jelliss’'s construction in Fig. A-19(p); they occur respectively
(4073251792, 193895168, 1152, 316388348, 312777068, 196464725912) times.

It’s also interesting to group angles together into acute angles (< 90°), obtuse
angles (> 90°), and orthogonal angles (90° or 180°). These groups can occur as many
as (42, 47, 42) times, while their minima are (4, 4, 4). (See Fig. A-19(m, n, o) and
(s, t, u).) The maxima occur (56, 464, 7128) times, and the minima are also fairly rare:
(28068, 4, 400624). Indeed, Fig. A-19(n) is essentially unique.

Connoisseurs also group together the diagonal angles {6,180° — 6} and the azial
angles 90°+ 0, which occur at least (4, 4) and at most (39, 46) times. Those extremes,
achieved in (300312, 1964, 344, 80) ways, are exhibited in Fig. A-19(m), (q), (v), (w).

The least and greatest sums of all angles are 52-90°— 66 =~ 4458.8° and 84-90° +
106 = 7928.7°, illustrated in Fig. A-19(d) and (e), achievable in just 88 and 64 ways.

Historical notes: Problems 1 and 2 in Jelliss’s magazine [Chessics 1,1 (Walton on
Naze, March 1976), 2] asked only for the six maxima and minima; now at last we can
ask and solve the more detailed questions. Only two of the maxima had been known
before 2025. Prior to that, the best published constructions were (26, 38, 30, 22) for
(6, 90°, 90°+6, 180°—0) [G. P. Jelliss, in Chessics 1,5 (July 1978), 4-5; J. Recreational
Math. 27 (1995), 237], and 26 for 90°— 6 [J. J. Secker, in Chessics 1,7 (March 1979),
10]. Astonishingly, a tour achieving the correct value 19 for 180° had already been
given by V. Onitiu in The Problemist: Fairy Chess Supplement 1,12 and 13 (June and
August, 1932), pages 74 and 82! And H. J. R. Murray, on page 79 of an unpublished
manuscript [The Knight’s Problem (Oxford: Bodleian Library, 1942), viii 4+ 283 pages],
had found the “herringbone” tour of Fig. A-19(h), actually in another context.

159. (Solution by Filip Stappers.) The maximum number of cells that can be tarnished
t times turns out to be respectively (20, 32, 46, 24, 20, 12, 6, 4) for t = (0, 1, ..., 7).
Figure A—20 exhibits champion tours that achieve those maxima, symmetrically when
possible. Such winners are rare gems, especially when 1 < ¢ < 5: They occur only (9748,
16, 8, 56, 4, 28, 372348, 904604) times, respectively, among the 13 trillion possible tours.
(Indeed, the solutions for t = 2 and ¢t = 4 are unique, except for rotation and reflection.)

A cell that’s tarnished by seven of its neighbors is called a star, and 4-star cycles
have an interesting history. One of the first major treatises on knight’s tours, Balliere
de Laisement’s 74-page Essai sur les Problémes de Situation (Rouen, 1782), presented
the 4-star tour of Fig. A-20(j) as his second example of how to construct a solution
“mechanically” (pages 16-20). He also found a different 4-star tour (Planche A#5).
C. F. de Jaenisch [Traité des applications de I'analyse mathématique au jeu des échecs
2 (1862), §96; Pl. IV, Fig. 7] presented Fig. A-20(h), the first known symmetrical
example. And F. Hansson [Fairy Chess Review 6,111 (February 1948), solution (iv) to
problem 7531] presented Fig. A—20(i), a symmetrical example with only two of the four
stars adjacent to a corner. The four cells adjacent to a corner are always tarnished at
least four times. It turns out that 2517414323 tours have no cell tarnished more than
four times, among which 2213509 have only those four cells quadruply tarnished.

The sum of all tarnish counts is 128 in every knight’s cycle; hence the mean is
always exactly 2. What about the variance? Answer: The sum of squares is always at
least 308 and at most 478 — achieved in 152 and 64 ways, such as Fig. A-20(k) and (1).
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The minimum number of tarnish counts equal to ¢t = (0, 1, ..., 7) is respectively
(4,0,7,0,0,0,0, 0); and Fig. A-20 shows that each of those minima does occur. Such
examples aren’t very interesting except when ¢ = 0 (that is, when all but the corners
are tarnished) or ¢ = 2 (because the lower bound 7 is a surprise). When ¢t > 2 they’re
not at all rare, having respectively (40666596356, 80536, 960, 40696972, 26645983660,
523634871024, 4873809930916, 11539340580216) exemplars.

160. George Jelliss, in Chessics 2,19 (Autumn 1984), 25-26, exhibited a tour in which
10 moves are unintersected. He also showed that some move must be intersected at least
four times. When the author asked him in 1992 about the fewest total intersections, he
responded with a tour that has only 76 — but said that such a problem was definitely
“a task for [your] computers.” Our computers are now ready for this challenge.
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Fig. A—21. Record-breaking intersection statistics of closed 8 x 8 tours.
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Every knight move can be intersected by at most nine others, and by at most
seven others in any given tour. (See FGbook page 497.) To speed up the census, we
want a fast way to discover all of a tour’s self-intersections. The obvious way does (624)
table-lookups; but there’s a nice bitwise trick that needs only 64: The edges of any
given tour can be represented in four 64-bit words called NW, NE, SW, SE, where each
of those words has 16 bits from each of the four diagrams in exercise 157. (Edges of
class U appear in all four of those words; edges of classes {C,D,I,J,0,P,S,T} appear
in two of them.) Given an edge v — v, we can assume that v is not one of the four
central cells. Then if v is in the upper right quadrant, say, the number of edges that
cross u—uv is ¥(NE & m., ), for some 64-bit mask m, with v(m,) < 9.

A census conducted by Filip Stappers has uncovered many surprising facts about
intersections. For example, there’s an essentially unique cycle that achieves 16(!) un-
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intersected moves. There are 8-5 cycles that have only 69(!) total intersections. And—
again uniquely(!) —it’s possible to have a total of 126. (See Fig. A-19(f,r,x). The tour
with 126 crossings had been known [FGbook page 495], but not its uniqueness.)

Every 8x8 knight’s cycle has intersections of all four types, indeed at least 14 —]"s,
8 ~s, 4 ><s, and 8 ><’s. Examples of those minima, which are attained in (376, 40,
896, 8384) ways, appear in Fig. A-21(a, b, c,g). On the other hand, Fig. A-21(d,e,f,j)
exhibits remarkable (and even more rare) tours where each flavor of intersection is
maximized, namely (59, 44, 31, 30) intersections, in just (16, 120, 1160, 16) ways.

Figure A-21(j) is particularly striking, because all but four of its 64 moves are
half of an ><! (The author had conjectured, in FGbook page 502, that such a tour
was essentially unique; this, however, is the other solution. Incidentally, N. I. Beluhov
[arXiv:1310.3450 [math.CO] (2013), 7 pages] had proved that no m x n knight’s tour
consists entirely of >< moves.)

Figure A-21(1) is perhaps even more startling: All but four of its moves are part
of at least one ~_! And all but ten of the moves in Fig. A-21(i) are part of at least
one ><.! Moreover, Fig. A—21(k) goes all the way: Every move in that cycle is part
of at least one ~{ intersection, indeed sometimes three or four! Altogether (688, 1864,
10408) tours achieve those remarkable feats of Fig. A-21(1), (i), and (k).

Finally, Fig. A-21(h) is one of 48 cycles for which only 23 moves are part of a —]'
(Instances of the 40 and 896 cycles for which only 16 and 8 moves are part of an ~<_
and part of an ><_, respectively, are left to the reader’s imagination.)

163. Each cell of the board can be partitioned into 21 subregions, and we can compute
the winding number of each subregion by choosing an appropriate point in that subre-
gion and counting how often the tour crosses a straight line to the left of that point.
(Downward counts +1; upward counts —1.) The area of each subregion is a multiple
of 1.—§0, so the calculation can work entirely with smallish integers.

[See the online program SSHAM-WINDING-PREP. This way to represent tours
by shaded regions was discovered by George Jelliss, who called them “knight’s tour
mosaics” and communicated his idea to the author on 26 December 1992. In that same
letter he asked if the minimum shaded area could be computed. Yes, now it can!]

