
IP05: Tracking Multiple RC Cars
Mark Woodward, Stanford University

Abstract
In this paper I present a method for tracking a single

primary remote control car and locating other cars nearby
using a single pan-tilt-zoom camera. The method uses
color filtering to track the primary car, and optical flow and
particle filters to locate nearby cars.

Introduction
This paper presents a method for

tracking a single primary remote control car
on a racetrack, and for locating nearby cars.
The method presented here utilizes a single
pan tilt zoom camera.

Previous systems for tracking objects in
a laboratory environment fall short of what is
presented here. They either, use a single
stationary camera and thus cannot cover as
large of an area with the same accuracy, or
they utilize multiple cameras and require
more extensive setup.

Tracking of the primary car was done by
applying a color filter to the image, finding
the point at the center of the matching
pixels, rotating the point into the original
extrinsic frame, and finally intersecting the
point with the ground plane.

In a parallel thread, the car is kept in
view by commanding the camera to look at
the center of the filtered color.

Location of nearby cars was done with
optical flow to find regions with high
magnitudes of change, and particle filters to
track these regions. Particles were
weighted based on their distance from flow
vectors and their distance from other filters.

Estimates of locations are produced by
averaging the x and y locations for particles
of a given filter, and then rotating and
projecting those estimates onto the ground
plane.

Approach
The problem of tracking robots in the lab

environment has been studied in great detail
by the robotics community. My work was
carried out because none of the commercial

systems available fit my needs. Specifically,
I needed a system that was easy to set up,
and that could track an RC Car as it roamed
over a 40' x 20' area, with 10' high ceilings,
to an accuracy of 2".

Systems that use a single stationary
camera were ruled out because of the
limitations of the height of the ceiling. If
placed directly overhead, the coverage area
for a standard webcam was only a 5' x 5'
patch. If the single camera was placed to
one side, at a sufficient angle to cover the
entire area, the perspective effects reduced
the accuracy, preventing the desired 2"
accuracy.

Using a fish eye lens produces a
combination of these bad effects. Coverage
area is still not what I need, and distortion
reduces the accuracy.

Other systems use multiple cameras to
cover the entire workspace with high
accuracy, see Mezzanine (1) developed at
USC. These systems do not fit my
application because the multiple cameras
are not easy to set up. My specific
application, namely tracking remote control
cars during a race, requires quick setup and
take down, since preparation time before
races is limited.

A system using a single pan tilt zoom
camera meets all the above requirements. It
can be quickly setup at a racetrack, using a
tripod, and can accurately track a car as it
roams over a 40' x 20' area.

The approach I developed solves two
main problems. The first is tracking a
primary car on the racetrack. The second is
locating other remote control cars in the
vicinity of the primary car.

 1

Tracking Primary Car
The primary car is tracked by applying a

color filter to the video received from the
pan-tilt-zoom camera, locating the center of
the matching pixels, rotating the resulting
vector to the frame in which the extrinsics
were originally computed, intersecting the
vector with the ground plane to find the
world coordinates, and finally, in a separate
thread, commanding the camera so that the
primary car remains in the center of the
view.

A color filter is used because it provides
a simple, accurate technique for locating an
object when the color of the object is known
a priori, and when that color is not found in
large quantities in the viewing environment.
If in practice, other cars are painted with the
same color as the primary car, markers
could be used. But this would result in
greater processing time.

The filter simple thresholds the blue/red
ratio, the blue/green ratio, and the blue
intensity for a given pixel. If the rgb values
for a pixel are greater than the three
thresholds, then the pixel is a match.

A sum of the x coordinates for all
matching pixels is kept, along with a sum for
the y coordinates. At the end of the single
pass, the location of the car is,

x = sum_x_coords/num_matching_pixels
y = sum_y_coords/num_matching_pixels

Figure 1 shows this filter applied to a
given image. The white pixels are the pixels
that satisfy the filter. The red crosshairs are
drawn at the computed location of the car.

Figure 1. Before and after color finding

The location of the car defines a vector
in the current camera orientation. To find
the location of the car in world coordinates,
we need to intersect this vector with the
ground plane of the racetrack. But, the
extrinsic for the ground plane were likely
computed in another orientation of the

camera. So, we have to rotate the vector
into the original frame

P_car_in_orig_frame =
R_y(pan)*R_x(tilt)*P_car_in_current_frame

The vector for the point is then rotated into
the world coordinates.

P_car_in_world_frame =
R_cam_to_world_frame*P_car_in_orig_frame

Where R_cam_to_world_frame is found
from the original extrinsic camera
calibration.

The intersection of the car vector with the
ground plane is found by solving the
following for t, x, and y

P_cam_in_world_frame +
t*P_car_in_world_frame = [x, y, 0]^T

This gives the location of the car in
world coordinates. Without further action,
the car would quickly move out of the field of
view of the camera, and be lost.

