A Light, Accurate, Inexpensive, and Easy to Implement Indoor Localization System.

Mark Woodward

Goal:

- Localization System
- Requirements:
 - Light
 - Accurate
 - Inexpensive
 - Easy to Implement
- Assumptions
 - Flat uniform ground plane

Approach:

- Overview
 - Video camera
 - Canny edge detector
 - Extract nearest edge as a wall
 - Project onto flat ground plane
 - Use Projections as range estimates
 - Run Monte Carlo Localization (MCL)

- Run MCL
 - x^[m] ~ bel(x_0:t)
 - bel(x_0:t) = n p(z_t|x_t) p(x_t|x_t-1,u_t-1) bel(x_0:t-1)

Platform:

Hardware

Platform (cntd):

Motion Model

Platform (cntd):

Motion Model

Results:

Video

Results (cntd):

Problems:

- Pitch
 - Pitch from the image
 - Put pitch in the state
 - Add an accurate IMU
 - Alter the sensor model
 - Change sensor (laser triangulation)
- Corrupted Images
 - Corrupted image classifier
- Motion Model Inaccuracies
 - Add velocity to the turning radius equation (side slip)

Thank-you