The fascinating extremal results are exhibited in Fig. A-22, where tours (a)
and (b) attain the minimum and maximum shaded area (L2 and 2212), while (c) at-
tains the maximum swept area (150). All three of those solutions are unique, except
for rotation and/or reflection. The 49 individual winding numbers at interior corners,
shown below each figure, yield the total swept area when we add them up, as proved in
exercise 164. Fig. A—22(d) shows one of the 254,652 tours for which those 49 numbers
take only two distinct values (possibly all 1 and 2). If we restrict consideration to the

129,937,524,256 tours whose swept area is zero, the min and max shaded area (1838 and

120
2828 ) occur uniquely in tours (e) and (f). Tour (g) is one of 3,378,536 cases where the in-
terior winding numbers vary over a range of ten digits (in this case —5 through +4). And

the amazing and unique example (h) has only six nonzero interior winding numbers!

164. In fact this is true of any oriented polygonal cycle C whose vertices are a subset
of the midpoints of square cells, provided that none of the lines between consecutive
vertices goes exactly through a corner between cells. (See The American Mathematical
Monthly 101 (1994), 682-683; 104 (1997), 669; the proof consists of showing that such
cycles can nicely be “spliced together.”)

165. Yes; in fact, a census shows that there are 103,361,177,080 solutions(!). The
maximum number of moves with a given slope, in an 8 x 8 knight’s cycle, is 34; there

December 4, 2025

author
author
unique
Beluhov
Jelliss
mosaics
author



90 ANSWERS TO EXERCISES 7.2.2.4
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A = 4
202111 1011121 1212221 11000001
020000 1111321 2 444442 0100110
000010 1111111 245653 2 0011101
100020 1111111 1457541 1101011
000221 2313332 24565 42 1011100
102210 1111341 2 443442 0110010
000201 1011211 1212121 1000011
(e) () (h)
O # o323
y S % S S
1010211 1101111 1220121 10I000T1
0201002 0111110 142000 2 000O0O0OOO O
2000020 1111111 2210101 000O0OOO
01 0000O00O 0001101 1012231 0000O0OO0ODO
1000020 1111111 2113541 0000000
01 000T1?2 0111110 1223342 000O0O0OO0OO O
10000T1T1 1011101 1220121 10000T11
Fig. A—22. Record-breaking winding number patterns of closed 8 x 8 tours.

are 4116 such tours, one of which is Fig. A-19(f). The minimum number is 2, achievable
in 59124 ways (and easily findable by removing 40 edges from the knight graph).

[Parmentier’s early survey of knight’s tours was published by Association francaise
pour 'avancement des sciences as a supplement to the proceedings of their Congres de
Marseille (1891), 24 pages and xi plates; Fig. 23 on plate iii exhibited an open tour
with 36 moves of slope —1/2.]

170. Vertices 15 and 16 are endpoints; 17 is inner; 18, 19, 20 are bare. That forces a lot:
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(When Algorithm E proceeds to 15-configs, these two answers yield 17-cycles of G17.)
171. (%), when vertex 1 has degree d. (They’re the possible wedges of vertex 1.)
172. There aren’t any, unless n = 1. (The only possible endpoint is ‘n’.)

173. From 1101 and 1111 we get 101 and 111. (The classes of 17-configs have three-
digit names, because F17 = (18,19,20).) From 0110 we get nothing. Class 1001 yields
additional members of 101; class 1011 yields additional members of 111; class 1212
yields an additional class, 111. Each of the three 17-classes therefore has size 10. (And
ultimately they’ll account for the thirty 20-cycles, as in the next exercise.)

174. In the 17-class 111, vertices 18 and 19 are endpoints of a subpath, while vertex 20
is inner. Joining 18 — 19 completes a cycle of Gag. (Similarly, 101 —15 11 19 Cao.)

176. (a) Let k in the sum be the number of unmarked elements.
(b) 2T,—1 ways for n to be in a 1-cycle; (n —1)T,—2 ways for it to be in a 2-cycle.
(c) There are exactly T, possible names. When ¢ = 2, for example, the five possi-
ble names 11, 10, 01, 00, 11 correspond naturally to the five possible marked involutions.
[See V. H. Pettersson, Electronic J. Combinatorics 21 (2014), #P4.7, Theorem 13.
His §2.4.1 gave methods for ranking and unranking the nth order marked involutions.
Marked involutions occur also in many other contexts; see OEIS A005425.]

177. The methods of Section 5.1.4 apply, with Ty, (k) = 2"~ **¢,(k). For example,
‘2(k + 1)’ becomes ‘8(k + 1)’ and ‘2(n — \/n)’ becomes ‘+n — /n’ in Eqs. 5.1.4-(43)
and (44). Appropriate changes to the subsequent formulas lead to

T, — %nn/2efn/2+2ﬁfl(1 " %n71/2 " O(n’3/4)),

a bit more than \/n!. One can also use the saddle point method as in exercise 7.2.1.5-51.

178. The largest possible digit a; of a marked involution is |g/2], while the largest
possible digit of a MATE table is g.

179. (a) (Assume that error checking is unnecessary.) Set HIT[k] < 0 for 1 <k < ¢/2.
Then do this for k =1, ..., q: Set j « ag; if 7 < 0, set MATE[k] < j; otherwise if
HIT[j] = 0, set HIT[j] <« k; otherwise set MATE[HIT[j1] < k, MATE[k] < HIT[j].

(b) Set t «+ 0 and do thisfor k =1, ..., ¢: Set j < MATE[k]; if j < 0, set ar < j;
otherwise if j > k, set t <~ ¢t + 1, aj ¢ ap < t.

181. (i) Suppose m + 1 = uj, where j > 0. Then (u1,...,uq,) is a permutation of
{U(zy---,uflr}, Ir=j,and o = ¢ —1 = |F,_1 N F,|. (ii) In this case m + 1 = ug,
(uz,...,uq) is a permutation of {uj,...,uy }, 17 =0, and ¢’ = qo.

183. The only O-class is ‘0’. Figure A—23, too big to find by hand in a reasonable time,
shows all relations « +,, 8 that hold in Kg; we get the relations for K5 by ignoring all
class names that don’t end with 0 (and by erasing the final zero when they do).

There also are cases where o >, Cp: 11000 —2 Cs; 01100 —2 Cy; 1100 —3 Cly;
0111 =3 Ca; 0111 =3 Ca; 0111 =3 Ca; 0110 =3 Cs; 1110 =3 Cs; 1110 3 Cs;
011 >4 Cs; 111 >4 Cs; 111 >4 Cs; 110 >4 Cs; 11 5 Cﬁ. (They account for the
facts that the number of Hamiltonian (3,4, 5, 6)-cycles is (1;142;2424246; 24242+
6-+12+12+24) = (1, 3,12, 60), in agreement with exercise 105(a).)

184. The (m—1) class a has two forms: (i) 01*11°11°0" ™ *~*~“"2 where a,b,c > 0
and p=m+a+b+c+2. (i) 11%11°0" "™ *=*~! where a,b > 0 and p = m+a+b+1.

December 4, 2025

wedges

Pettersson

border structure, see marked involution
ranking

unranking

OEIS

saddle point method

notation >,



92 ANSWERS TO EXERCISES 7.2.2.4

Fig. A-23. Transitions between 0-classes, ..., 4-classes when Algorithm E does K.

185. Encoding vertex v by ‘[v >m]’, we see that F(m,r,s,t) = m!r!G(m,r,t), where
G(m,r,t) is the number of solutions to the following problem: “Construct ¢ binary
strings from m Os and r 1s, where each string begins and ends with 0 and has no two
consecutive 1s.” Equivalently (after replacing ‘10’ by ‘1’), “Construct ¢ binary strings
from m — r 0s and r 1s, where each string begins with 0.” Equivalently, “Construct
t binary strings from m — r — ¢ 0s and r 1s, where each string might be empty.”
Equivalently, “Construct a binary string of length m — ¢, containing exactly r 1s, and
factor it into ¢ possibly empty substrings.” Hence G(m,r,t) = (") (7).

[The classes in exercise 184 have r = a+b+cand t = 1, hence size (m;2) (m—1)!rl.
If we fix p, the contributions to C, from (i) are therefore f(p) = Zf;é((pf:”l) X
(p—r—3)! (r+2)!)/2; from (ii) they are g(p) = f;g((p7:73) (p—r—2)!(r+1)). Neither
f nor g seems to have a simple closed form. But the fact that f(p) + g(p) = (p — 1)!/2
leads to the identity 37 —; (n— k)KL ((27%) + (".*7")) = nl. Ira Gessel observes that
the summand is (n — (k — 1))! (k — D)!(7_}) — (n — k)1 k!(" "), which telescopes.]

