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Abstract— Humans can learn from teachers by observing
gestures, reinforcements, and words, which we collectively call
signals. Often a new signal will support a different interpreta-
tion of an earlier signal, resulting in a different belief about the
task being learned. If robots are to learn from these signals,
they must perform similar inferences. We propose the use of
Bayesian inference to allow robots to learn tasks from human
teachers. We review Bayesian inference, describe its application
to the problem of learning high-level tasks from a human
teacher, and work through a specific implementation on a robot.
Bayesian inference is shown to quickly converge to the correct
task specification.

I. INTRODUCTION

The ability of robots to perform meaningful work in
complex, real-world environments is continually expand-
ing [1], [2], [3]. To take advantage of these abilities, robot
users will need a mechanism for defining their own tasks.
Many of these users will not be proficient programmers, but
will be familiar with teaching other humans through ges-
tures, reinforcements, and words, which we collectively call
“signals”. It would be useful if they could teach robots using
these same signals. The problem is that a signal can often
have multiple interpretations, either because of perception
errors or because the gesture, reinforcement, or word by
itself does not carry enough information to fully specify
the task. These multiple interpretations result in multiple
task specifications. Fortunately, as more signals arrive, fewer
interpretations “make sense” and the task becomes clearer.
We propose the use of Bayesian inference to give robots this
type of reasoning, allowing users to specify new tasks using
familiar signals.

We assume that the robot has been pre-programmed with
a set of primitive actions. The goal is to learn a composition
of these primitive actions, which we call a “task” or “high-
level task” to emphasize the use of primitive actions. We are
concerned with the teaching of the task, not the commanding
of the task, which may also make use of Bayesian inference.

In this paper we review Bayesian inference, describe its
application to task learning, and work through an example
of an actual robot learning a simple task. But first we start
by reviewing some related work.

II. RELATED WORK

Multiple researchers have addressed the topic of learning
from a human teacher and many make use of Bayesian infer-
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ence. We decompose these works into two groups based on
the type of problem addressed: control vs. communication.

In a “control problem”, the robot needs a mapping from
sensor values to actuator controls. This mapping can be
difficult to specify. Often a human can directly control the
robot to perform the behavior, even though they are unable
to write down the function they are using. To make use of
the human’s ability, a log is captured of the sensor values
and control inputs as the human controls the robot. This
log is then used to “learn” the mapping. This is often
called imitation learning or apprenticeship learning. Some
examples of control problems that have been addressed in
this way are: performing helicopter aerobatics [4], navigating
a corridor [5], [6], [7], and pushing obstacles [8]. This type
of learning could be used to create the primitive actions that
are assumed in this paper.

In what we are calling a “communication problem”, the
human can write down exactly what they want the robot
to do. More specifically, the human can write down the
sequence of primitive actions that make up a task. The
problem is communicating this sequence to the robot. While
a programmer could easily “code” this in, for a non-technical
user, this is a communication problem where the robot must
extract the specification of a task from human signals.

Most of the work addressing this communication problem
treats the teacher signals deterministically. For example,
when the human gives a signal, the primitive action currently
executing gets appended to the primitive action sequence
making up the task [9], [10], [11], [12]. But, as we
mentioned before, signals can often be interpreted in multiple
ways, and it is only after the information from several signals
is integrated that the meaning of early signals becomes clear.
Because of the continually accumulating signal information,
inference is needed.

To our knowledge, no one has applied Bayesian inference
to this problem. The following works maintain counts for
primitive actions and then use these counts to form the task,
but no formal inference is performed [13], [14], [15].

In [16], reinforcement learning, specifically Q-
Learning [17], is applied to this problem. The authors
identify the tendency of humans to “shape” when they are
teaching tasks, and encourage future work to incorporate
human shaping into reinforcement learning algorithms.
Their suggestion is to add another button for the teacher
to indicate when they are “shaping”, thereby removing the
uncertainty. This solution will work for the reinforcement
learning case, where a reinforcement is the only signal,
but does not scale well to multiple signal types. This type



of modification to the teacher signal is unnecessary with
Bayesian inference, as we show in our demonstration below.

