Laiterate
Programming

Donald E. Knuth

@
>
Tl
T
L
N
L
o
Vl
-~
3
S
oc
T
U
o
P
@
L)

DONALD E KNUIH

PART 38: BREAKING PARAGRAPHS INTO LINES 344

815. Since line_break is a rather lengthy procedure—sort of a small world unto itself—we
must build it up little by little, somewhat more cautiously than we have done with the simpler
procedures of TEX. Here is the general outline.

(Declare subprocedures for line_break 826)
procedure line_break (final_widow_penalty : integer);
label done, donel , done2, done3, done4 , done , continue;
var (Local variables for line breaking 862)
begin pack_begin_line < mode_line; {this is for over/underfull box messages }
(Get ready to start line breaking 816);
(Find optimal breakpoints 863);
(Break the paragraph at the chosen breakpoints, justify the resulting lines to the correct widths, and
append them to the current vertical list 876);
(Clean up the memory by removing the break nodes 865); pack-begin_line < 0;
end;

816. The first task is to move the list from head to temp_head and go into the enclosing
semantic level. We also append the \parfillskip glue to the end of the paragraph, removing a
space (or other glue node) if it was there, since spaces usually precede blank lines and instances
of ‘$$’. The par_fill_skip is preceded by an infinite penalty, so it will never be considered as a
potential breakpoint.
This code assumes that a glue_node and a penalty_node occupy the same number of mem words.
(Get ready to start line breaking 816) =
link (temp_head) < link (head);
if is_char_node(tail) then tail_append (new_penalty (inf_penalty))
else if type(tail) # glue_node then tail_append (new_penalty (inf_penalty))
else begin type (tail) « penalty_node; delete_glue_ref (glue_ptr (tail));
flush_node_list (leader_ptr (tail)); penalty (tail) < inf_penalty;
end;
link (tail) < new_param_glue (par_fill_skip_code); init_cur_lang < prev_graf mod 200000
init_l_hyf < prev_graf div "20000000; init_r_hyf < (prev_graf div "200000) mod ‘100; pop_nest;
See also sections 827, 834, and 848.

This code is used in section 815.

817. When looking for optimal line breaks, TEX creates a “break node” for each break that is
feasible, in the sense that there is a way to end a line at the given place without requiring any
line to stretch more than a given tolerance. A break node is characterized by three things: the
position of the break (which is a pointer to a glue_node, math_node, penalty_-node, or disc_node);
the ordinal number of the line that will follow this breakpoint; and the fitness classification of
the line that has just ended, i.e., tight_fit, decent_fit, loose_fit, or very_loose_fit.
define tight_fit =3 {fitness classification for lines shrinking 0.5 to 1.0 of their shrinkability }
define loose_fit =1 {fitness classification for lines stretching 0.5 to 1.0 of their stretchability }
define very_loose_fit =0 {fitness classification for lines stretching more than their stretchability }
define decent_fit =2 {fitness classification for all other lines }

818. The algorithm essentially determines the best possible way to achieve each feasible com-
bination of position, line, and fitness. Thus, it answers questions like, “What is the best way to
break the opening part of the paragraph so that the fourth line is a tight line ending at such-and-

344

PART 38: BREAKING PARAGRAPHS INTO LINES 360

854. During the final pass, we dare not lose all active nodes, lest we lose touch with the line
breaks already found. The code shown here makes sure that such a catastrophe does not happen,
by permitting overfull boxes as a last resort. This particular part of TEX was a source of several
subtle bugs before the correct program logic was finally discovered; readers who seek to “improve”
TgX should therefore think thrice before daring to make any changes here.

(Prepare to deactivate node r, and goto deactivate unless there is a reason to consider lines of text
from r to cur_p 854) =
begin if final_pass A (minimum_demerits = awful_bad) A (link(r) = last_active) A (prev_r = active)
then artificial_demerits + true {set demerits zero, this break is forced }
else if b > threshold then goto deactivate;
node_r_stays_active <+ false;
end

This code is used in section 851.