187. Set OFR[k] < FR[k] for 1 < k < q. (At this point we always have ¢ = ¢'.)

Set t «— IFR[m+1] and g« g — 1. If t < ¢ (thatis,if m+1isin F,._1 but isn’t
the last), set <~ FR[¢], FR[0] < m + 1, IFR[m+1] + 0, FR[g] + m, IFR[m] « gq,
FR[t] < z, IFR[z] < ¢. Otherwise set FR[0] <= m + 1, IFR[m+1] « 0, FR[t] < m,
IFR[m] « ¢; and if ¢t # g, set ¢ < ¢ + 1 (thereby retaining the last element of Fi,,_1).

Set qo < gq. For all vertices v > m such that m —wv, do this: Set ¢t < IFR[v]; if
t > q, set © < FRIql, FRIq]l < v, IFR[v] < ¢, FR[t] < =, IFR[2z] < ¢, ¢ < ¢+ 1.

Now do a simple insertion sort to establish (30): For k = 2, ..., go—1, sortin(k, 0);
for k=qo+1, ..., q—1, sortin(k, qo). Here ‘sortin(k,!)’ means “If FR[k] < FR[k — 11,
do this: Set t «+ FR[k], j + k — 1; repeatedly set FR[j + 1] < FR[j1, IFR[FR[51] «+
j+1,and j < j— 1 until j <!l or FR[j] < t; set FR[j + 1] <— ¢ and IFR[t] < j+ 1.7

To compute o and 7 we use arrays SIG and TAU, where jo = SIG[j + 1] for
j > —1: Set SIG[0] « —1, SIG[1] < SIG[2] « 0, TAU[1] « 0; SIG[j + 11 «
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1+ IFR[OFR[j—1]] and TAU[SIG[j + 111 « j, for 1 < j < ¢'. (Step E4 uses those
arrays by setting BMATE[k] < SIG[1 + OMATE[TAU[k]1] for 1 <k < qo.)

Set r <— 0. Then, for all vertices v > m such that m — v, set NBR[r] < 1+IFR[v]
and 7 < 7+ 1. (At this point we should also set up FMAP; see answer 193.)

189. In E3, set t + [ + 0 and do this loop: Set p; + t and j + 0; exit the loop if [ = ¢;
while OMEM[#] [j] = 0, set j < j+1; set t < OMEM[t]1 [51, [ < [+ 1, aj + j — 1; repeat.
In E8, begin the following loop with [ < ¢': Set t + p;_; and j + a] + 2; while
j < A and OMEM[t][j] = 0 set j « j+ 1;if j < A, set a;  j — 1, t < OMEM[¢] [5],
and exit to the E3 loop; otherwise set [ <— [ — 1, and repeat this loop if [ > 0.
191. Use exercise 179(b) to compute the class name a1 . ..aq. If p = 0, set MEM[0] [0] «
MEM[0][1] < MEM[0]1[2] < 0 and p < 1. Set ¢t «+ 0, [ « 1, and do this loop: Set
t' <« MEM[t] [a; + 1]; exit if [ = ¢; if ' > 0, set t < t', otherwise set MEM[p] [j] + 0
for 0 < j < A, MEM[t]1[a; +1] < p,t < p,and p < p+ 1; set [ « [ + 1 and repeat.
Then if ' > 0, add OWT [p},] to WT[#']; otherwise set w <= w + 1, MEM[¢] [aq + 1] < w,
WT [w] < OWT [p;,]. (In practice we should also ensure that a; +1 < A for 1 <1 < g,
and that p and w don’t overflow memory bounds.)

192. True. Suppose OMATE[1] = k > 0. Then 1 < k < ¢'; and u}, = uge = u},, by
(36) and (37), because 1 < ko < qo. Hence BMATE[ko] = OMATE[ko7T]o = OMATE[k]o
by (38). And OMATE[k] = 1. [“The mate of m in an (m—1)-config becomes bare in the
basic mate table of the associated m-config.”]

193. (This is the “heart” of Algorithm E.) Set MATE[k] < BMATE[k] for 1 < k < gq.
Do nothing if MATE[4] < 0 or MATE[j] < 0. (Vertices u; and u; must not be inner.)

Case 1: MATE[i] =MATE[j] =0. Ifi=j, do the cycle test below. (That can happen
in step ET! See exercise 192.) Otherwise set MATE [¢] < j, MATE[5] < ¢, and contribute().

Case 2: MATE[i] =0 <MATE[j] =k. Set MATE[:] < k, MATE[k] <, MATE[5] + —1,
and contribute(). (Vertex u; becomes inner.)

Case 8: MATE[j] =0 <MATE[:] =k. Set MATE[j] <k, MATE[k] < j, MATE[:] + —1,
and contribute(). (Vertex w; becomes inner.)

Case 4: MATE[i] = k > 0 and MATE[j] =1 > 0. If j = k, do the cycle test below.
Otherwise set MATE[k] < [, MATE[I] < k, MATE[i] < MATE[j] « —1, and contribute().

Cycle test: A cycle cannot be in an m-config; but the new connection between
u; and u; might complete an m'-cycle in G,,r. The latter occurs if and only if (i) all
vertices < m' are inner; and (ii) all vertices > m' are bare. To implement this test,
first set MATE[¢] <~ MATE[j] < —1. Then find the smallest k > 1 such that either k > qo
or MATE[K] > 0 or FR[k — 1] #m + k. If FR[k — 1] = m + k, and if MATE[%K'] = 0 for
k <k < g, add OWT[p;,] to CYCLm + k — 11.

(Proof sketch: Frontier vertices uy, for go < k < ¢ cannot be in the cycle, because
their only neighbor < m is m itself. Consequently we must have FR[k — 1] =m + k
and MATE[k] = —1 for 1 < k < m' —m; also MATE[k] =0 for m' —m < k < q.)
195. In general, the digits a; in a class name belong to the set {1,0,...,]q/2]} when
the frontier has size g. So we need A > |g/2| + 2, unless we’re lucky enough to have a
graph for which the digit |g/2] is never needed. The 8 x 32 knight graph has ¢ < 17;
hence A > 10 is sufficient. (And necessary, as seen in exercise 198.)
196. There are four solutions, one of which is shown. (Consequently Algo-
rithm E sets CYC[26] < 4. These are the smallest cycles that it finds. It also sets
CYC[28] <« 12, CYC[30] <« 212, CYC[32] <« 0, CYC[34] <« 50, CYC[36] < 4525,
CYC[381 « 101730, CYC[40] « 44202, CYC[42] < 66034, CYC[44] < 2408624,
CYC[46] <« 69362264, CYC[48] «+ 55488142, etc.; see OEIS A383664.)
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197. board(p,q,0,0,5,0,0) is a graph of knight moves with pq vertices named ‘i.j’,
and they appear in lexicographic order: 0.0, 0.1, ...,0.(¢q—1), 1.0, ..., (p—1).(¢g—1).
So the frontier ﬁq,1 has 2q + 1 vertices, namely 0.(¢g—1) together with 1.j and 2. for
all j. Furthermore, all frontiers have at most 2q + 1 vertices, regardless of p.

Therefore Algorithm E fares poorly when g > p. Conversely, with the graph
board (32,8,0,0,5,0,0), we do get the desired frontiers (41) —but we must realize that
the vertex for row ¢ and column j has the SGB name ‘j.¢’, not ‘¢.j5".

198. (a) For mmod8 = (0,1, ..., 7), respectively (1187898716, 411619845, 565860079,
1335885051, 1525183477, 1964090779, 2084942265, 1977893280); that’s about (4.20,
1.76, 1.48, 2.90, 2.56, 3.27, 2.51, 2.37) contributions per class.

(b) Ounly rarely: (2, 0, 0, 4, 5, 2, 4, 2), respectively(!). For example, the

class 1233245165788764; (iii) 655752828068, occurring first in class 1233456146788725;
(iv) 51496469055038078292944, occurring first in class 1233456146788725.
(d) (i) 2320688; (ii) 225507902921136492; (iii) 17497529967689449592414967040;

(iv) 1340796579503792035593107143277586339820; all in class 0111111001000010.
(e) m = 71, occurring first in class 12345316507684287.

200. (a) 1231432004000000; 12342100430000000; 12314403200000000; 12344321000-
000000; 12332140040000000; 12213400430000000; 11234204300000000. (The canonical
notation for class names is not intuitive! For exercises such as this, it would be better
to keep track of the endpoints of the four subpaths: If ap is abcdbadc000000, then oy
is bedbadc00a000000, and a2 is cdbadc00ab0000000, etc.)

(b) 1123145056040236; 11234505634012600; 12345056340120600; 12340452306-
105006; 12303112045050040; 12021310450500403; 10112304505004023.

201. 1234156473762858, 1234156743267858, 1234567483812765, 1234567843218765.