A technique which bears similarity to our research, but
addresses a different problem, is Bayesian robot program-
ming (BRP) [8], in which the authors use probability to
address traditional programming. Instead of defining the
preconditions for switching from one behavior to another,
under BRP the programmer specifies what the robot is likely
to see when it is executing a behavior. Bayes rule is then used
to express the distribution over which behavior should be run
in terms of what is likely to be seen for each behavior. This
is not the use of Bayesian inference we propose in this paper,
i.e. inferring task specifics from a human teacher.

Also, in our demonstration below, we use a teacher applied
reinforcement as a signal. Many works have used teacher
applied reinforcements [16], [14], [15], [10], [11], etc.,
but none with Bayesian inference.

III. BAYESIAN INFERENCE

Bayesian inference is a technique for estimating unobserv-
able quantities from observable quantities. In this section we
give an overview of Bayesian inference, beginning with some
definitions.

We use p(·) as notation for both probability density
functions and probability mass functions. p(X) is shorthand
for p(X = x) where x is some event in the domain of the
random variable X . If X is a time varying random variable,
we use Xt to indicate the value of X at time t and we define
the shorthand Xt to mean (Xt, Xt−1, · · · , X1). Finally, we
define X̂t to be Xt with X0 added on.

In its simplest form, Bayesian inference is just Bayes rule.
Bayes rule allows you to update your belief about a hidden
quantity H given an observed quantity O, and is defined as,

p(H|O) = p(O|H)× p(H)/p(O) (1)
∝ p(O|H)× p(H) (2)

p(O|H) specifies the probability of measuring o given H =
h. It is called the “measurement model” and is generally
easier to specify than p(H|O), which is why Bayes rule
is useful. p(H) is called the prior distribution over H and
represents the belief about H before O is measured. The
second line follows from the first and the fact that p(O) is
a constant since we know the value of O. p(H|O) is called
the posterior distribution.

In the case where H and O vary with time, the posterior
distribution p(Ĥt|Ot) can be decomposed as follows,

p(Ĥt|Ot) ∝ p(Ot|Ĥt, Ot−1)×
p(Ĥt|Ot−1) (3)

= p(Ot|Ĥt, Ot−1)×
p(Ht|Ĥt−1, Ot−1)×
p(Ĥt−1|Ot−1). (4)

Eq. (3) is a direct application of Bayes rule. Eq. (4) fol-
lows from Eq. (3) and the definition of conditional prob-
ability. p(Ot|Ĥt, Ot−1) is again the measurement model.

p(Ht|Ĥt−1, Ot−1) is called the “motion model” and speci-
fies the motion of the time varying, hidden random variable
H . In the context of an update to the posterior distribution,
p(Ĥt−1|Ot−1), which is the posterior distribution from the
previous time step, is also called the prior distribution. We
try to make it clear when we mean the prior distribution from
the previous time step, or the prior distribution at time zero,
p(H0).

Given a set of measurements Ot and assuming H
is discrete, one way to compute p(Ĥt|Ot) for a spe-
cific assignment to the (Ht, Ht−1, · · · , H1, H0) is to start
from p(H0) and recursively apply Eq. (4). This process
can be done for each of the N t+1 assignments to the
(Ht, Ht−1, · · · , H1, H0), where N is the number of values
that H can take on. The complete set of N t+1 assignments
is called the posterior space. We will discuss techniques for
dealing with the exponential growth of the posterior space
in the “Discussion” section bellow.

In general, Bayesian inference can be applied to problems
with any number of discrete or continuous, time vary-
ing or static, hidden and observed, random variables, e.g.
p(Ht, I, J, . . . |Ot, P,Qt, . . .). As before, the application of
Bayes rule followed by the definition of conditional proba-
bility can be used to decompose this posterior. In general,
in order to use Bayesian inference the following must be
specified:

Necessary Components for Bayesian Inference

1) Define the hidden random variables.
2) Define the observable random variables.
3) Specify a measurement model for each observable

random variable.
4) Specify a motion model for each time varying hidden

random variable.
5) Specify the prior distribution over the hidden random

variables at time zero.
Next we frame high-level task learning as a Bayesian

inference problem.