855. When we get to this part of the code, the line from r to cur_p is feasible, its badness is b,
and its fitness classification is fit_class. We don’t want to make an active node for this break yet,
but we will compute the total demerits and record them in the minimal_demerits array, if such
a break is the current champion among all ways to get to cur_p in a given line-number class and
fitness class.

(Record a new feasible break 855) =
if artificial_demerits then d <+ 0
else (Compute the demerits, d, from r to cur_p 859);
stat if tracing_paragraphs > 0 then (Print a symbolic description of this feasible break 856);
tats
d < d + total_demerits(r); {this is the minimum total demerits from the beginning to cur_p via r }
if d < minimal_demerits[fit_class] then
begin minimal_demerits [fit_class] < d; best_place[fit_class] < break_node(r);
best_pl_line[fit_class] + I;
if d < minimum_demerits then minimum_demerits < d;
end

This code is used in section 851.

856. (Print a symbolic description of this feasible break 856) =
begin if printed_node # cur_p then
(Print the list between printed_node and cur_p, then set printed_node < cur_p 857);
print_nl("Q");
if cur_p = null then print_esc("par")
else if type(cur_p) # glue_node then
begin if type(cur_p) = penalty-node then print_esc("penalty")
else if type(cur_p) = disc_node then print_esc("discretionary")
else if type (cur_p) = kern_node then print_esc("kern")
else print_esc("math");
end;
print ("Lvia ,00");
if break-node(r) = null then print_char("0")
else print_int (serial (break-node(r)));
print (" b=");

360

boots
[blots | | bolts |

GB_RAND: NONUNIFORM RANDOM NUMBER GENERATION 392

17. So all we have to do is set up those magic tables. If uu is a uniform random integer between
0 and 23! — 1, the index k = uu > kk is a uniform random integer between 0 and nn — 1, because
of the relation between nn and kk. Once k is computed, the code above selects vertex k with
probability (p + 1 — (k < kk))/23!, where p = magic-prob and magic is the kth element of the
magic table; otherwise the code selects vertex magic~inz. The trick is to set things up so thas
each vertex is selected with the proper overall probability. :

Let’s imagine that the given distribution vector has length nn, instead of n, by extending it &
necessary with zeroes. Then the average entry among these nn integers is exactly ¢ = 23°/nn.
If some entry, say entry i, exceeds t, there must be another entry that’s less than ¢, say entry j.
We can set the jth entry of the magic table so that its prob field selects vertex j with the correct
probability, and so that its inz field equals i. Then we are selecting vertex 7 with a certaim
residual probability; so we subtract that residual from i’s present probability, and repeat the
process with vertex j eliminated. The average of the remaining entries is still ¢, so we can repeas
this procedure until all remaining entries are exactly equal to ¢. The rest is easy.

During the calculation, we maintain two linked lists of (prob, inz) pairs. The hi list contaims
entries with prob > ¢, and the lo list contains the rest. During this part of the computation ==
call these list elements ‘nodes’, and we use the field names key and j instead of prob and inz.

(Private declarations 8) +=
typedef struct node_struct {
long key; /* a numeric quantity */
struct node_struct *link; /* the next node on the list */
long j; /* a vertex number to be selected with probability key /2% */
} node;
static Area temp_nodes; /* nodes will be allocated in this area */
static node xbase_node; /* beginning of a block of nodes */

18. (Internal functions 18) =
static magic_entry swalker(n,nn, dist, g)
long n; /* length of dist vector */
long nn; /x 20871 &/
register long xdist; /* start of distribution table, which sums to 23° */
Graph xg; /* tables will be allocated for this graph’s vertices x/
{ magic_entry xtable; /* this will be the magic table we compute */
long t¢; /* average key value x/
node xhi = A, *lo = A; /* nodes not yet included in magic table */
register node *p, xq; /* pointer variables for list manipulation */

base_node = gb_typed_alloc(nn,node, temp_nodes);
table = gb_typed_alloc(nn, magic_entry, g~auzr_data);
if (—gb_trouble_code) {
(Initialize the hi and lo lists 19);
while (hi) (Remove a lo element and match it with a hi element; deduct the residual
probability from that hi element 20);
while (lo) (Remove a lo element of key value t 21);

gb_free(temp_nodes);
return table; /* if gb_trouble_code is nonzero, the table is empty */

