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ABSTRACT
The interactive partially observable Markov decision pro-
cess (I-POMDP) is a recently developed framework which
extends the POMDP to the multi-agent setting by includ-
ing agent models in the state space. This paper argues for
formulating the problem of an agent learning interactively
from a human teacher as an I-POMDP, where the agent pro-
gramming to be learned is captured by random variables in
the agent’s state space, all signals from the human teacher
are treated as observed random variables, and the human
teacher, modeled as a distinct agent, is explicitly represented
in the agent’s state space. The main benefits of this ap-
proach are: i. a principled action selection mechanism, ii. a
principled belief update mechanism, iii. support for the most
common teacher signals, and iv. the anticipated production
of complex beneficial interactions. The proposed formula-
tion, its benefits, and several open questions are presented.

1. INTRODUCTION
We propose formulating the problem of learning interac-

tively from a human teacher as an interactive partially ob-
servable Markov decision process (I-POMDP). The I-POMDP
is a formulation of the decision making problem faced by
an agent in a stochastic, partially observable, multi-agent
environment [4]. In our formulation the human teacher is
modeled as a distinct agent in the agent’s state space. The
parameters of the agent programming to be learned are ex-
pressed as random variables also in the agent’s state space.
Finally, all signals from the human teacher are represented
as observed random variables.

Some of the benefits of this approach are a principled ac-
tion selection mechanism, a principled belief update mecha-
nism, the foreseen production of complex interactions with
the human teacher, a single mechanism for interpreting all
teacher signals including gestures, body posture, natural
language, and direct modeling, and a single mechanism for
selecting all agent actions including emotive displays, world
manipulation, and spoken language.

In the following sections we present the proposed formula-
tion, discuss its benefits, and finish with several open ques-
tions. But first we begin with a brief description of the
envisioned domain for the our formulation.

2. DOMAIN
The domain envisioned for this paper is an agent learn-

ing interactively from a non-technical human teacher. The
interaction consists of signals generated by the teacher and

the agent. Some examples of these signals are words, ges-
tures, facial expressions, body posture, eye gaze, and re-
wards. We intend the proposed formulation to cover most
forms of teaching including learning from demonstration and
learning from reinforcements.

An important restriction of our proposal is that a teacher
must be present for learning to take place. The teacher is
explicitly modeled by the agent and learning is accomplished
by interpreting signals resulting from the interaction with
the teacher.1 The main reason for this restriction is that
the agent is seen as attempting to learn what the teacher
wants it to learn, and, in general, the teacher needs to be
present to convey what they want learned.

3. PROPOSED FRAMEWORK
We briefly summarize the partially observable Markov de-

cision process (POMDP) and its extension, the interactive
partially observable Markov decision process (I-POMDP),
before describing our formulation of learning from a human
teacher as an I-POMDP.

3.1 POMDP
A partially observable Markov decision process is a for-

mulation of an agent’s decision process when operating in a
sequential, stochastic, partially observable domain. Essen-
tially, the agent knows only probabilistically how the world
changes around it and only probabilistically how its sensor
readings reflect the state of the world. Importantly, the op-
timal decision (a.k.a action) is the one that maximizes the
agent’s expected utility. It is an expected utility because the
agent knows only probabilistically the current state of the
world, how it’s actions will affect the world, and what mea-
surements it will receive assuming the world gets to a certain
state. A POMDP is captured by the tuple 〈S,A, T,Ω, O,R〉.
S is the set of world states, A is the set of actions the agent
can perform, T is the motion model defining the probability
of reaching any state s′ ∈ S given an action a ∈ A executed
from a state s ∈ S, Ω is the set of measurements (a.k.a ob-
servations) the agent might receive, O is the measurement
model (a.k.a observation model) defining the probability of
measuring o ∈ Ω given the world is in state s ∈ S, and finally
R is the utility function (a.k.a reward function) mapping
states of the world or sometimes belief states to real num-
bers. It is some function of R that the agent is trying to

1This does not preclude sub-systems from performing in-
dependent learning; for example, in a robotics domain, the
agent might independently learn through experience that
bumping into walls is disadvantageous.



maximize when selecting the next action, for example the
discounted sum of Rt from t = 0 to some horizon t = T .