IV. BAYESIAN INFERENCE APPLIED TO
LEARNING HIGH-LEVEL TASKS

The problem of learning high-level tasks from a human
teacher involves inferring task details from signals emitted
by the teacher. In order to apply Bayesian inference we need
to specify the hidden random variables, the observed random
variables, the measurement models, any motion models, and
the prior distribution.

For the problem of learning high-level tasks from human
teachers, the hidden random variables capture what needs to
be specified about the task, a complete assignment to the
hidden random variables should allow the robot to perform
the task. The observed random variables capture useful
information with regards to the signals from the teacher, such
as the direction the teacher was pointing or the location of
objects in the room.

Measurement models need to be specified that predict
these measurement values given a complete assignment to the



hidden random variables. For some of these measurements
the link between the measured value of the observed random
variable and the hidden random variables specifying the
task could be complicated, making the specification of the
measurement model a difficult task. In many situations this
link is simplified if additional hidden random variables
are introduced. Thus, introducing additional hidden random
variables can be useful even if those variables do not directly
specify parameters of the task. An example of this technique
is provided in our demonstration below. Some of the hidden
random variables will vary with time and for these a motion
model should be specified. Finally a prior distribution over
the hidden random variables defining the task should be
specified.

Once these have been specified, Bayesian inference tech-
niques can be used to incorporate new signals and update
the posterior distribution over the hidden random variables
defining the task.

V. ACTION SELECTION
This paper focuses on the inference of task details from

human signals, but often the robot will need to move around
in order to elicit signals from the human teacher. This
sections gives suggestions as to how the inference described
in this paper can help with autonomously selecting actions
during the teaching process.

With each new teaching signal, Bayesian inference updates
the distribution over the hidden random variables defining the
task, but from the start this distribution exists. One option
for action selection during teaching is to sample from the
current distribution and then perform the task according to
the sample. As the distribution converges to the desired
task, the robot will more often choose samples that execute
the task correctly. Also, by sampling, instead of choosing
the mean or mode, randomness is introduced and the robot
naturally explores the task space in proportion to its current
belief. A variation on this is used in the demonstration below.

Direct control of the robot during the teaching process
is another option, but we feel that when using Bayesian
inference, autonomous action selection during teaching will
often be necessary, since it will not always be evident to
the teacher which details of the task remain unclear to the
robot.1

VI. DEMONSTRATION
We now detail the use of Bayesian inference to learning

a specific task. This demonstrations is meant to give the
reader the flavor of how to apply Bayesian inference. The
random variables, measurement models, and motion models
described are based on intuition, we make no claims about
their accuracy. It is likely that the effectiveness of this
technique would be improved with more accurate models.
However, the focus of this paper is to establish the basis of
Bayesian inference.

1Some of this uncertainty might be communicated using emotional
projecting techniques from social robotics research [18], but the robot will
likely still need to move itself or the world into regions where uncertainty
exists.

Fig. 1. This figure shows the platform used to demonstrate our approach. A
camera tracks the robot and the three balls. All processing is performed on a
laptop and autonomous control signals are transmitted out a standard remote
control radio link to a differential drive robot equipped with an acrylic ring
for capturing and moving balls. A custom circuit board was designed to
interface the laptop with the transmitter. The teacher presses the spacebar
on the laptop to administer a reinforcement signal.

A. Platform

The platform used in this demonstration is shown in Fig. 1.
The robot measures five inches in diameter and is capable
of moving three balls around a room. An overhead camera
is used to track the robot and the three balls. All processing
is performed on a laptop and autonomous control signals
are transmitted out from the laptop over a standard remote
control radio link (via a custom printed circuit board).

B. Teacher Signals

For this demonstration we use a single teacher signal.
The signal is administered by pressing the spacebar on the
keyboard. It is meant to indicate that the teacher approves of
something the robot has done. We call this a “reinforcement
signal”.