Donald E. Knuth

Tutorial

LNCS 1750

MMIXware

A RISC Computer
| for the Third Millennium

@ Springer

MMIX-ARITH: DIVISION

sion. Long division of an unsigned 128-bit integer by an unsigned 64-bit
of course, one of the most challenging routines needed for MMIX arithmetic.
sing program, based on Algorithm 4.3.1D of Seminumerical Algorithms,
octabytes ¢ and r such that (264z + y) = gz +r and 0 < r < z, given
s z, y, and 2, assuming that z < z. (If z > z, it simply sets ¢ = z and
The quotient ¢ is returned by the subroutine; the remainder r is stored

ines 5) +=
iv ARGS((octa,octa,octa));
v (z, y, 2)
ta T, Yy,

Nt i . konid;
u(8], v[4], g[4], mask, ghat, rhat, vh, vmh;
er tetra t;
acc;
eck that @ < 2; otherwise give trivial answer 14);
the dividend and divisor to u and v 15);
mine the number of significant places n in the divisor v 16);
nalize the divisor 17);
3=3; 7>0; j—) (Determine the quotient digit g[j] 20);
alize the remainder 18);
% g and u to acc and auz 19);
n acc;

=ck that @ < z; otherwise give trivial answer 14) =
> zhV(z.h=zhAzl>2l) {
=g, return z;

s used in section 13.

‘npack the dividend and divisor to u and v 15) =

h > 16, u[6] = z.h & #£££f u[5] = z.l > 16,u[d] = z.l & *£££F;
g-h> 16,u[2] = y.h & #££££,u[l] = y.l > 16,u[0] = y.l & #£££f;
2h > 16,v[2] = 2.h & #££££ v[1] = 2.1 > 16,0[0] = 2.l & #£££f;

is used in section 13.

srmine the number of significant places n in the divisor v 16) =
=4; v[n—-1=0; n—) ;
s used in section 13.

B, §2. octa = struct, §3. overflow: bool, §9.

cta §9. ominus: octa (), §5. sign..bit = macro, §4.
§3. omult: octa (), §8. tetra = unsigned int, §3.
B

COMPILER:

DESIGN AND
IMPLEMENTATION

CHRISTOPHER FRASER

DAVID HANSON

8.3 m PARSING C EXPRESSIONS

155

binary-expression uses the techniques described in Section 8.2 to han-
dle all the binary operators, which have precedences between 4 and 13
inclusive (see Table 8.2).

Each of these functions parses the applicable expression, builds a tree
to represent the expression, type-checks the tree, and returns it. Three
arrays, each indexed by token code, guide the operation of these func-
tions. prec[t], mentioned in Section 8.2, gives the precedence of the
operator denoted by token code t. oper[t] is the generic tree operator
that corresponds to token t, and optree[t] points to a function that
builds a tree for the operator denoted by t. For example, prec['+'] is
12, oper['+'] is ADD, and optree['+'] is addtree, which, like most of
the functions referred to by optree and like optree itself, is in enode.c.
prec and oper are defined by including token.h and extracting its third
and fourth columns:

(tree.c data)+= ﬁ%lgs
static char prec[] = {
#define xx(a,b,c,d,e,f,g9) c,
#define yy(a,b,c,d,e,f,9) c,
#include "token.h"

s

static int oper[] = {
#define xx(a,b,c,d,e,f,qg) d,
#define yy(a,b,c,d,e,f,g) d
#include "token.h"

it

token.h is described in Section 6.2.

Each function is derived using the rules described in Section 7.5. Code
to build and check the trees is interleaved with the parsing code. The
code for expression is typical and is also the simplest:

(tree.c functions)+= 150 136
Tree expr(tok) int tok; {
staticchar stopl = {#LF EnD, "} irigag e
Tree p = exprl(0);

whiisle SEE’ ==L o f
Tree q;
t = gettok();
g = pointer(exprl(0));
p = tree(RIGHT, g->type, root(value(p)), q);
3
(test for correct termination 156)
return p;

192
157
191
174
149
109
150
160

addtree
exprl
optree
pointer
RIGHT
token.h
tree:
value

Understandmg

M Syntax

B Semantics

B Mathematics
" mAlgorithms

- 82 Reading Decoder Input 65

~ after the last valid byte that we may take out of the buffer and may possibly point
~even past the end of the buffer itself.