202. If oy = a1...a16 and ¢ = max{ai,...,a16}, a periodic tour based on ag will
change direction 2t times, because it crosses column m/8 in both directions, for each
of t subpaths. Thus we want ¢t = 8, as in exercise 201.

But none of the 8-classes in answer 201 is suitable for ao; they have no interme-
diate a1, ..., ar. The only way to sustain a class with ¢ = 8 is to make eight horizontal
X cuts (see exercise 160), and this requirement severely restricts ap.

There s a suitable 16-class, namely ap = 1212343456567878; and we can use it
to obtain the solution shown.

Many other suitable classes exist. We might, for
example, have ap = 1234562178654387. But that one is
difficult to reach — it arises first as a 40-class! In any case
all solutions will look the same: They’re mostly X cuts,
except for the patterns at the very left and the very right.

204. Let OMEM now be simply an array of octabytes. We shall use a completely different
way to set OMEM and OWT in step E2, after setting ¢’ < ¢, p + w + 0: Set p’ +
w' < PACK <+ s <« 0; here PACK is an octabyte, and s is the number of bits that
have been packed into PACK. Call compress(0,0), where compress(l, p) is the following
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recursive procedure: If [ = ¢, set OWT[w'] + WT[p] and w’ < w’ + 1. Otherwise set
b Yoo 2F[MEMIp] [k #0]; if s + A > 64, set OMEM[p'] < PACK, PACK < b, s < A,
and p' < p’ + 1; else set PACK <— PACK + (b < s) and s < s + A; then for 0 < k < A,
if MEM[p] [k] # 0, call compress(l + 1,MEM[p] [k]1). When compress(0,0) finishes, set
OMEM[p'] < PACK. Conclude step E2 by changing FR, IFR, qo, and q as before.

Steps E3-ES8 are effectively replaced by an inverse process, which is invoked by
setting s < p' < w' + 0, PACK + OMEM[0], and calling uncompress(0). Procedure
uncompress([) sets up the address digits a . .. a;, and controls the activities as follows:
If I < ¢, set b« (PACK>s) & (22 — 1), s « s+ A; if s+ A > 64, set p’ + p' + 1,
PACK < OMEM[p'], and s < 0; then for 0 < k < A, if b& 2% # 0, set a; + k — 1 and
call uncompress(l + 1). On the other hand if I = ¢', uncompress(l) goes to step E4
(which transfers to either E5, E6, or E7). Our new algorithm no longer needs py, ...,
py; instead, we use OWT [w'] where the former algorithm used OWT [p;,]. When control
reaches the former step E8, we simply set w’ < w' + 1, and exit from uncompress(q’).

205. (a) One 5-cycle (0—1—2—3—4—0); two 9-cycles (0 —1—1"—3 —
0—2—2—3—4—0and0—0 —2'—2—1—1—3—3—4—0).
[The Petersen graph is known to be the smallest “hypohamiltonian graph,” namely the
smallest non-Hamiltonian graph that becomes Hamiltonian when any vertex is deleted.
See D. A. Holton and J. Sheehan, The Petersen Graph (1993), Chapter 7.]

(b) (1, 1,1, 5, 2,1, 4, 30, 120) for m = (2, 3, 4, 5, 6, 7, 8, 9, 10). [The 7-path is
00—0—4—3—2—1—1']

206. Since each frontier gains an element, we need A = 11 to handle the frontiers of
size 18 (see exercise 195). And the number P of nonlief trie nodes will now be roughly
an order of magnitude larger than before; hence P will exceed 23?2, and each address
of a trie or lief node must now be a 64-bit integer. (We were lucky in (40) to have P <
1798400809, comfortably less than 23'.) So trie nodes will now occupy 88 bytes, not 40.

The maximum P,, during the computation of (44) turned out to be approximately
15.5 billion, and the maximum class size C,, was about 7.9 billion. Hence RAM usage
per trie was about 1.7 terabytes. However, the compression scheme of exercise 204
reduced the total to 1.9 terabytes for both tries.

207. Let h be a hash function that takes partial keys ai...a; for 0 < I < g and
a; > 1into [0..8], say, and use nine trielike structures stored in MEM[0], MEM[1], ...,
MEM[8], WT[0], WT[1], ..., WT[8]. To find the weight for a given key a:...aq, start
with ¢ < | <~ 0 and do this loop while I < ¢g: Set t <~ MEM[h(a; ...a;)1 [t] [a;+1 + 11,
I < 1+ 1. The desired weight is then WT[h(a1 ...aq)1 [t].

With high probability the set of needed prefixes a1 ...a; with h(ay...a;) =k will
be approximately 2%°/9, for 0 < k < 8. And 2%/9 is comfortably less than 22.

209. The new vertex co, mentioned in the text, is considered to be vertex n+1, adjacent
to all previous vertices. We put it into the first position of every _extended frontier;
for example, the extended frontiers (31) become Fy = (21,1), Fi = (21,2,5,17),
F, = (21,3,5,17,19), F5 = (21,4,5,17,19,6), ..., Fig = (21,20), with w1 = n+1
and us = m + 1. Thus we have

E17. [Initialize.] Set PATH[m] < 0 (which is a “bignum”), for 2 < m < m. Set
FR[0] + n+ 1, IFR[n + 1] < 0, and FR[k] <« IFR[k] < k for 1 < k < mn. Set
MEM[0] [j1 < MEM[1][j] <« OMEM[OI[j] «- 0 for 0 < j < A. Also set m « 1,
q < 2, MEM[01[1] « 1, MEM[1]1[1] « 1, WT[1] < 1 (a “bignum”), NBR[0] « 1.
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The other steps, similarly, have only minor alterations: In answer 187, change ‘FR[0] «
m + 1, IFR[m+1] < 0’ to ‘FR[1] < m + 1, IFR[m+1]1 « 1’; also ‘sortin(k,0)’
becomes ‘sortin(k, 1)’. To compute o and 7, set SIG[0] < —1, SIG[1] < TAU[2] « 0,
SIG[2] < TAU[1] « 1; SIG[j + 1] « 1 + IFR[OFR[j—11] and TAU[SIG[j + 111 « j,
for 2 < j < ¢'. And the final paragraph of answer 187 now begins with r < 1.

Steps E41 and E7" use OMATE[2] instead of OMATE[1].

Finally, the cycle test of answer 193 begins by setting MATE [¢] <— MATE[j] + —1.
It does nothing if MATE[1] > 0 (that is, if co isn’t inner). Otherwise it finds the smallest
k > 2 such that either k > qo or MATE[k] > 0 or FR[k — 1] #m+k—1. If FR[k — 1] =
m+k —1, and if MATE[K'] = 0 for k <k’ < ¢, it adds OWT[p},] to PATH[m + k — 2].

(We could also make the cycle test update CYC when MATE[1] = 0 (oo is bare).)

210. In the case m = 3, an analogous proof is on page 532 of FGbook.

211. Yale — Harvard — Brown — Columbia — Princeton — Penn — Dartmouth —
Cornell — Yale. (If Penn had beaten Brown, this would’ve been the only such cycle.)

212. False: Consider a —b—c—ra, t —y—2z—z, {a,b,c} —{z,y, z}.

213. (Solution by M. Fischetti and D. Salvagnin.) A Hamiltonian cycle is impossible

because the 14 teams in the Ivy League plus the Patriot League (Bucknell, Colgate,

Fordham, Holy Cross, Lafayette, Lehigh) dominate only 13 teams (all but Holy Cross).
But here’s a Hamiltonian path, found by integer programming:

Pittsburgh — Louisville — San Jose State — Washington — Arizona State — Baylor — Texas
Tech — Arkansas — Tulsa — New Mexico State — UTEP — Air Force — Hawaii — Brigham
Young — Miami — Syracuse — Michigan State — Rutgers — Boston College — Navy — Akron —
Fullerton — Long Beach — UNLV — Pacific —+ Utah State — Fresno — Utah — Colorado
State — Oregon — Oregon State — Arizona — UCLA — Stanford — Notre Dame — Colorado —
Oklahoma — Kansas — Oklahoma State — Iowa State — Missouri — Texas Christian — Southern
Methodist — Rice — Houston — Texas A&M — Texas — Penn State — Florida State —
Florida — Mississippi State — Memphis State — Tulane — Louisiana State — Miami of Ohio —
Eastern Michigan — Kent State — Ohio University — Toledo — Western Michigan — Bowling
Green — Cincinnati — West Virginia — Virginia Tech — East Carolina — Temple — Wisconsin —
Ball State — Central Michigan — Kentucky — North Carolina — Maryland — Louisiana Tech —
Southwestern Louisiana — Northern Illinois — Kansas State — New Mexico — San Diego State —
Wyoming — Washington State — California — Southern California — Ohio State — Indiana —
Auburn — Southern Miss — North Carolina State — Georgia Tech — Nebraska — Minnesota —
lowa — Purdue — Northwestern — Illinois — Michigan — Mississippi — Georgia — Alabama —
Tennessee — Virginia — Clemson — South Carolina — Duke — Wake Forest — Vanderbilt —
Army — Holy Cross — Fordham — Harvard — Cornell — Lafayette — Penn — Dartmouth —
Yale — Brown — Columbia — Princeton — Bucknell — Lehigh — Colgate.