C. Task

The robot must infer from the reinforcement signals that
the task consists of moving ball 1 to a distance of one foot
from ball 2. This is depicted in Fig. 2. Many real-world tasks,
such as retrieving a bottle of medicine or returning a toy to
its basket, require a similar level of inference.

For this simple task it would be possible to create an
unambiguous vocabulary or graphical interface so that non-
technical users could specify the task, but as task complexity
increases, an unambiguous interface would become increas-
ingly cumbersome. With Bayesian inference, a user can



Fig. 2. The robot is taught the task of moving ball 1 to a distance of one
foot from ball 2 using only reinforcement signals. Throughout the teaching
session the robot acts autonomously, making use of the evidence it has
acquired so far.

continue to use their familiar, ambiguous signals, with the
increased task complexity handled through more expressive
hidden random variables, motion models, and measurement
models.

D. Hidden and Observable Random Variables

In this situation, a “task” for the robot consists of moving
one ball to a specific distance with respect to another ball.
The problem then, is to infer which ball to move, which
ball to move it with respect to, and the desired separation
between the balls.

The following tables define the hidden and observed
random variables for this task. i is the the index of the ith
reinforcement signal.

Hidden Random Variables

Mov
The ID, 0-3, of the ball that the robot should
move in this task, “0” means that the robot
itself should be moved.

WRT
The ID, 1-3, of the ball that ball “Mov” should
be moved with respect to.

Ti

The intended type, 1-3, of the ith reinforce-
ment signal corresponding to “final”, “atten-
tion”, or “distance”.

Observed Random Variables

~Θi

A vector of angles to each of the three balls
when the ith reinforcement signal was re-
ceived. ~Θi(j) is the angle the robot must rotate
to face ball j.

~Di

A vector of the distance from the robot to each
of the three balls when the ith reinforcement
signal was received. ~Di(j) is the distance to
ball j.

Hi

The ID, 0-3, of the ball that the robot was
holding when the ith reinforcement signal was
received. “0” means that the robot was not
holding a ball.

The Ti were introduced to simplify the definition of the
measurement models for ~Θi and ~Di. This will be discussed
further when we talk about the measurement models. Also,

as we will show later, the Ti in conjunction with the observed
random variables fully define the desired distance that ball
Mov should be moved to from ball WRT . This is why we
did not define a hidden random variable for this distance.

The Ti attempt to capture the “type” of reinforcement
signal the teacher gave: “final”, “attention”, or “distance”.
A type of “final” means that the teacher was indicating that
the robot had reached the final distance. “attention” means
that the teacher was pleased with the direction that the robot
was facing and “distance” means that the teacher was pleased
with the distance between the robot and a particular ball.

The types “attention” and “distance” are necessary because
recent research has shown that human teachers do not wait
for the task to be performed to perfection before administer-
ing a reinforcement signal, instead they reinforce as the robot
makes small improvements towards the desired task [16].
This is called shaping, as discussed in the “related work”
section.

The inference problem would be simplified if we had a
button for each of the three reinforcement signal types, then
the Ti would be observed random variables, and not hidden
random variables which need to be inferred. We chose to use
a single button for the reinforcement signal because we feel
that humans may not always know why they are reinforcing
the robot and because we envision future reinforcement types
where no button makes sense. For example, the teacher could
mistakenly press the button, in which case a reinforcement
type of “mistake” would be useful.

E. Posterior Distribution & Posterior Expansion

The posterior distribution that Bayesian inference will
maintain is: p(Mov,WRT, T i|~Θi, ~Di, Hi).