~(stream data) += (151)
- unsigned char xstart;

unsigned char xfinish;

:(initialize S 25) += (152)
~ s—start = s—buffer;

s—finish = s— buffer;

Further, we want to know what is the current buffer_position, that is the position of
‘the first byte in the buffer counted from the beginning of the stream starting with 0.
¢ cam data o) += (153)
int buffer_position;

> buffer_position makes it possible to convert relative positions inside the buffer
o absolute byte positions inside the whole stream. For example, the position where
> current frame starts is in the variable frame.

~ stream data o) += (154)
unsigned char xframe;

= value of frame can be converted to the frame_position, the absolute position of
&e frame in the stream.

" derive further information ¢5) += (155)
s—info.frame_position = s— buffer_position + (s— frame — s— buffer);

buffer start frame bit offset next frame finish

solute bytepointer

‘ Fig. 19: Access to the input buffer

The frame variable was used already much earlier to { prepare the frame for decod-
z 2). There, we had to

‘position the stream past the header 156) = (156)
s—byte_pointer = s— frame + HEADER_SIZE;

- s—bit_offset = 0; Used in 62.
is is quite simple using frame.

But now it is time to see how the input data actually gets into the buffer. To fill
input buffer, we determine how many bytes are still in the buffer and move them

152 11 New Ideas: Layer &]

JRVARTRIRSR RIB']

Fig. 55: High frequency output Fig. 56: Reduced sample rate and alias

The same effect can also be observed in the opposite direction: a low frequency ha
a higher frequency as its alias.

The aliasing effect, which is not caused by the limited quality of filters, but by &
reduction of the sample rate, is usually not a problem. The misinterpretation &
frequency as its alias can only occur if the input of the frequency analysis cont:
both, the frequency and its alias. '

This is the situation, we encounter, when each of the 32 subbands is split inte ¢
separate frequencies during layer III processing. As can be seen from Figure 27,
filters used for layer I subband filtering do overlap considerably. A frequency &
belongs to the upper/lower half of one subband is also present in the output of &
next/previous subband, and will be taken there for a higher /lower frequency, its ai

Reducing this aliasing improves the coding efficiency of the MPEG encoder.
closer study of the situation reveals that each frequency and its alias frequency hag -
to be symmetric to the boundary between subbands. For example, within the &=
subband (frequencies 0 to 17) and the second subband (frequencies 18 to 35) the
of frequency 17 will be frequency 18, 16 will pair up with 19, 15 with 21, and so ¢
In the encoder, the effect of aliasing is reduced, by computing from each freques
estimate of its alias and compensating the appropriate alias frequency. This pre
is reversed in the decoder. The standard specifies the exact factors to be us
compensate for aliasing. So, for a frequency and its alias, we load the two w
separate them into the estimated original and the alias, using two constants ¢ &
compensate each value for the alias, and write the new values back.

{apply alias reduction 292) =
(determine sblimit 293)
if (s—block_type[gr][ch] # SHORT_BLOCK V s—mized_block[gr][ch])
{ int k;
if (s—block_type[gr][ch] = SHORT_BLOCK A s—mized_block[gr][ch]) k =1
else k = SUBBANDS — 1;
(increase sblimit if needed 294)
if (k > s—sblimit[ch] — 1) k = s—sblimit[ch] — 1;

11.11 Alias Reduction 153

for (s > 0k =)

{ int 3
double *zy; = 2z[ch| + k * SUBFREQUENCIES;
double *2z1, = zg; — 1;

for (i=0; i<8; i++,2zL0—, zHi+)
{ double zy;, 210, ¢, d;

ZLo = *ZLo;

ZHi = *ZHi;

¢ = alias_coefficients|i].c;
d = alias_coefficients[i].d,
K2 = ek C— 2 %
*ZHi = ZH; * C + 210 * d;

} Used in 298.