In the case of discrete states, the recursive Bayesian belief
update for time step t having taken action at−1 and received
measurements ot is:2

bt(st) = βO(ot|st)
X

st−1

T (st|st−1, at−1)bt−1(st−1), (1)

where β is the normalizing constant,
Action selection based on maximum expected utility is

defined as

arg max
at

EUt(bt) (2)

where

EUt(bt) =

R(bt) + γmax
at

X
ot+1

P (ot+1|bt, at)EUt+1(bt+1|at, ot+1), (3)

γ is the discount factor, and

P (ot+1|bt, at) =
X
st+1

O(ot+1|st+1)
X
st

T (st+1|st, at)bt(st). (4)

For finite horizon solutions with horizon T, this recursion
terminates with

EUT (bT ) = R(bT ), (5)

where R is the specified utility function. As an example of
R, in our initial robot learning experiments, we have used
R(bT ) = −Entropy(bT ), Since entropy is a measure of un-
certainty in the distribution, using negative entropy as the
utility function means that the robot chooses actions that
maximize certainty over the parameters being learned.

The above action selection equations form a decision tree
into the future, where the tree nodes are belief states, and
the branches alternate between measurements and actions.

For further details on POMDPs see [7] and [9].

3.2 I-POMDP
An I-POMDP extends the POMDP to the multi-agent

setting, for our case there will only be a single other agent
which is the human teacher. An I-POMDP of an agent i

is captured by the tuple 〈ISi, A, Ti,Ωi, Oi, Ri〉, which is the
usual POMDP tuple, except ISi includes a model of the
other agents, which could themselves be I-POMDPs, and
A is extended to include all actions that all agents could
take. If the teacher is modeled with an I-POMDP, we might
also model the teachers model of the agent as another I-
POMDP. In order to reach a solution, this recursive agent
model nesting must eventually ground out with a non inter-
active model, such as a POMDP.

Belief updates and action selections are similar to the
POMDP case, except that measurements, actions, and be-
liefs of the teacher, and of the teacher about the agent, etc.
need to be incorporated. We leave these details to the refer-
enced readings. The above POMDP equations give a good
intuition for the types of computations required in an I-
POMDP.

For further details on I-POMDPs see [4], it may also be
helpful to read their earlier work on nested models as a
primer [5].
2The continuous case is similar with integrals replacing sum-
mations and pdfs in place of pmfs for the beliefs bt.

3.3 Learning from Humans as an I-POMDP
In our proposed formulation, the agent programming is

defined by random variables stored in the agent’s state space
S within IS. For example in a work-flow, these parameters
could be the trigger conditions, the number of nodes, and
the value of transitions. Another example could be the pa-
rameters defining the angle of a driver when engaging with
a screw. Also in our proposal, all signals in the human robot
interaction are expressed as measurements o ∈ O. Examples
of signals were given in the Domain section above. Lastly,
the human teacher is explicitly represented as an interac-
tive agent in the agent’s state space. This means that the
teacher’s belief about the state of the world, about the pa-
rameters of the programming, and about the belief of the
agent are maintained and updated by the agent. Addition-
ally, the agent, when selecting actions to maximize it’s ex-
pected utility, can take into account likely future actions of
the teacher, and its own responses to those future actions,
resulting in a potentially high utility state. Most of the in-
teractions listed below in the Benefits section are a result of
this recursively nested modeling.

On each time-step, the agent first updates its beliefs and
then selects an action to perform. The beliefs being updated
include the agent’s belief about the parameter’s of the pro-
gramming and the physical state of the world, the agent’s
belief about the action performed by the teacher on the pre-
vious time-step, the agent’s belief about the teacher’s belief
about the parameters of the task and the physical state of
the world, the agent’s belief about the teacher’s belief about
the agent’s previous action, etc.