As before, we use Bayes rule and the definition of con-
ditional probability to decompose this posterior distribution
into measurement models, motions models and the prior
distribution before reinforcement signal i arrived. Here is
the result of that decomposition.

p(Mov,WRT, T i|~Θi, ~Di, Hi) ∝∏
j=1:3

p(~Θi(j)|Mov,WRT, T i, ~Θi−1, ~Di, Hi)×∏
j=1:3

p( ~Di(j)|Mov,WRT, T i, ~Θi−1, ~Di−1, Hi)×

p(Hi|Mov,WRT, T i, ~Θi−1, ~Di−1, Hi−1)×
p(Ti|Mov,WRT, T i−1, ~Θi−1, ~Di−1, Hi−1)×
p(Mov,WRT, T i−1|~Θi−1, ~Di−1, Hi−1) (5)

There was flexibility as to the order in which we brought
out the observed variables ~Θi, ~Di and Hi. These are sub-
jective decisions and in this case it was more useful to have
~Θi and ~Di condition on Hi than the other way around. ~Θi

and ~Di are conditionally independent given Hi and the other
variables, so their order did not matter.

This expansion and the specification of the models them-
selves, in addition to the selection of random variables is
not unique; many other alternatives could have been chosen
while maintaining the effectiveness of Bayesian inference.



F. Measurement Models

In the posterior decomposition above, there are three
measurement models, one for each of the observed random
variables: ~Θi, ~Di, and Hi. In this section we treat each
measurement model in turn, giving rough intuition and then
specifying the model.

1) p(~Θi(j)|Mov,WRT, T i, ~Θi−1, ~Di, Hi): If the type of
the new reinforcement signal is “attention”, then we expect
the robot to be looking in either the direction of ball Mov or
in the direction of ball WRT ; Mov if the robot has not yet
picked up ball Mov, and WRT if it is holding ball Mov.

In all other cases the robot could be looking in any
direction.

if (Ti =attention) ∩ ((Mov=j ∩Hi 6=j)∪
(Hi =Mov ∩WRT = j))

p(~Θi(j)| . . .) is Gaussian with µ = 0 and σ = 20◦

else
p(~Θi(j)| . . .) is Uniform(-π,π)

Note: ~Θi(j) takes on values in (−π, π), while the domain
of a Gaussian random variable is all real numbers. To account
for this in the above equations we normalize the distribution
by the area above π and bellow −π.

2) p( ~Di(j)|Mov,WRT, T i, ~Θi−1, ~Di−1, Hi): If the
type of the new reinforcement signal is “final”, then the
robot must be holding ball Mov and we can predict the
distance to ball Mov by fitting a Gaussian to the distances
of all previous “final” reinforcement signals.

If the type of the new reinforcement signal is “distance”,
then we expect that the robot has moved closer to ball Mov
or ball WRT , depending on whether the robot is holding
ball Mov or not.

In all other cases the distance from a ball could be
anything, although it should be within a reasonable deviation
from the distance when the last reinforcement signal was
received.

if (Ti = final)
p( ~Di(j)| . . .) is Gaussian with µ =

∑
K
~Dk(j), and

σ =
√

1
n+1

∑
k( ~Dk(j)− µ)2, with k such that k < i

and Tk = final
else if (Ti = distance) ∩ ((Mov = j ∩Hi 6= j)∪

(Hi = Mov ∩WRT = j))
p( ~Di(j)| . . .) is Gaussian with µ = max( ~Di−1(j) −
30, 0) and σ = 30mm

else
p( ~Di(j)| . . .) is Gaussian with µ = ~Di−1(j)
and σ = 500mm

Note: ~Di(j) takes on only positive values, while the
domain of a Gaussian random variable is all real numbers.
To account for this in the above equations we normalize the
distribution by the area bellow zero.

3) p(Hi|Mov,WRT, T i, ~Θi−1, ~Di−1, Hi−1): If the type
of the new reinforcement signal is “final” or the robot was

holding ball Mov when the previous reinforcement signal
was received, then the robot must be holding ball Mov. That
is, once the teacher has reinforced the robot for holding ball
Mov we do not expect them to reinforce when the robot is
not holding Mov, and the robot must be holding ball Mov
if the teacher gave a “final” reinforcement.