We do not need to perform alias reduction for all subbands, but only for those
subbands that are not zero, The number of subbands that contain non zero values
is stored in the variable sblimit and is computed by rounding up wulimit to the next
multiple of 18 and dividing by 18. Since the boundaries of layer III bands do not
coincide with the subband boundaries, we complete the initialization for the last
subband.

{determine sblimit 293) = (293)
s—sblimit[ch] = (ulimit[ch] + SUBFREQUENCIES — 1)/SUBFREQUENCIES;
{ int 3
for (i = ulimit[ch]; i < s—sblimit[ch] * SUBFREQUENCIES; i++) z[ch][7] = 0.0;
} Used in 292.

Due to alias reduction, nonzero values may spread into the next subband. There-
fore, after we perform alias reduction, we have to

{increase sblimit if needed 294) = (294)
{ if (s—sblimit[ch] < SUBBANDS A
ulimit[ch] > s—sblimit[ch] * SUBFREQUENCIES + 1 — SUBFREQUENCIES/2)
R int
for (i=0; i < SUBFREQUENCIES; i++)
z[ch][s— sblimit[ch] * SUBFREQUENCIES + 4] = 0.0;
s— sblimit [ch]++;

}

} Used in 292.

y

MATT PHARR © GREG HUMPHREYS

PHYSICALLY BASED
RENDERING

FROM THEORY TO
IMPLEMENTATION

Wit H,\dhkg tor AT ivwcy\)’xoh Qj; [hecde {0/(37/.«%»)'“‘5

nd ny b haurs §0K“)(e 4-’v\j b e
B ol Tl

P b e e il
WO i % /% A_’\

Physically Based Rendering
EROM THEODRY TO IMELEMENTETIEIN

MATT PHARR
NVIDIA

GREG HUMPHREYS
Department of Computer Science
University of Virginia

Vet
W\,{SJU\S7L uDOutcl no'([AO*\/Q l:«&_o.,n,

"1706975(2 Lo ot ivnrt VIS o o TR~ asS
//%W.’ T don'? Fuimk we'll 058 aord e

Lor bogs untr] T second edihon , Hoough

o

AMSTERDAM * BOSTON + HEIDELBERG + LONDON ' ®
NEW YORK + OXFORD - PARIS + SAN DIEGO
SAN FRANCISCO * SINGAPORE * SYDNEY *+ TOKYO k

ELSEVIER Morgan Kaufmann is an imprint of Elsevier MORGAN KAUFMANN PUBLISHERS

o) 2:16/3:50

2013 Sci-Tech Awards: Matt Pharr, Greg Humphreys and Pat Hanrahan

Oscars

8,203 views

6.3

Environment Camera

Further Reading

Exercises

CHAPTER 07.

7.1

:»1
W

*7.4

*7.5

7.6

Sampling Theory

73l
742
7318
7.1.4
7S
72176
sl

The Frequency Domain and the Fourier Transform
Ideal Sampling and Reconstruction

Aliasing

Antialiasing Techniques

Application to Image Synthesis

Sources of Aliasing in Rendering

Understanding Pixels

Image Sampling Interface

7.2.1

Sample Representation and Allocation

Stratified Sampling

Low-Discrepancy Sampling

7.4.1
7.4.2
7.4.3
7.4.4

Definition of Discrepancy

Constructing Low-Discrepancy Sequences
(0,2)-Sequences

The Low-Discrepancy Sampler

Best-Candidate Sampling Patterns

gl
752

Generating the Best-Candidate Pattern
Using the Best-Candidate Pattern

Image Reconstruction

Tefond.

Filter Functions

Further Reading

Exercises

CHAPTER 08.

8.1
8.2

8.3
*8.4

Film Interface

Image Film

8%2.1

Image Output

Image Pipeline

Perceptual Issues and Tone Mapping

8.4.1
8.4.2
8.4.3
8.4.4

Luminance and Photometry
Bloom

Tone Mapping Interface
Maximum to White

xiii

272
275
276

280

281
284
288
289
295
293
295

296
298
302

316

316
318
322
327

332

334
343

350
353

363
366

370

371

BV
379
380

382
386
389

298 SAMPLING AND RECONSTRULTION

(Sampler Method Definitions) =
Sampler::Sampler(int xstart, int xend, int ystart, int yend, int spp) {
xPixelStart = xstart;
xPixelEnd = xend;
yPixelStart = ystart;
yPixelEnd = yend;
samplesPerPixel = spp;

}

The Sampler implementation should generate samples for pixels with x coordinates rang-
ing from xPixelStart to xPixelEnd-1, inclusive, and analogously for y coordinates.