With the belief state updated, the agent then selects an
action. One method to select this action would be, for each
nested belief level, to search out to a time horizon T over
all possible actions and measurements which could be per-
formed or received by both agents, evaluate the utility of
the resulting belief state at the horizon T and then work
this utility back to the current actions by taking expecta-
tion at measurement branches and maximization at action
branches. Optimal actions in lower nesting levels appear to
the higher level agent as distributions over actions by the
lower level agent.

The selected action would then be performed, and along
with the actions of the teacher, would affect the state of
the world, which would, on the next time-step, be perceived
through measurements by the teacher and the agent. And
the process would repeat.

3.4 A Note on Complexity
The computation required for the belief update and action

selection mentioned in the previous time grows exponentially
with depth of agent model nesting, the time-steps to the
horizon, and the complexity of the state space. We believe
that sampling techniques will likely be the the best solu-
tion to this exponential growth. Particle filters have been
applied to exponential state growth [3] and to exponential
nested agent models [2] to good result, but we are unaware
of effective techniques to handle exponential growth due to
action and measurement branching in planning over future
time-steps. Hopefully the exponential growth due to action
branches can be moderated by sampling over actions based
on heuristics learned over time. Similarly the exponential
growth due to measurement branches might be moderated
by sampling according to the likelihood of measurements.



Even with the proposed sampling techniques, computa-
tion will remain a major problem with the proposed for-
mulation. We believe this is a necessary side effect of the
complexity of the beliefs and plans being represented and
that the benefits of this complexity, described in the next
section, warrant wrestling with the exponential growth of
computation.

3.5 A Note on Modeling
The presented formulation is model based, in that it re-

quires a probabilistic motion model for the state space and
probabilistic measurement models for the measurements ob-
served by the agent. Additionally, the recursive agent mod-
els must ground out with a stochastic model of actions for
either the teacher or agent. All of these models have param-
eters that need to be set, for example the attention span of
a typical student, the rate of misspoken words by a human
teacher, or the variance of a laser range scan. As the pro-
posed technique matures, future agents will likely maintain
these parameters by long term monitoring of their physi-
cal sensors and repeated interactions with humans. In the
near term, these parameters can be set by controlled sensor
calibration and data and from experiments with a human
teaching another human.

4. BENEFITS
In this section we describe many of the foreseen benefits

of the proposed formulation. We begin with benefits to the
learning from human research community due to the for-
mulation being based on recognized principles. We then de-
scribe some complex interactions that should result from the
formulation. Followed by a discussion of the extendability
of the formulation to other interactive agent domains. We
then finish with some miscellaneous benefits of the proposed
formulation.

4.1 Principled Formulation
One of the main benefits of the proposed formulation is

that it is based on recognized principles. Firstly, the be-
lief over the state of the world, the parameters of the pro-
gramming to be learned, and models of the teacher are all
updated using Bayesian Inference, with the resulting impli-
cation that all signals by either agent be expressed as ob-
served random variables. Secondly, the agent’s actions are
selected in accordance with the principle of maximum ex-
pected utility. By formulating the problem of learning from
humans based on the two principles of Bayesian Inference
and maximum expected utility, techniques we develop can
be useful to, and we can make use of techniques from, many
fields which commonly base techniques on these principles,
such as the broader reinforcement learning community, sig-
nal processing, and operations research.

4.2 Complex Interactions
As a product of the nesting of agent beliefs (beliefs about

the teacher’s beliefs about the agent’s beliefs etc.), we ex-
pect to see a number of interesting exchanges. One type
of exchange is where the agent has an inconsistency in its
nested agent models and determines that acting to reduce
this inconsistency will result in the highest expected util-
ity.3 The following are three examples of the agent taking
this type of action to correct an inconsistency.
3The examples assume a utility function that favors faster

• Interruption: The teacher is teaching about x, and
the agent interrupts to inform the teacher that they
are clear on x, but more uncertain on y.