In all other cases the probability of holding ball Mov
should increase as the robot approaches ball Mov, and the
probability of holding itself, ball 0, should decrease.

if (Ti = final) ∪ (Hi−1 = Mov)
p(Hi = Mov| . . .) = 1
p(Hi 6= Mov| . . .) = 0

else
p(Hi = Mov| . . .) = f( ~Di−1(Mov))
p(Hi = 0| . . .) = 1− f( ~Di−1(Mov))
p(Hi 6= (Mov ∪ 0)) = 0

where f(d) = max
(

pmin−pmax

span × d+ pmax, pmin

)
.

pmin = 0.001, pmax = 0.8, span = 500mm.

G. Motion Models

In our formulation of this problem T is the only hidden
random variable that depends on time, and thus, T is the
only hidden variable that needs a motion model.

1) p(Ti|Mov,WRT, T i−1, ~Θi−1, ~Di−1, Hi−1): Once a
reinforcement of type “final” is received, we assume that all
subsequent reinforcements are also of type “final”. If none
of the reinforcement signals received so far have been of
type “final”, then the probability of the new reinforcement
having type “final” increases as the robot approaches ball
WRT , accounting for the distance it would takes to go and
get ball Mov if it is not being held. The probability of
receiving a reinforcement signal of type “attention” is equal
to the probability of receiving a reinforcement signal of type
“distance”.

if (Ti−1= final)
p(Ti = final| . . .) = 1
p(Ti = attention| . . .) = 0
p(Ti = distance| . . .) = 0

else if (Hi−1 = Mov)
p(Ti = final| . . .) = f( ~Di−1(WRT ))
p(Ti = attention| . . .) = 1

2 (1− f( ~Di−1(WRT )))
p(Ti = distance| . . .) = 1

2 (1− f( ~Di−1(WRT )))
else
p(Ti = final| . . .) =

f( ~Di−1(Mov) + disti−1(Mov,WRT ))
p(Ti = attention| . . .) =

1
2 (1− f( ~Di−1(Mov) + disti−1(Mov,WRT )))

p(Ti = distance| . . .) =
1
2 (1− f( ~Di−1(Mov) + disti−1(Mov,WRT )))

where f(d) = max
(

pmin−pmax

span × d+ pmax, pmin

)
.

pmin = 0.001, pmax = 0.6, span = 2000mm. disti(b1, b2)



is the distance between ball b1 and ball b2 when the ith
reinforcement signal was received.

H. Prior Distribution at i = 0
At time zero, before any reinforcement signals have been

received, the only hidden random variables are Mov and
WRT . So the prior distribution needs to specify a probability
for each assignment to the pair (Mov,WRT ). We assume
that all combinations are equally likely, i.e. before teaching,
no ball is more likely to be moved than another and no ball is
more likely to be moved with respect to than another. Thus,
for all nine combinations of k and l, which excludes moving
a ball to itself,

P (Mov=k,WRT = l) = 1/9. (6)

I. Posterior Update

For this demonstration we chose to maintain the full
posterior distribution, alternatives are described in the dis-
cussion section. Since all of our hidden random variables
are discrete, the posterior distribution can be stored as a
vector of probabilities, where each entry corresponds to
one assignment to the hidden random variables. Before any
reinforcement signals have been received, there are only
two hidden random variables, Mov and WRT , with the
nine possible assignments mentioned above. The posterior
distribution begins as a vector with 9 elements all initialized
to 1/9. After n reinforcement signals have been received, the
posterior distribution is a vector with 9× 3n elements, since
another T is added for each signal, and each T can take
on one of three values, “final”, “attention”, or “distance”.
The nth signal is incorporated by creating a vector of length
9 × 3n with three identical copies of the posterior vector
from the last update, one corresponding to Tn = final, one
for Tn = attention and one for Tn = distance. Then, we
follow Eq. (5) from back to front, by taking each element
of the vector and multiplying by the motion model for that
assignment to Tn, then multiplying by the measurement
models for the observed Hn, ~Dn, and ~Θn. This vector is
then normalized to get the new posterior distribution.

More advanced methods do exist for computing posterior
distributions [19], [20], [21]; the purpose of this paper is not
to present a novel Bayesian computation algorithm, but to
establish the basis of Bayesian inference as a method for
learning task specifications from familiar human signals.