(Sampler Public Data) = 296
int xPixelStart, xPixelEnd, yPixelStart, yPixelEnd;
int samplesPerPixel;

Samplers must implement the Sampler: :GetNextSample () method, which is a pure virtual
function. The Scene: :Render() method calls this function until it returns false; each
time it returns true, it should fill in the sample that is passed in with values that specify
the next sample to be taken. All of the dimensions of the sample values it generates have
values in the range [0, 1], except for imageX and imageY, which are specified with respect
to the image size in raster coordinates.

(Sampler Interface) = 296
virtual bool GetNextSample(Sample *sample) = 0;

In order to make it easy for the main rendering loop to figure out what percent-
age of the scene has been rendered based on the number of samples processed, the
Sampler::TotalSamples () method returns the total number of samples that the Sampler
is expected to return.*

(Sampler Interface)+= 296
int TotalSamples() const {
return samplesPerPixel *
(xPixelEnd - xPixelStart) *
(yPixelEnd - yPixelStart);

7.2.1 SAMPLE REPRESENTATION AND ALLOCATION

The Sample structure is used by Samplers to store a single sample. A single Sample is
allocated in the Scene::Render() method. For each camera ray to be generated, the

4 The low-discrepancy and best-candidate samplers, described later in the chapter, may actually return a few more or less
samples than TotalSamples() reports. However, since computing the actual number can’t be done quickly, and since an exact
number is not really required, the expected number is returned here instead.

CHAPTER 7

Sample 299

Sampler 296
Sampler::GetNextSample!
Sampler::samplesPerPixs’
Sampler::TotalSamples() 288
Sampler::xPixelEnd 298
Sampler::xPixelStart 298
Sampler::yPixelEnd 298
Sampler::yPixelStart 258

Scene::Render() 24

346 SAMPLING AND RECONSTRULTION

(a) (b) (c)

Figure 7.34: (a) Reference depth of field image, and images rendered with (b) the low-discrepancy
and (c) best-candidate samplers. Here the low-discrepancy sampler is again the most effective.

shaped strata from an equal number of samples in each direction, so the RoundSize()
method rounds up sample size requests so that they are an integer number squared.

(BestCandidateSampler Public Methods) = 344
int RoundSize(int size) const {
int root = Ceil2Int(sqrtf((float)size - .5f));
return root*root;

}

The BestCandidateSampler::GetNextSample() method has a similar basic approach to
the other samplers in this chapter, except that the sample pattern sometimes extends
beyond the image’s boundaries due to the way it is tiled. These out-of-bounds samples
must be ignored, which can lead to multiple tries in order to find an acceptable sample.

(BestCandidateSampler Method Definitions)+ =
bool BestCandidateSampler::GetNextSample(Sample *sample) {
again:
if (tableOffset == SAMPLE TABLE SIZE) {
(Advance to next best-candidate sample table position 347)

}
(Compute raster sample from table 3a9)

(Check sample against crop window, goto again if outside 349)
(Compute integrator samples for best-candidate sample 350)
++tableOffset;

return true;

}

If it has reached the end of the sample table, the sampler tries to move forward by
xTableCorner. If this leaves the raster extent of the image, it moves ahead by yTableCorner,
and if this takes y beyond the bottom of the image, it is finished.

CHAPTER 7

BestCandidateSampler

BestCandidateSampler:=
GetNextSample() 345

BestCandidateSampler==
tableOffset 344

Ceil2Int() 856
Sample 299
SAMPLE_TABLE_SIZE 335

"SECTION 7.5

BEST-CANDIDATE SAMPLING PATTERNS 349

(BestCandidateSampler Private Data)+= 344
float sampleOffsets[3];

Computing the raster space sample position from the positions in the table just requires
some simple indexing and scaling. We don’t use the Cranley-Patterson shifting technique
on image samples because this would cause the sampling points at the borders between
repeated instances of the table to have a poor distribution. Preserving good image distri-
bution is more important than reducing correlation. The rest of the camera dimensions
do use the shifting technique; the WRAP macro ensures that the result stays between zero
and one.