(Integer programming systems have been highly tuned for the traveling salesrep prob-
lem, of which this is a special case. By contrast, Algorithm B is hopelessly inefficient
when given football-to0l10.gb; it needs a good way to reject bad partial solutions.)
215. The 145152 solutions are found in 69125228 mems (476.3 mems per cycle).

216. We may assume by symmetry that k = 1. The 2"-cycles are 0cg — lag — lag —
Oa; — -+ — lagn-1_1 —> 0ayn-1_1 — 0ayn—1 — Ocvo, where (o1 ...ayn-1_;) is
an (n — 1)-bit Gray cycle. (See Section 7.2.1.1.)

217. The lexicographically smallest of 16 solutions is 1234 — 1324 — 1342 — 1432 —
1423 — 1243 — 2143 — 2413 — 2431 — 2341 — 3241 — 3421 — 4321 — 4231 —
4213 — 4123 — 4132 — 4312 — 3412 — 3142 — 3124 — 3214 — 2314 — 2134 —
1234. (Notice that every other step swaps the middle elements. This is dramatically
different from the sequence 7.2.1.2—(3) of “plain changes”!)
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218. (a) Twelve steps 1234 —» 2134, ..., 4321 — 3421 are forced (one for each even
permutation). The other twelve steps are binary choices that form four groups of three:
P <= 1243 — 1423 <= 1324 — 1234 <= 1432 — 1342; P, <= 2134 — 2314 <=
2341 — 2431 <= 2413 —2143; P3 <= 3142 — 3412 <= 3214 — 3124 <= 3421 —
3241; Py <= 4123 — 4213 <= 4231 — 4321 <= 4312 —4132.

If i # j we must have P; V P;; otherwise there’s a 4-cycle. (For example, =P; and
— P, implies 1234 — 2134 — 2143 — 1243 — 1234.) Hence if, say =P;, we must have
P> A\ P; A\ Py. But then 4321 — 3421 — 3241 — 2341 — 2431 — 4231 — 4321.

(b) (i) 4144380 cycles, found in 6.7 Gp; (ii) 6364081880 cycles, found in 6.1 Ty.

220. (a) It appears to be difficult to find any of them without computer help. The
lexicographically least is (Boo K22 B11 N33 K41 R30 K32 N21 Bo2 R2o N23 Boa Rao Quq Kaz Q34
Ro1 Qg3 B13 Qa4 Ka2 N31 R1o Q4 Ni2 Boo); the lexicographically greatest is (Boo Q44 Rao Ka3
Q34 Ro1 Qog N23 K2 N33 Qi4 Ka1 Rso K32 Na1 Boz Qog Biz N3i Rig N1z Boa K22 Bi1 Rag Boo).-

(b) Again, solution by hand doesn’t seem easy, although Algorithm B’s search
tree has OIlly 99 nodes: (Boo Na4 Qo3 R1a N13 B34 Qp5 No3z R2a Qps Kao Q39 Ka1 Baz R33z Bas
K21 Bio No1 K20 Ni1 R32 K31 Roz Qoo Boo). Only Qgy —>Kao —> Qg is forced.

[This exercise was inspired by a puzzle game introduced by D. S. Dillon, J. Farrell,
and T. Rodgers, Homage to a Pied Puzzler (A K Peters, 2009), 125-128.]

Stappers has also constructed examples with pieces noo qy; Bo2 bos Ko4 kos
belonging to two players, uppercase and lowercase; in this N10 d11 912 N13 Bia N5

. . . K20 R21 k22 R23 Kag Qo5
variant, each move must capture an opponent’s piece. A nice Q30 r31 b3z n33 B3y ras
two-player puzzle with three pieces of each kind is shown. R40 Q41 r42 n4a3 kaq bas

Boo Qo1 Ro2 Bo3
221. For example, Algorithm B needs no backtracking to solve this gem: 510 K11 K12 K13
N30 N31 N32 N33
223. (a) True: z1...ZTn—1%, is preceded by Zpz1...Zn—1 and £, 1 ... Tn_1.

(b) Every Hamiltonian cycle of SB(m,n) corresponds naturally to an m-ary
de Bruijn cycle (see 7.2.1.1—(54)). The correspondence is in fact one-to-one when m = 2.

(¢) 00—01—11—12—---— (m—1)(m—1) — (m—1)0— 00 is forced.

(d) (000100201202210211011121222) is lexicographically least, where this nota-
tion means that 000 —001 — 010 —- - - — 122 — 222 — 220 — 200 — 000.

(e) If x:1w2...xn —> T2...wpay is in C then x] @2 ... Ty — T2...TpT1 IS DOL
in C, hence ] x2... ¢ —T2...2uz] isin C.

(f) Using Algorithm B we find (2, 12, 88, 7510, 675714, 459086712). (If C is
any cycle, we obtain another by adding 1 to each digit, mod m. We can also go from
T1...Lpn—>Y1..-Yn tO Yn ... Y1 —> Tp ... Z1. Thus we obtain equivalence classes whose
size is a divisor of 2m. It can be shown that no C has the property that z:1z2 ...z, —
T ... xpx1 = cfad .. xt —af ... ate]. But nontrivial automorphisms do exist;
for example, when m = 4 the cycle

(0001002003103203313323030130231201212322022132102113110111222333)

is unchanged if we add 2 to each entry, mod 4, then reverse and complement. In this
sense there are 4 - 8 + 8 - 7 solutions for m =4, and 6 - 275 + 12 - 56172 for m = 6.)

224. Algorithm B proves this when n = 4. But its search tree even in that small case
has 3 million nodes; there’s no evident way to rule out tons of feasible near-solutions.

225. More generally, construct one in SB(m,n) for all m > 3 and n > 2.
227. (i—p)(§'—q) > (i'—p)(j—q). (Equality occurs when the three points are collinear.)
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228. Distances between crossings aren’t preserved under rotation. For example, the
north-pointing line has nearly equal distances {8,8,9,9,9,10,11}, but the distances for
the south-pointing line are {7,7,9,9,10,11,11}. The distances for lines pointing east
or west are {6,7,8,8,11,12,12}.

229. (a) Yes, if and only if m and n are sufficiently large and at least one of them is
odd. (If m + n is odd, one knight move actually straddles the pivot.)

(b) The in-degree of (0,0) is zero when n > 2m — 1.

(c) Examine carefully the ways that a knight can cross the plumb-line.

(d) To count coils, give the length 1 to arcs that cross the plumb-line, otherwise
length 0; modify Algorithm B so that it reports the total length of each cycle. When
m < 6 there’s just one solution: Wg(33) = 1. When m = 6, we have Wy'g 5) =2, W(s)

18 = 2.144-4, W) = 72 = 2:244:17, WY = 22 = 2.1445, Wﬁ(?o =32 = 2:2+4.7, and
all the tours have 5 coils. When m =7 the nonzero cases are W77) =142=2-1+4-
14817, Wi =8 =4.2; W710_20—4 5; WiT)y =48 =2-444-10. When m =8,
We T =1120; Wiy = 324; and W9, = (4,1340,57784) for ¢ = (5,6,7). When m = 9,
W) =146 =2-1+4-2+817; W%y = (32924, 499220, 3070788) for ¢ = (7,8,9).
And when m = 10, W), = (226436, 5196594, 72217878) for ¢ = (7,8,9) (found in
121 Gp) Examples of highly symmetric tours appear in Fig. A-24. (Incidentally,
Wi, = (5936420, 436960600, 23419337498, 12215200) for ¢ = (7,8,9, 10).)

230. True. (For example, take p = ¢ = 0 and (i,5) ¢ (¢,j') in answer 227.) The
same is true of left-right or top-bottom reflection. (Hence, as in the undirected case,
the 8 x 8 tours form equivalence classes of sizes 4 and 8; we have 1120 =4-4+8-138.)