J. Action Selection

In this demonstration, the robot acts autonomously during
the teaching process. In this section we describe the compu-
tation done to select a new “action”.

As described above, the posterior distribution is main-
tained in a vector, where each element specifies the prob-
ability of an assignment to Mov, WRT , and T i. The robot
first uses this probability vector to sample an assignment of
Mov, WRT , and T i.

The robot could carry out the specified task to completion,
but this is unnecessary. Because we assume the human
teacher is “shaping” the task, the robot only needs to perform

the task to the point where it expects to receive the next
reinforcement. The distributions over the details of this next
reinforcement signal are specified by the measurement and
motion models. Thus, the robot chooses actions by sampling
Ti+1, Hi+1, ~Di+1, and ~Θi+1, in that order (see Eq. (5)),
conditioned on the posterior sample of Mov, WRT , and T i,
and then moving the world to that state. For example, if the
value of the samples are (Mov = 1, WRT = 2, Hi+1 = 1,
Ti+1 = attention, . . .), then the robot should go pick up
ball 1, because Hi+1 = 1, and turn to face ball 2, because
Ti+1 = attention and WRT = 2.

This procedure is run any time a reinforcement signal is
received, or after three seconds of waiting once the state
specified by the last sample has been reached.

VII. RESULTS

In the following results, the robot was taught by a non-
technical graduate student. The results obtained appear to
be typical of non-technical teachers. Similar results were
obtained from six non-technical teachers, with a minimum
teaching time of roughly three minutes and a maximum
teaching time of roughly seven minutes. Where teaching time
was the time it took for the teacher to feel satisfied that the
robot “knew” the task.

Fig. 3 shows the position of the robot, the three balls, and
the reinforcement signals during the five minute teaching
session2. The squares show the locations where reinforce-
ment signals were received. Nine reinforcement signals were
issued by the teacher. Roughly, the first four reinforcement
signals showed the robot that it should move ball 1, the next
three that it should move ball 1 to ball 2, and the final two
refined the distance that ball 1 should be from ball 2.

Fig. 4 shows the robot performing the learned task. The
robot captures ball 1 and takes it directly to a distance of
one foot from ball 2.

In Fig. 5 we plot the distance from the robot to each of
the three balls vs. time for the same teaching and execution
runs. The vertical lines mark the times when a reinforcement
signal was received. During the teaching session the distance
to ball 1 drops first, since the robot is shown that ball 1 is
to be moved, followed by a drop in the distance to ball 2,
as the robot is taught that ball 1 should be moved to ball 2.

Fig. 6 illustrates the convergence of Mov and WRT
to the desired values. The left column shows the marginal
distributions for Mov and WRT after each of the nine
reinforcements. P (Mov = 1) and P (WRT = 2) both
converge to 1. The right column shows the entropy for Mov
and WRT .

Entropy(X) = −
∑
xi

p(xi)× log(p(xi)). (7)

We use entropy as a measure of the uncertainty in the two
random variables. Both variables start at complete uncer-
tainty and converge to near certainty that Mov = 1 and
WRT = 2.

2Visit http://eecs.harvard.edu/∼woodward/videos for the video of this
teaching session.
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Fig. 3. This figure shows the actual trajectory of the robot and balls,
and the reinforcement locations during the teaching session. The “robot”
line shows the path of the robot, which starts at (1300mm, 1400mm). The
squares indicate the locations where the reinforcement signals were received.
The circles show the start and stop positions of the three balls, with the path
in between drawn as a dotted line; only ball 1 moved during this teaching
session. Nine reinforcement signals were issued. The last two overlap the
7th signal. The robot operated autonomously during the teaching session.
This task was taught in under 5 minutes. Similar results were obtained from
six non-technical users.
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Fig. 4. Once the task has been taught to the robot, the robot can accurately
and repeatedly execute the task. In future work the teacher will be able to
associate a trigger with this task so that it, and other tasks, can be executed
on command.

VIII. DISCUSSION

A. Measurement and Motion Model design

In the demonstration above, the form and parameters of
the models were set based on intuition. One approach to
more accurate models would be to survey humans as they
teach tasks to the robot or another human, and then fit the
models to the survey data.