• Clarification: The agent interrupts the teacher to
clarify that a previous action came through as x, and
questions did they actually intend y.

• Correction: This is the inverse of clarification, the
agent interrupts the teacher to communicate that the
agent believes that the teacher believes that the agent
was asking about x, when it was actually asking about
y.

I-POMDPs have been demonstrated to generate similar
exchanges in simple cooperative multi-agent settings [6].

4.3 Extendability
Another benefit of the proposed formulation is that it

should easily extend to other useful agent settings. For
example, in the proposed approach, as a sub-task of ac-
tion selection, the agent is already determining optimal ac-
tions for the teacher, just one nesting level down, thus it
should be straightforward to extend the formulation to the
agent teaching a human or another agent. Similarly, the
agent should be able to interactively learn from a non-human
teaching agent. Additionally, since I-POMDPs were devel-
oped for the multi-agent setting, our formulation should ex-
tend to the common multi-agent settings of cooperation and
competition, be it with human or non-human agents.

4.4 Miscellaneous Benefits
This section describes benefits that do not fall under the

previous categories but are worth mentioning.
The first is that all actions fall under one umbrella. This

means that we do not need separate action selection sys-
tems for physical movement, words, text, beeps, facial ex-
pressions, etc. As mentioned above, the agent will likely
have built-in heuristics for determining the utility of specific
actions to speed up action selection.4

Secondly, a number of action selections which may have
needed explicit coding under other formulations happen with-
out coding under the proposed formulation, because they fall
out as the rational action selection. The following are sev-
eral examples of behavior that should be exhibited without
coding:

• Facial expressions, such as raising eyebrows for a so-
cial robot, become the rational action, perhaps because
conveying uncertainty will modify the teachers belief
about the robots belief about the task in such a way
that the teacher will provide further instruction result-
ing in a higher expected utility.

learning, for example maximizing the discounted negative
expected utility of the random variables defining the pro-
gramming.
4The proposed approach of a unified action selection mech-
anism is in stark contrast to the distributed behavior based
robotics approach of [1] which is likely a more accurate
model of human action selection. We feel that having an
identifiable, and thus easily adjustable, object function and
action selection mechanism justify deviation from a more ac-
curate distributed human action selection model which may
be harder to develop.



• Similarly, periodically looking at the teacher might be
rational behavior since it could maintain the teacher’s
belief that the agent is still focused on learning, avoid-
ing the potentially time consuming and consequently
low utility producing actions by the teacher of checking
if the agent is still paying attention.

• Actions will be intuitively ordered, for example if a
robot agent is going to ask the teacher about a series
of objects and moving to each object takes time, the
rational behavior would be to ask about objects in an
order that minimizes travel time; The faster questions
are asked and answered the higher the expected utility
should be.

• Often not acting will be the optimal action, since ac-
tions may interrupt the teacher, who is providing use-
ful information, resulting in a lower expected utility
than performing no action at all.

• In a robot agent, the agent may perform pointing ac-
tions to direct the teacher’s attention. Both the de-
cision to point and the duration of the point would
be handled automatically by the system. The agent
would compute the expected utility of various point-
ing durations and choose the duration with the max-
imum utility. A short point would allow the agent to
move on but would leave the agent uncertain about
the teacher’s attention, with a long point the agent
would be certain about the teacher’s attention but will
have pushed higher utility states further into the fu-
ture. The principle of maximum expected utility would
give the optimal duration to use.

5. QUESTIONS
In this section we first answer a couple questions posed by

the organizers, before posing several open ended questions
of our own.

5.1 Organizer Questions

Question: How explicitly pedagogical is the human teacher?
At one extreme, the human is a role-model not con-
sidering the agent at all; at the other, the human is
carefully formulating a curriculum.