(Compute raster sample from table) = 346
#define WRAP(x) ((x) > 1 2 ((x)-1) : (x))
sample->imageX = xTableCorner + tableWidth *

sampleTable[tableOffset] [0];
sample->imageY = yTableCorner + tableWidth *
sampleTable[tableOffset] [1];
sample->time = WRAP(sampleOffsets[0] +
sampleTable[tableOffset] [2]);
sample->lensU = WRAP(sampleOffsets[1] +
sampleTable[tableOffset] [3]);
sample->TensV = WRAP(sampleOffsets[2] +
sampleTable[tableOffset] [4]);

The sample table may spill off the edge of the image plane, so some of the generated
samples may be outside the appropriate sample region. The sampler detects this case by
checking the sample against the region of pixels to be sampled and generating a new
sample if it’s out of bounds.

(Check sample against crop window, goto again if outside) = 346
if (sample->imageX < xPixelStart ||
sample->imageX >= xPixelEnd ||
sample->imageY < yPixelStart ||
sample->imageY >= yPixelEnd) {
++tableOffset;
goto again;

As explained previously, for integrator samples, the precomputed randomly scrambled
low-discrepancy values are used if just one sample of this type is needed; otherwise a
stratified pattern is used.

KS

Section Page

Introduction 1 1
The Kolmogorov—Smirnov statistic 2 2
Coding details 5 5
Afew unit tests 9 9

Index 11 11

§1 KS INTRODUCTION 1

1. Introduction. This is a “mock-up” of how the full
power of literate programming might be useful to R pro-
grammers. It presents a simple (but interesting) function that
computes the Kolmogorov—Smirnov statistic from empirical
data. Then it shows some examples of that function in use.
(The author apologizes for any awkward coding, due to the
fact that this is actually his very first attempt to program in R.)

(Define the function 5)
(Test the function 9)

2 THE KOLMOGOROV-SMIRNOV STATISTIC KS §2

2. The Kolmogorov—Smirnov statistic. The empirical
distribution function F,(z) of a set of samples X7, X, ..., X,
is defined to be

number of X1, X5, ..., X,, that are <z

F.(z) = -

For example, the jagged line shown here is an empirical distri-
bution function taken from §3.3.1 of the book Seminumerical
Algorithms:

Il_l'
T
4

5% 25%50% 75% 95% 99%

§2 KS THE KOLMOGOROV-SMIRNOV STATISTIC 3

3. The curved line in that illustration is another cumulative
distribution function, F'(x). One way to measure goodness of
fit, proposed by A. N. Kolmogorov in 1993 and modified by
N. V. Smirnov in 1939, is to compute

=V o,)~ FE)

Ki=vn s, F@)=Fu@).

Here K. measures the greatest amount of deviation when F),
1s greater than F, and K, measures the maximum deviation
when F), is less than F. The normalizing factor y/n ensures
that K.} and K, will converge to a limiting distribution as
n — 00, if the X’s are independent samples from F'.

4 THE KOLMOGOROV-SMIRNOV STATISTIC KS 94

4. The given data comes from distribution F'if and only if
F(X,) has the uniform distribution between 0 and 1.

Hence the obvious way to compute K and K is to start
by sorting the X’s so that X; < Xy <-..- < X,,. Then we can
compare F'(X;) to the “ideal” value j/n.

However, the time needed for sorting is of order nlogn.
We will use an improved method suggested by T. Gonzalez,
S. Sahni, and W. R. Franta [ACM Transactions on Mathemat-
ical Software 3 (1977), 60-64], who noticed that linear time
suffices if we place the unsorted samples into n bins.

Indeed, if we put Y; into bin |Y; |, the final statistics depend
only on the smallest and largest elements in each of the n bins.
Other elements in those bins don’t contribute to the extremes
that are measured by K and K.