B. Exponential Growth of the Posterior Space

In our application of Bayesian inference for the demon-
stration we maintained a vector of probabilities, one for every
point in the posterior space, i.e. every assignment to the tuple
of hidden random variables. The problem with computing
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Fig. 5. This figure shows another view of the teaching session and execution
run. The distance from the robot to each of the three balls is plotted vs. time
for the teaching session (left) and execution run (right). The vertical lines
show when each of the nine reinforcements were received. The distance to
ball 1 drops first, followed by the distance to ball 2, since the robot is first
shown that ball 1 is to be moved, and then that it is to be moved to ball 2.
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Fig. 6. This figure illustrates the accuracy that Bayesian Inference brings to
the problem of teaching high-level tasks. When a robot perceives a teaching
signal from a human, such as the reinforcement “spacebar” press in our
example, there is nearly always ambiguity regarding the intentions of the
signal. For example with the reinforcement “spacebar” press the robot knows
that it is doing something that the teacher approves of, but was it that the
robot was “looking” at the green ball, or was it that the robot was near the
red ball? An incorrect guess could lead the robot to the wrong conclusion.
Through Bayesian inference the robot can maintain all possibilities, and
gradually arrive at the correct conclusion as more evidence arrives. The
top row shows the probability and uncertainty of which ball is to be moved
(Mov) and the bottom row shows the probability and uncertainty for which
ball Mov is supposed to be moved with respect to (WRT ). We use Entropy
as the measure of uncertainty. The dashed line in the uncertainty column
shows complete uncertainty for that random variable. As more reinforcement
signals arrive the uncertainty about which object to move and which object
to move it with respect approaches zero.

probabilities for every point is that the number of points
grows exponentially with each new measurement, and thus
updating a probability for each point could quickly consume
more memory and processing cycles then are available. In
many cases, the complete posterior distribution is not needed,



only samples from that distribution. Metropolis-Hastings and
particle filtering are two techniques for drawing such sam-
ples [20], [19]. Particle filtering seems most promising since,
unlike Metropolis-Hastings, it does not require a measure of
distance in the posterior space and a meaningful measure of
distance is hard to specify when discrete random variables
are used.

C. Evaluation Metrics and Comparisons
In this paper we proposed the application of Bayesian

inference to task learning and demonstrated one possible
implementation. As new techniques are developed to deal
with larger task complexity and additional signals, we will
need metrics for evaluating their effectiveness. Here are some
possible metrics: the time to teach a task, the time for the
teacher to learn the system, and how enjoyable the teacher
found the experience.

These metrics could also be used to compare Bayesian
inference to another “learning from a human teacher” ap-
proach, or even to a human learning the same task.

D. Expansion of Demonstration
In our demonstration of Bayesian inference for task learn-

ing, the type of task the robot could be taught to perform was
very simple, namely, to move one object to a distance from
another object. Some of the immediate extensions we are
planning are: tasks involving everyday objects, the learning
of multiple tasks, the association of triggers with tasks, and
tasks that involve multiple steps (chaining).

IX. CONCLUSION
We have proposed the use of Bayesian inference to process

signals from a human teacher and learn a task, which we
summarize here. To apply Bayesian inference the following
must be specified: hidden random variables, observable ran-
dom variables, measurement models, motion models, and a
prior distribution. In the case of learning tasks from humans,
the hidden random variables capture the task specification,
the observed random variables capture measurements from
the human signals. Measurement models predict the signals,
motion models describe evolving characteristics of the hu-
man teacher, and the prior distribution captures the belief
about the possible tasks before teaching.

We then demonstrated this approach on a robot capable
of moving simple objects around a room. A human teacher
pressed the spacebar to administer a reinforcement signal,
taken to mean that the teacher approved of something the
robot was doing. After five minutes and nine reinforcements
the robot learned the details of the task and was able to repeat
the task once taught.

The use of Bayesian inference will allow robots to make
use of any signal the teacher may use, however ambiguous,
to learn a task.
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