231. (Solution by N. Beluhov.) To get ¢ coils, we can set up an integer programming
problem that finds cycle covers of the digraph—subsets of the arcs for which every
vertex has in-degree 1 and out-degree 1—together with additional constraints that
force every “ray” from the center to be crossed exactly ¢ times, unless that ray runs
through a vertex. When a short cycle C' appears in a solution, add further constraints
to eliminate all cycles that are isomorphic to C. Keep doing this until there are no
more solutions, or time runs out, or a Hamiltonian cycle is found. A solution to (b) for
n = 12, shown in Fig. A-24, was obtained in this way on the 48th trial.

On the other hand, no cycle covers for (a) were found when nmod8 = 4 or
n mod 8 = 6; perhaps they do not exist. Several successes with n/2 coils were obtained
for n = 16 and n = 18, including the spectacular 18 x 18 example with 90° symmetry
that appears in Fig. A-24. (In such tours the knight’s polar angle must increase slowly.)
232. (Solution by N. Beluhov and F. Stappers.) If n > 28 is a multiple of 4, it’s
possible to start with a cycle that consists of n disjoint cycles that form n/4 “braids,”
then to stitch them together cleverly while preserving counterclockwise motion. The
32 x 32 example in Fig. A-24 exhibits the general pattern.
235. (a) The following constructions are readily generalized to show in fact that
Xom,2n > 0, Xom41,2m+1 > 0, and Xopmy3,2m4a >0, for 0 <m < m:
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Beluhov

Fig. A—24. A gallery of whirling knight’s tours with special qualities.

(b) (Solution by N. Beluhov.) Assume that m < n. If m is odd, every coil must
pass through exactly one of the vertices {(Z51,k) | 25+ < k < n}; hence ¢ = |n/2].
If n is odd, every coil must pass through exactly one of {(k,25*) | 0 < k < -1}
hence ¢ = |[m/2]. When both are even, every coil must pass through exactly one of
{(k, 2t2=2 — k) | 0 <k < Z}; hence ¢ = m/2.

(c) This is a consequence of (b): If n is odd, we must have m = n. Otherwise ¢ =
3 < mT‘H, because the plumb-line can be crossed only from mT‘H vertices in column 3.

(d) Let m be even. Every whirling king’s tour must include the arcs v(k,j) —
v(k,7) — (0,1) for 0 < k < m/2 and 0 < j < |n/2] — m/2 — 1 — k, where v(k,j) =
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(k,m — 2k —1 — j). The proof is by induction on k: Vertex v(0,j) is in the top row
and has out-degree 1, so its move can only go west (left). When k > 0, the move from
v(k, j) can’t go northeast or north to a vertex whose predecessor is already known. Nor
can it go northwest, except perhaps when j has its maximum value; but that move is
also impossible, because the northwest vertex must belong to a coil for smaller k.

Similarly, the arcs from (k, 2k 4+ 1+ j) must go west. And symmetrically, the arcs
from (m—1—k,n—2k—2—j) and (m —1—k,2k + 1 + j) must go east.

Now we obtain an m X (n — 2) tour by removing two arcs in each row, namely the
two forced arcs that are nearest the center. We also shift all of the “extreme” vertices
in a row (those that don’t lie between the two removed arcs), one column towards the
center, with their arcs., For example, here’s how a “random” 8 x 16 tour becomes 8 x 14:

236. The nonzero values are X33 = 1; X440 =8 =4-2, Xu5 =72 =2-4+4-16,

Xig=Xss=50=2-9+4.8 X47=200=2-8+4-46; X5, =128 =816, X546 =
144 = 2-12+4-30; Xe,6 = 6480 = 2-6+4-63+8-777, Xe7 = 545278 = 2-611+4-136014,
Xe6,8 = 308637 =1-25+2-898 +4-76704; X7 7 =1552960 =2-4+4-94+ 869072,
X788 = 9210632 = 2 - 2146 + 4 - 2301585; Xgg = 237059136 = 4 - 12708 + 8 - 29626038.
Here are some of the attractive examples with different kinds of 4-way symmetry:

. XS
3 &

240. True. The edges of (53) are clearly distinct when the vertices are distinct, unless
perhaps [ = 2 and to = t2. But even then, to lol; ¢1 is never the same as t; 1102 to.

~
<D

N 1A
NN VY
VLN

A A NCIN

241. Let the edges be w loli = [112 y [203 x I3ls4 v, with arbitrary arrows lo, ..., l4.
242. (a) (i) 2" 'n!; (i) 2" (n — 1)L

(b) (i) n!; (i1) (n —1)!- [n even].

(c) (i) (n+1)!/2 (at most one introverted edge); (ii) (n—1)! (no introverted edges).

244. Create bidirected graphs without directed edges, as in (54). Then problem (a)
has 20293176 solutions (found in 8.7 Gp); (b) has 127119280 (found in 52.1 Gpu).

245. Half true: A directed graph B (having no introverted or extroverted edges) always
leads to a bipartite G(B), with the natural partition into positive and negative vertices.

But G(B) can also be bipartite in many other cases — such as when B is obtained
as in (54) from graphs G and H that are themselves bipartite.
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246. Let B have three vertices {v,vr,vr} for each vertex v of G and H. Its bidirected
edges are v (( v, v  vgr, v ) vr, v ) wg for all v; also ur ¢ vg when u — v
in G, ur { vg when u = v in H. The Hamiltonian cycles of B fall into a pattern

corur Cu Cup Qv oo wrp Kwwr -

when u — v = w.

247. The construction of answer 246 yields a bidirected graph with 192 vertices, 536

edges, and 44 = 8 - 4 + 4 - 3 Hamiltonian
cycles (found in just 252 kilomems!). One of
the three essentially different symmetrical
solutions is shown, together with one of the
4.3 solutions of size 8 x 9. (There are 14544
10 x 10 solutions, found in 139 My; 8151216
12 x 12 solutions, found in 41 Gpu.)

250. Start with ADJ[v] [w] < oo for 0 < v,w < 2n.

1 642322474661 60
24 9 8 6362212045
2524948 7 6 5944
50 3 103736435819
512611 4 5 423518
1227383916 17 34 57
13 5253 30 31 40 41 56
282914155455 3233

1 725554151469 68 35
56 1716 7170 37 36 51 34
57 2 2524 5352135067
18 3 583938231233 66
1940 59 26 27 22 65 32 49
4412021 8 9 641148
5 606144 4528291031
4243 6 7 6263464730

Then for 0 < v < n and

a ¢ ARCS(v), do the following while a # A: Set w < TIP(a) and !l < LEN(a); set
vV 20+ (1> 1) &1), w + 2w+ (((=1)>1) & 1); if v # w and ADJ[v'] [w'] = oo,
insert(v',w') and insert(w’,v'); set a < NEXT(a). Here ‘insert(v, w)’ means ‘set d <
DEG (v), NBR[v] [d] ¢ w, ADJ[v] [w] < d, DEG(v) <—d + 1’.

251. First do step B4. Then purge(CURU, CURV) and purge(CURV, CURU) (see answer 112).
Then makeinner(CURU) and makeinner(CURV); activate(CURU® 1) and activate(CURV®1);
makemates(CURU & 1, CURV & 1).

252. (a) makeinner(u); activate(u @ 1); makemates(u @ 1,v & 1).
(b) deactivate(u); makemates(v @ 1, MATE (u)).

253. We use five arrays (z, xs, y, ys, sg) of length n and two arrays (v, vs) of
length n + 1. Start with z < —1 for 0 < k < n. For 0 < k < n do this: Set
i < EU[K]l > 1 and j <« EVIKl > 1. If x; < 0, set x; « j, sg; < EULk] & 1,
xs; « EVIK] & 1; otherwise set y; < j and ys; < EV[k] & 1. If z; < 0, set x; < ¢,
sgj < EV[K] & 1, xs; < EU[k] & 1; otherwise set y; < ¢ and ys; < EU[K] & 1.

Then set vo < 0 and vso < 1. If sgo = 1, set v1 < yo and vs; < yso; otherwise
set v1 ¢ xo and vs, < wsg. Fork =2, ..., n,set j < vk_1, vp < (vSk—1 = 59;7 y;: ©j),
vSg < (vsp—1 = sg;7 ys;: xs;). This yields (53) with I = n, v = v = 0, t} = vg, and
I = (USk =17 (: )).

254. Steps B15 and B16 backtrack to level 0, and remove the first root edge ‘0~ — 17’
from the graph. Now 0~ and 1~ have degree 1; so they go onto the trigger stack. The
subpath 0t — 0~ — 1T — 17 — 27 — 27 is quickly forced; and the second Hamilto-
nian matching is visited, namely {0~ — 1%, 17 — 2,27 —07}. There are no others.

