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» 25. [30] (Pruning and grafting.) Representing binary trees as in Algorithm B, design
an algorithm that visits all link tables ; ...l, and r; ..., in such a way that, between
visits, exactly one link changes from j to 0 and another from 0 to j, for some index j.
(In other words, every step removes some subtree j from the binary tree and places it
elsewhere, preserving preorder.)

26. [M31] (The Kreweras lattice.) Let F and F’ be n-node forests with their nodes
numbered 1 to n in preorder. We write F K F' (“F coalesces F'") if j and k are
siblings in F whenever they are siblings in F', for 1 < j < k < n. Figure 39 illustrates
this partial ordering in the case n = 4; each forest is encoded by the sequence ¢1...¢n
of (9) and (10), which specifies the depth of each node. (With this encoding, j and k
are siblings if and only if ¢; = ¢k < ¢j41,---,Ck-1.)

Fig. 39. The Kreweras lattice of order 4. Each forest is represented by
its sequence of node depths cicacscs in preorder. (See exercises 26-28.)

a) Let IT be a partition of {1,...,n}. Show that there exists a forest F', with nodes
labeled (1,...,n) in preorder and with

j =k (modulo IT) <= j is a sibling of k in F,
if and only if IT satisfies the noncrossing property
i<j<k<landi=kand j =!I (modulo IT) implies i=j=k =1[ (modulo II).

b) Given any two n-node forests F and F’, explain how to compute their least upper

bound FV F', the element such that F i< G and F' K G ifand only if FY F' K G.
c) When does F cover F with respect to the relation K? (See exercise 7.2.1.4-55.)
d) Show that if F’ covers F, it has exactly one less leaf than F.
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(d) Obvious, by (c). Thus the forests are ranked from bottom to top by the number

of nonleaf nodes they contain (which is one less than the number of blocks in IT).
(e) Exactly Yog—o ex(ex — 1)/2, where e =n—e1—***—én is the number of roots.
(f) Dualization is similar to the transposition operation in exercise 12, but we use
left-sibling and right-child links instead of left-child and right-sibling, and we transpose
about the minor diagonal:

(“Right” links now point downward. Notice that j is the rightmost child of k in F if
and only if j is the left sibling of k in FP. Preorder of FP reverses the preorder of F,
just as postorder of FT reverses postorder of F.)

(g) From (f) we can see that F' covers F if and only if FP covers F'P. (Therefore
FP has n+ 1 — k leaves if F has k.)

(h) FRF' = (FP ¥ ) i

(i) No. If it did, equality would necessarily hold, by duality. But, for example,
0101 A 0121 = 0000 and 0101 ¥ 0121 = 0123, while leaves(0101) + leaves(0121) #
leaves(0000) + leaves(0123).

[Noncrossing partitions were first considered by H. W. Becker in Math. Mag. 22
(1948), 23-26. G. Kreweras proved in 1971 that they form a lattice; see the references
in answer 2.3.4 f-?]
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g) Prove that F K F' holds if and only if F'P k FP. (Because of this property, dual
elements have been placed symmetrically about the center of Fig. 39.)

h) Given any two n-node forests F and F’, explain how to compute their greatest
lower bound F A F'; that is, GK F and GK F' ifand only if GK FA F'.

i) Does this lattice satisfy a semimodular law analogous to exercise 7.2.1.5-12(f)?

» 27. [M38] (The Tamari lattice.) Continuing exercise 26, let us write F < F' if the
jth node in preorder has at least as many descendants in F’ as it does in F, for all j.
In other words, if F' and F’ are characterized by their scope sequences s; ...s, and
s} ...s}, asin Table 2, we have F 4 F' if and only s; < s for 1 < j < n. (See Fig. 40.)
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Fig. 40. The Tamari lattice of order 4. Each forest is represented by
its sequences of (a) node depths and (b) descendant counts, in preorder.
(See exercises 26-28.)

a) Show that the scope coordinates min(s;,s})min(s;,s3)...min(s,,s,) define a
forest that is the greatest lower bound of F and F'. (We denote it by F' L F'.)
Hint: Prove that s;...s, corresponds to a forest if and only if 0 < k < s; implies
sj+k + k < sj, for 0 < j < n, if we define so =n.

b) When does F' cover F in this partial ordering?