85 KS CODING DETAILS 5

5. Coding details.

lit.ks.test=function(x,p) {
(Return FALSE if y doesn’t make sense 8);
(Insert y into bins, remembering extreme values 6);
(Find the overall extreme values lo, hi 7);
return (c(lo,hi)/sqrt(n))
+

This code is used in section 1.

6 CODING DETAILS KS §6

6. The main idea is to keep track of [b[j] and ub[j], the
smallest and largest element of bin j — 1, as well as count|j],
the total number of elements in that bin, for 1 < j5 < n.
(This is a situation where C programmers wish that R had
0-origin indexing.)
(Insert y into bins, remembering extreme values 6) =
lb=1:n
ub=count=array(0,dim=n)
for (j in 1:n) {
yy=yLil; k=yyh/hi+1
if (yy<lblk]) 1bl[k]=yy
if (yy>ublk]) ublk]=yy
count [k]=count [k]+1
+

This code is used in section 5.

87 KS CODING DETAILS

7. Here’s the key logic that makes it all work.

(Find the overall extreme values lo, hi 7) =
hi=lo=§=0
for (k in 1:n) A
if (count([k]) {
if (1b[k]-j>1lo) lo=1blk]-j
j=j+count [k]
if (j-ub[k]>hi) hi=j-ub[k]
+
+

This code is used in section 5.

8 CODING DETAILS KS g8

8. Of course a good subroutine intended for general use will
check to see that bad parameters haven’t been supplied. Other-
wise the computer might hang up with subscripts out of range.

(Return FALSE if y doesn’t make sense 8) =

OK=FALSE
if (sum(y<0)) message(’That CDF has negative values!’)
else if (sum(y>n)) message(’That CDF has values > 1!7)
else if (sum(y==n)) A

for (j in 1:n)

if (y[jl==n)
message(’x[’,j,’] is too high: ’,x[jl)

} else OK=TRUE
if (10K) return(FALSE)

This code is used in section 5.

§9 KS A FEW UNIT TESTS 9

9. A few unit tests. First let’s make sure that those error
messages are properly issued.

(Test the function 9) =
lit.ks.test (-1, function(x) return(x))
That CDF has negative values!
[1] FALSE
lit.ks.test(2, function(x) return(x))
That CDF has values > 1!
[1] FALSE
1lit.ks.test(c(.6,.23,pi,-.1,1), punif)
x[3] is too high: 3.14159265358979
x[5] is too high: 1
[1] FALSE

See also section 10.
This code is used in section 1.

10 A FEW UNIT TESTS KS 3§10

10. And finally, we also want to obtain a valid result when
we supply valid parameters.
(The built-in system function ks.test computes the slightly

different statistics D, = K /y/n and D} = K} /\/n.)

(Test the function 9>4f:
x=c(.999,.21,.64,.87,.22)
lit.ks.test(x,punif) /sqrt(5)

[1] 0.27 0.18

ks.test (x,punif,alter ="less")

D°- = 0.27, p-value = 0.4134

alternative: the CDF lies below the null hypothesis
ks.test (x,punif, ="greater")

D"+ = 0.18, p-value = 0.651
alternative: the CDF lies above the null hypothesis

§11 KS

11. Index.

count: 6, 7.

Franta, William Ray: 4.
Gonzalez-Arce, Tebfilo
Francisco: 4.

hi: 5, 7.

Kolmogorov, Andrei
Nikolaevich: 3.

ks.test: 10.

1b: 6, 7.

lit.ks.test: 5,9, 10.

lo: 5, 7.

0K: 8.

punif: 9, 10.

Sahni, Sartaj Kumar: 4.

INDEX

Smirnov, Nikolai
Vasilievich: 3.

sqrt: o, 10.

sum: 8.

ub: 6, 7.

yy: 6.

11

12 NAMES OF THE SECTIONS KS

(Define the function 5) Used in section 1.

(Find the overall extreme values lo, hi 7) Used in section 5.

(Insert y into bins, remembering extreme values 6) Used in
section 5.

(Return FALSE if y doesn’t make sense 8) Used in section 5.

<Test the function 9, 10> Used in section 1.