256. In answer 250 (for step B1), let v' = 2v and w' = 2w + 1.

In place of answer 253 (for step B13), first do this for 0 < k < n: Set i + EU[kI>1
and j < EVLk] > 1; if EU[K] & 1 =1, set x; < 4, otherwise set z; <— j. Then set k < 0
and, for j =0, 1, ..., n, do this: v; < k, k = x4. The desired Hamiltonian cycle is
0=v9o—v1—--—v, =0.

270. (a) v1 —---— vy, in G if and only if s— v —---— v, —t—>sin G.

(b) Suppose u; — - —>u, and vy — - -+ —> v, are Hamiltonian, with u; # v;
and j minimum. Then w; = v; and v; = wu; for some k > j and [ > j. Consequently
U —Vj4p1 —F - —V, —Uj 41 —F- - - —> Yy 1S a cycle.

(c) True. We can assume that the vertices of G are labeled “topologically” (see
Algorithm 2.2.3T) so that v; — v;, implies j < k. Algorithm B will choose t — s — vy,
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since s and v; have in-degree 1. If vy — --- —> v}, have been chosen, for k > 1, then
{v1,...,vk_1} are inner; hence v,41 has in-degree 0 or 1. No backtracking is needed.

271. Construct O(n?) subgraphs of G by removing one arc from each cycle in all possi-

ble ways. Then G has a Hamiltonian path if and only if at least one of those subgraphs

is Hamiltonian. And each subgraph can be tested in O(m+n) steps by exercise 270(c).
(Of course this result is purely theoretical, by no means practical!)

272. Define G by generalizing exercise 270: The bidirected edges involving the new
vertices s and ¢ are now s )) v, s X v, v ) ¢, v O ¢, and ¢ )) s. Each Hamiltonian
path a - - -z of G corresponds to exactly two Hamiltonian cycles of G, namely the cycles
sa---zDt) sand s z---al)t)s; we can reject the cycles for which a > z.

275. One test case would be to count the number of strictly alternating 8 x 8 knight-
and-grid cycles (also known as “knight-and-wazir” cycles). Since there are 5350996 such
cycles on a 6 x 6 board, but only 9862 purely knight cycles, that number must be huge.

298. (a) There’s one solution for every way to cover the vertices of G by disjoint
oriented cycles of length > 4. A cycle up —vo —u1 —v1 —us —>- -+ —vp_1 —>Up
corresponds to choosing the options ‘ug vo u'l*", ‘ul v1 u;", coey Up_q k-1 ug .

(b) From the 332 options, Algorithm 7.2.2.1X needs about 180 My to find 185868
solutions, of which 2-9862 are the closed knight’s tours (without removing symmetries).

299. Set up an exact cover problem as in exercise 298, where n = 32 and the vertices of
the “first part” are the cells ij with 1 <4, j < 8 and i+ j odd. Also add primary items
1j* for i + j odd and ¢ > 2. Each option now contains at least siz items, not three:
‘uy vy wi u, vy wi’ where up — vi — w1 and u» — v2 — wo, the six vertices are
distinct, the i-coordinate of u; is less than the i-coordinate of u2, and the j coordinates
of (u1,u2), (v1,v2), (w1,ws2) are equal. (The u’s and w’s belong to the “first part.”
This option represents a pair of moves with matching columns.) Furthermore, append
ij* to each option for which {wi, w2} = {my,ij} or for which {u1,u2} = {mj, kj} and

k # i, where m € {1,2}. This trick forces the pairs of paths to
“hook up” properly. For example, two of the options are ‘127 24
161 527 44 561 32% 72% 56* and ‘41~ 22 437 61~ 42 231" 43%.
Exploit symmetry by removing options with v; = 11 and w; = 32.

That makes a total of 1998 options, and Algorithm 7.2.2.1X
finds 383080 solutions in 14 Gu. Each solution chooses 16 options,
and a good one yields a cycle (vov1...ve3) in which the chosen

1 325730 3 125516
5829 2 1156155213
336431 4 35541750
285934411051 1453
7 406336 5 224918
6027 6 9 42194621
39 8 256237442348
26 6138 43244720 45

options involve v, , V11, v,‘:”, Ut 32> Vk433) v;+34 for k=0, 2,...,30. Most solutions
define short cyclic paths; but 5264 of them yield correct tours, such as the one shown.
300. Notice that we must have ass = 2, ass = 17, asr = 18, asr = 50, ars = 48,
agg = 49. To find such a tour, we can begin by finding a knight’s path of length 14
from step 2 to step 16 that doesn’t interfere with 180° rotation, nor does it involve

any of the “reserved” cells. All paths of length 14 are efficiently found by pasting

together compatible paths of length 7. Useful paths also have the
property that each vertex in the set U of cells available for steps
(18..30) and (50..64) has degree > 2 in the graph restricted to
U U I, where I = {47,52,67,32} is the set of endpoints for future
paths. The endpoints must also have degree > 1 in that graph.
A similar method finds 14-step paths for steps 18 through 32 and
50 through 64. One of the 46,596 solutions is shown.
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301. Adapting the method in the previous exercise to paths of
other lengths, we find that there are respectively (2, 47, 3217,
280244, 1205980, 259230, 41366) feasible solutions for the first (4, 9,
16, 25, 36, 49, 64) steps. The first full solution is shown. [Brentano’s
Chess Monthly 1,1 (May 1881), 36; 1,5 (September 1881), 248-
249. See George P. Jelliss, Mathematical Spectrum 25 (1992), 16—
20, for information about many similar “figured tours.”]

1 4 9 1625364964
8 1524 3 10172637
5 2 7 1435506348
56 133423 1811 38 27
33 6 551251404762
54572219 46 43 28 39
21325952413061 44
5853 203160454229

350. Let the number be X, and let u, v, w be the “middle” vertices on the boundary.
A Hamiltonian cycle on S,(LB_R_I has the form v — -+ —v — - —w — - —u,
where the portions from u to v, v to w, and w to w are Hamiltonian paths from corner
to corner of S&. Consequently X, 11 = Y,2, where Y,, is the number of such paths.

Write uv for the corner between u and v. A Hamiltonian path from uw to vw has
the form vw —---—u—-.-—v——+ .- — vw; and there are two cases, depending
on whether w appears before u or after v. Thus Y,+1 = Z,Y.Y, + Y,.Y.Z,,, where
there are Z, Hamiltonian paths from corner to corner in a graph that’s like S but
with the third corner removed. Similarly, Z,4+1 = 2, Z, Y, + YnZpZ, + [n=1].

We have (X1,Y1,71) = (1,1,1) and (X2, Y2, Z2) = (1,2, 3). Hence, for n > 3, the
formulas X,, = 2%" 7 3%+ +-43"7° 'y, — 3%, Z, = 2V, hold by induction.

We can in fact write X, = 8 - 1203" 2 =3)/2, [This problem was first solved by
R. M. Bradley, J. de Physique 47 (1986), 9-14. See also A. M. Teguia and A. P.
Godbole, Australasian J. Combinatorics 35 (2006), 181-192, who showed among other
things that S is pancyclic: It has cycles of every length, from 3 to (3" + 3)/2.]

360. (a) True. The infinite rightward path that’s traced by repetitions of the patterns
will cross a vertical line once more when traveling to the right than when traveling to
the left; it will cross a horizontal line equally often when going up as when going down.

(b) The total number of edges is mn =wv1 + -+ 4+ vm—1 + h1 + --- + hy,. But the
left side of this equation is even, while the right side is odd by (a).

(c) Frieze 5x4a in Fig. A-30 reduces to example (iv).

(d) The case m = 1 is trivial. When m = 3, the only possibilities are (i)
and its cyclic shifts and/or left-right reversal; we consider them all to be equivalent
(isomorphic), although the mirror reflection looks different. When m =5 and m =7,
there are 3 + 10 essentially distinct friezes, shown (except for (vi)) in Fig. A-30.

(e) Figure A-30 shows the 1+ 1+ 2 + 3 solutions for n =5, 6, 7, 8.

(We need a special convention when n = 2, because the “2-cycle” C: is a
multigraph with two edges 0 — 1. We consider ‘T’ to be a 2 x 2 meander
frieze. The 3 x 2a frieze reduces to it; the 2 x 4a frieze is a multiple of it.)

(f) The 4n automorphisms are generated by o, 7, v, where ijo = i((j+1) mod n),
ij7 = i((—j) mod n), ijv = (m—1—i)j. Notice that c" =72 =02 = (7v)2 = 1.