¢) Prove that F 4 F' if and only if F'® 4 FP. (Compare with exercise 26(g).)

d) Explain how to compute a least upper bound, F T F', given F and F".

e) Prove that F K F' in the Kreweras lattice implies F < F' in the Tamari lattice.

f) True or false: FAF' 4 F L F'.

g) True or false: FYF'K FTF'.

h) What are the longest and shortest paths from the top of the Tamari lattice to the
bottom, when each forest of the path covers its successor? (Such paths are called
mazimal chains in the lattice; compare with exercise 7.2.1.4-55(h).)
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28. [M26] (The Stanley lattice.) Continuing exercises 26 and 27, let us define yet
another partial ordering on n-node forests, saying that ¥ C F' whenever the depth
coordinates ¢; ...¢, and ¢} ...c, satisfy ¢; < ¢ for 1 < j < n. (See Fig. 41).
a) Prove that this partial ordering is a lattice, by explaining how to compute the
greatest lower bound FNF' and least upper bound FUF' of any two given forests.
b) Show that Stanley’s lattice satisfies the distributive laws

FN(GUH)=(FNG)U(FNH), FU(GNH)=(FUG)n(FUH).

7.2.1.6 GENERATING ALL TREES 35

-

Fig. 41. The Stanley lattice of order 4. Each
forest is represented by its sequence of node
depths in preorder. (See exercises 26-28.)

c) When does F’ cover F in this lattice?
d) True or false: F C G if and only if F® C GR.
e) Prove that F C F’ in the Stanley lattice whenever F 4 F’ in the Tamari lattice.

29. [HM31] The covering graph of a Tamari lattice is sometimes known as an “associa-
hedron,” because of its connection with the associative law (14), proved in exercise
27(b). The associahedron of order 4, depicted in Fig. 40, looks like it has three square
faces and six faces that are regular pentagons. (Compare with Fig. 23 in exercise
7.2.1.2-60, which shows the “permutahedron” of order 4, a well-known Archimedean
solid.) Why doesn’t Fig. 40 show up in classical lists of uniform polyhedra?



F4F = FcF’



Three Catalan Bijections

D. Knuth

REPORT No. 04, 2004/2005, spring

ISSN 1103-467X
ISRN IML-R- -04-04/05- -SE+spring

NS I UT
MITTAG—LEFFLER



Three Catalan Bijections
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This note contains three short programs that implement one-to-one correspondences between four kinds of
gombinatorial structures:

1) Ordered forests with n nodes and pruning order m;

2} Binary trees with n nodes and Strahler number m;

3) Nested strings (Dyck words) of length 2n and log-height m;
4] Kepler towers with n bricks and m walls.

In each case the number of structures of size n is the Catalan number C, = ( 2:) /(n—+1), and — surprisingly
— the bijections also preserve the parameter m.

Given a number n > 1, each program generates all C,, objects of one type, bijects them into objects
of another type, verifies that the parameter m has not changed, and applies the inverse bijection to prove
comstructively that the correspondence is indeed one-to-one.

Program 1, called ZEILBERGER, converts between (1) and (2). Program 2, FRANGON, converts between
(2) and (3). And Program 3, VIENNOT, converts between (3) and (4). Incidentally, Kepler towers appear
%0 be a completely new kind of object, recently invented by Xavier Viennot and introduced here for the first
time. Simple bijections between (2) and (4), or between (h and (4), are not yet known, although complex
Bijections could of course be obtained by composing those given here.

~ The first bijection was introduced by Doron Zeilberger in 1990, yet its computer implementation is
mot without interest. Although Zeilberger’s algorithm was correct, his proof of correctness was not quite
complete; Program 1 therefore removes any lingering doubts that may have existed. More significantly, the
program demonstrates a strong property of Zeilberger’s bijection that may not have been noticed before:
Node ¢ is the leftmost child of node y in the ordered forest if and only if node z is the left child of node y
in the corresponding binary tree.

The second bijection was inspired by the work of Jean Frangon in 1984, but it is organized here in
2 new way, based on a heap-like data structure. Therefore it appears to solve an open problem that he
stated. namely to construct a “direct” parameter-preserving bijection between objects of types (2) and (3).
Moreover, Program 2 has the interesting property that the bijection and its inverse both carry out their
work in the same direction as they translate one object to another. By contrast, the inverse bijections in
Programs 1 and 3 essentially cause time to run backward when they undo the effects of forward-runnning
Bijections.

Program 3 introduces a new bijection that was recently explained pictorially to the author by its creator,
Navier Viennot. The resulting computer program has turned out to be remarkably simple and fast.

All three programs have been written with the conventions of “literate programming,” as embodied in the
CWEB system developed by Silvio Levy and the author. This style of presentation features informal, human-
wriented English descriptions alternating with formal, computer-oriented commands. The latter instructions
ase expressed in the C programming language; but mathematicians unfamiliar with C should still be able to
2= the gist of the ideas by reading the English commentary. (A detailed explanation of how to read CWEB
gengrams — more than almost anybody needs to know — can be found in Chapter 4 of the author’s book
The Stanford GraphBase.)

Incidentally, these programs are independent of each other. They can be downloaded from the author’s
weh site http: //www-cs-faculty.stanford.edu/ knuth/programs.html and used without restriction.