Answer: Our approach is towards the pedagogical end of
the spectrum. An intelligent agent, explicitly instruct-
ing the robot is required. Though the signals of in-
struction can be ambiguous and varied (demonstra-
tion, modeling, reinforcement, or natural language).

Question: How dependent is learning on communication
between human teacher and agent? At one extreme,
the human and agent merely observe one another in-
teracting with the environment; at the other there is a
complex dialog between teacher and student.

Answer: The proposed formulation assumes a dialog of sig-
nals between the teacher and the agent. That said, the
formulation should extend to the learning by observing
peer agents. Since other agents in the environment are
assumed to be rational, observing their actions updates
the belief about the random variables affecting their
actions. Through observation, the belief about their

objective function is also updated. If this objective
function is deemed “similar” to the agent’s, then imi-
tation is reasonably the rational behavior that would
result.

Question: How interdependent is learned information? At
one extreme, learning can potentially happen in any
order (e.g., mapping a state space); at the other, each
new piece of knowledge must be formulated in terms
of the previous one (e.g., Kirchhoff’s laws depend on
current and voltage).

Answer: Learned information is not inherently hierarchical
in our approach. But, for example, it is likely rational
for steps of a task to be taught in order, or reverse
order, and since the robot assumes a rational teacher,
the learning task would be much harder if the teacher
choose to teach step one, then five, then two, as ap-
posed to one, then two, then three, or three, then two,
then one. What is rational depends on the zeroth level
models of the teacher and robot. If these zeroth mod-
els have a certain flow to them, then the agent will
learn best under that flow.

Also, making use of prior learned programming as heuris-
tics for future learning is likely a good idea. For ex-
ample, learning the task of clearing a table should be
easier having learned to set the table; forks and spoons
moved together before, so they will likely move to-
gether again.

Question: What is the relative importance of how learning
occurs vs. the end result of learning in the research?
At one extreme, learning from humans is just a prag-
matic way of configuring a real-world system; at the
other, the system is only valued for the insight it pro-
vides on human learning.

Answer: We view learning from humans as a pragmatic
way of configuring a real-world system.

Notably, we view our approach as a poor approxima-
tion to human learning. Through introspection, we
may think that our actions are chosen by maximiz-
ing our expected utility, but psychology studies have
shown that that humans often do not select actions to
maximize their expected utility[8]. And (Brooks 1991)
makes a compelling argument that model based plan-
ning is not how biological agents select actions[1].

As noted above, our approach is attractive, not be-
cause it resembles human learning, but because it is a
principled approach to robot behavior during learning,
in addition to the other benefits mentioned.

5.2 Open Questions

• What is the right objective function? If pleasing the
human, how do we measure this?

• What are reasonable metrics for evaluating this for-
mulation? e.g. time to teach, certainty/accuracy vs.
time curves, ease of use.

• At what granularity if any, does this become less“effec-
tive” than model free techniques such as Q-Learning?
than model based techniques such as Value Iteration?



• Are there any situations in which a signal from the
human teacher should be considered part of the utility
function?

• How deep should the agent belief nesting be?

• What should the ground agent model be?

• What is the simplest student/teacher game to explore
this formulation?

• Since computation is an issue, how should we trade off
accuracy of belief representation, depth of agent model
nesting, and depth of search?

• How can we make use of heuristics?

• How can these heuristics be learned?

6. CONCLUSIONS
This paper proposed formulating the problem of learning

from humans as an interactive partially observable Markov
decision process (I-POMDP), where parameters defining the
agent programming to be learned are captured as random
variables in the agent’s state space and the teacher is ex-
plicitly modeled as a distinct agent also in the agent’s state
space. POMDPs and I-POMDPs were briefly described be-
fore outlining the proposed formulation. We described sev-
eral benefits of the formulation, namely principled action
selection, principled belief updates, and the anticipated pro-
duction complex interactions. We finished by posing several
open questions regarding the formulation.

We believe that the benefits of the new formulation jus-
tify its computational complexity, and will help to advance
research on agents learning from human teachers.
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