(g,h) The equivalence class sizes (with symmetric counts in parentheses) are:

n=3 n=4 n=>5 n==~6 n="7T
m=3 1(1) 1(1) 1(1) 1(1) 2 (2)
m=4 0(0) 3(2) 0 (0) 16 (8) 0 (0)
m=5 3(2) 12 (7) 43 (12) 154 (35) 534 (53)
m=6 0 (0) 30 (5) 0 (0) 1152 (63) 0 (0)
m=7 10 (4) 117 (27) 1216 (75) 12326 (383) 97969 (873)

(1) See (iii) and Fig. A-30. (Friezes 5x4d and 5x5a have only twofold symmetry.)
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ronnnn UL RIGIE totuty o]a)s] 9lalal rrdd ][0

2x4afl  3x2aff  4x4a 4x4bt  5x3ax 5x3b  5x3cx  5xdax

SJaJe] Slelal, pRR ) L ikt JRTele qIqLL ke

Tx3ax  T7x3b 7x3c 7x3d Tx3ex  Tx3f 7x3gx T7x3h 7 3i%

eIy 2Ns sy Teresereseres rusiu ey
3xHax 3x6at 3XTax 3XThx*
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Fig. A-30. A gallery of meander friezes.
* = 180° symmetry; T = left-right symmetry; = top-bottom symmetry.

Historical notes: It’s interesting to find instances of meander friezes in ancient
artifacts from many cultures. For example, Chapter 4 of O. Jones’s The Grammar of
Ornament (1856) included (i) as a first example of a Greek design, and mentioned (ii)
as a related pattern found in Chinese fretwork. J. N. Coldstream’s book Greek Geo-
metric Pottery (1968), which contains detailed information about the most important
early discoveries of Greek vases from the Geometric Period, illustrates more than 40
specimens with the 3x3 frieze (i), and six with the 5x4 frieze (v). His Plate 7 shows
three ancient vases with a symmetrical 7x4 frieze, which is related to 7x3e in Fig. A-30
as (v) is related to 5x3b. (And 5x3b, upside down, is in his Plate 13b.)

The most elaborate meander frieze found so far in ancient sites is the magnifi-
cent 9x4 example shown here, due to the Dipylon Master and now in the
collection of the National Archaological Museum in Athens. [See Corpus QEEE
Vasorum Antiquorum, Greece, Fascicule 8 (Athens, 2002), Plates 102-105.]

361. (i) 00—01—02—03—13—23—22—12—11—21—20—10—00.

(i) 00—01—11—10—20—21—22—23—13—12—02—03—00.

(iii) 00—01—02—03—13—12—11—21—22—23—20—10—00.

(iv) 00—01—11—21—22—12—02—03—13—23—20—10—00.

(v)00—01—11—21—22—02—12—13—03—23—20—10—00.

(vi) 00—01—11—12—13—23—03—02—22—21—20—10—00.

(vii) 00— 03—13—10—11—21—01—02—12—22—23—20—00.
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7.2.2.4 ANSWERS TO EXERCISES 105

Here (i) is in P3O Py; (ii) and (iii) are the meander friezes in exercise 360; (iv)
is a multiple of the meander 3x2a; (vi) and (vii) are disjoint(!). These cycles have
respectively 2, 4, 2, 8, 4, 2, 2 automorphisms; hence their equivalence classes contribute
respectively 24, 12, 24, 6, 12, 24, 24 cycles to the total of 126 found by Algorithm H.

369. (a) For example, (000 012 110 102 121 113 011 023 103 001 022 003 123 111 013
021 002 010 112 100 020 122 101 120) is findable by hand with Warnsdorf’s rule. (And
there are 4 - 24 solutions altogether.)

(b) No. If so, 32 steps would take us to a cell of the opposite parity.

(c) Cells that are 32 steps apart are 110-complements. [This remarkable cycle
was counstructed by A. Vandermonde, when he introduced the concept of 3D knight’s
tours. See Mémoires Acad. Roy. Sciences (Paris, 1771), 566-574.]

(d) S is 201 — 000 — 012 and 031 — 133 — 213 — 023 — 121 together with
all eight complements of those six edges.

(e) 136656. (The total number of 4 x 4 x 4 knight’s cycles is evidently vast. Is
there any feasible way to compute it exactly?)

370. (a) Bipartiteness is obvious. Regularity is readily verified (but not obvious).

(b) The 48 symmetries of the cube all apply, leaving at most four equivalence
classes of vertices, represented by vertices {000, 001,011,111}. And there are no further
automorphisms, because no automorphism takes any of those vertices into another: The
number of vertices at distance 2 from (000, 001, 011, 111) is respectively (16, 21, 22,
22); and 111 is at distance 2 from a corner vertex, but 011 isn’t.

(c) (Solution by E. Weisstein.) Hamiltonian cycles are so abundant that we can
simply choose one at random, and remove it to obtain a 4-regular graph; then partition
those residual edges into two cycles. The following solution needed only a few trials:

(000 003 222 030 211 333 303 111 323 201 020 023 231 313 121 302 002 210 022 203 200 122
310 232 202 320 112 230 312 100 103 133 011 223 101 131 213 032 220 012 130 322 110 113
332 120 301 001 031 331 123 311 233 021 321 102 132 010 013 221 033 212 330 300)

(000 030 033 333 112 300 121 203 321 133 312 120 002 223 220 001 222 010 202 021 200 012
231 201 123 302 332 210 213 331 110 032 211 003 303 221 103 322 022 100 130 311 132 320
101 023 323 131 013 313 310 102 020 232 011 230 233 111 330 122 301 113 031 212)

(000 122 303 300 222 100 321 113 231 010 310 131 312 012 233 203 011 311 103 021 213 001
123 120 202 023 211 133 130 212 020 320 323 102 220 302 110 232 013 201 022 230 200 322
101 313 132 210 031 223 301 331 112 030 330 333 121 003 033 111 332 032 002 221)

[See the “Sticky Chain” puzzle in S. Grabarchuk, Age of Puzzles: Puzzle Galleries
(2019), 170, which asks for the longest path or cycle that doesn’t touch or cross itself.]

372. (a) One billion trials yield the following interesting probability distribution:

4%
3%
2%
1%
0%

k=2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

(b) The ten essentially different final squares (00, 01, 02, 03; 11, 12, 13; 22, 23; 33)
have probabilities ~ (.0845, .0369, .0118, .0216; .0123, .0005, .0030; .0002, .0009; .0035).

(c) When k is even, the probability of a k-cycle has been “hollowed out” in the
histogram above. The exact totals, in the billion trials used for this illustration, were
595532 when k = 4 (all cycles) and 157 when k = 64 (17 cycles).
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106 ANSWERS TO EXERCISES 7.2.2.4

[Wolf carried out 1000 experiments by hand, each taking less than 15 minutes
on average, and described them in admirable detail in a posthumous contribution to
the Vierteljahrsschrift der naturforschenden Gesellschaft in Ziirich 39 (1894), 147-164.
Not surprisingly, however, his tables contained dozens of typographic and/or parity
errors. Note that the probability of ending with k = 4 is exactly 1/1680. Is it feasible to
calculate the exact probability distribution for all k£, with something like Algorithm E?]

999. ...
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APPENDIX E

ANSWERS TO PUZZLES IN THE ANSWERS

noo R21 q;; K20 r31 Q41 Ta2 Rao kaqa B3sa q;5 Bo2 r3s Qa5 bas Rz nas Kog n3z Big bz Nip
k22 N13 qu K04 k05 N15 b03 Q30 noo (see answer 220)

Boo N33 Ki2 N23 Roz N3z Kiz N2z Boz Nao Kin N2o Qo Na1 Kio N21 Boo  (see answer 221)

1
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INDEX AND GLOSSARY Florus, Lucius

Read the table that follows, my honest reader,
and it will soon guide you to hold the entire work in your mind.

— Lucii Flori Bellorum Romanorum libri quattuor (Vienna, 1511)

When an index entry refers to a page containing a relevant exercise, see also the answer to
that exercise for further information. An answer page is not indexed here unless it refers to a
topic not included in the statement of the exercise.

2-factor, see Cycle cover. FGbook: Selected Papers on Fun & Games,
Articulation point: A vertex whose a book by D. E. Knuth.
removal increases the number of
components of a graph.
Barry, David McAlister (= Dave), iii.
Biconnected graph: A graph without Onitiu, Valeriu (= Valerian).
articulation points. Nothing else is indexed yet (sorry).
Cycle cover: A covering of the vertices by
disjoint cycles (a 2-regular spanning
subgraph, if undirected).

Hamiltonian graph: A graph with a
spanning cycle, 2.

Preliminary notes for indexing appear in the
upper right corner of most pages.

Cyclically k-connected: Must remove at If I’ve mentioned somebody’s name and
least k£ edges to obtain two cyclic forgotten to make such an index note,
(nontree) components. it’s an error (worth $2.56).

108

December 4, 2025