To keep the car in view, my approach
uses a separate thread that constantly
monitors the P_car_in_current_frame vector,
which is an output of the previous thread.
Given the angle of view of the camera, the
thread computes the pan_error and
tilt_error. These are the angles required to
bring P_car_in_current_frame in line with
the vector defined by the principle point.
Finally, the thread commands the pan-tilt-
zoom camera by these angles. This loop is
executed as fast as possible, which in the
tested camera case is about 4Hz.

Figure 2 shows two consecutive frames,
as the camera centers itself on a car that
has stopped.

Figure 2. Pan to center car

Given a known color, the system can
accurately track a car over the desired area
and to the desired accuracy.

 2

Locating Nearby Cars In the update weights step, for each
particle, in each particle filter, the nearest
optical flow vector is found. The particle is
weighted higher the closer the optical flow
vector is.

The second problem addressed is the
location of remote control cars that are
nearby, in this case so that the client
application can control the primary car to
avoid them.

Also, the particle is weighted higher the
further it is from the center of all previous
filters that have been processed. This
creates the repulsive force, which results in
covering all cars in the view.

The solution presented here is to use
optical flow to find features that have moved
a lot in consecutive images, and maintain a
particle filter per car, whose particles are
weighted by their proximity to optical flow
vectors and by their distance from other
filters.

After all particles in a given filter have
been weighted, all flow vectors used by any
particle in that filter are flagged, so that they
cannot be used by future filters in the
iteration. This further servers to spread out
the particle filters.

The optical flow field is computed using
the Shi and Tomasi algorithm to find
features to track, and then the Pyramidal
Lucas Kanade Optical Flow algorithm to
compute optical flow vectors for those
features.

During the prediction step of each filter,
particles jump to a random location with a
probability of .05. This allows the filters to
quickly acquire cars that come into the
scene. Optical flow was used because of its

ability to capture magnitude, and because of
its ability to quickly pull out the objects of
motion in the image. As seen in figure 3,
once the proper threshold was applied, all
flow vectors refer to points on the car.

The right image of Figure 4 shows two
filters locked on to two different vehicles.
The particles that have jumped to random
locations can also be seen sprinkled
throughout the image.

 Figure 3. Before and after optical flow Figure 4. Before and after particle filters

An alternative to optical flow might be
frame differencing. But frame differencing
does not as easily avail itself to magnitude
estimates, which when thresholded
significantly reduce the number of features.
After the frame differencing, the application
would be left with deciding which pixels are
relevant.

When a client application requires the
position of each car in the image, the
particle filters need to be collapsed to
specific estimates. This is done using an
average. The x and y components of each
particle contribute to the x and y sum for that
filter respectively. Then the sums are
divided by the number of particles.

The optical flow vectors are then used in
the weighting step of the particle filters.

Figure 5 shows the collapsing of two
filters using this technique. The green
circles in the right image are centered on the
vehicle locations.

The technique presented here uses at
least one particle filter per vehicle in the
race. Since the number of vehicles in a race
is always known before the race begins, this
can be hard coded.

At any given time, multiple filters may
latch on to a single car, but as long as all
cars in the given view, which approximates
the area near the car, contain at least one
filter then all obstacles to avoid have been
detected. Figure 5. Before and after collapse.

 3

 Averaging was chosen because of its
accuracy/speed trade off. Only a single
pass was required for each filter.

The RC car used for testing is the XRAY
M18 (figure 7). It was chosen because of its
small size and because it has an active
racing community in the San Francisco bay
area.

A faster method is to randomly pick one
of the particles. While on average, this
would give accurate readings, occasionally it
would randomly pick particles that had
jumped to random locations, producing large
jumps in the location of the vehicle.

A more accurate estimate would have
been the location of the median particle.
But, this would have required the sorting of
all particles in the x and y directions, which
is much more processing intensive than the
average technique used here.

Figure 7. The XRAY M18 RC Car

Here I present several image sequences
that illustrate the success of the proposed
technique.

The averaging of each filter results in
car locations given in the current camera
frame coordinates. The collapse routine
then projects the computed locations onto
the ground plane in the same manner as
was done for the location of the primary car,
taking into account the current pose of the
camera.

Tracking of primary car
The next set of images show the

camera actively tracking the car. The track
lags behind the center of the car due to time
delays in commanding the camera. The first
frame is the bottom left.

These steps result in world coordinate
estimates for all cars near the primary car.

 Incidentally, the optical flow generated
by the primary car will also attract a particle
filter and thus give a location estimate. The
client application can easily throw these
estimates out by removing all estimates that
are within a radius that corresponds to the
radius of the primary car.

Results
The camera used to test the technique

is the Sony EVI-D30 (figure 6). It is capable
of 12 times optical zoom, 200 degrees pan
at a rate of 80 degrees per second, 50
degrees tilt at a rate of 50 degrees per
second, and is controllable via a serial port
connection.

Figure 8. Tracking the primary car. Bottom
left, clockwise. 1 second per image.

Location of nearby cars This camera was chosen because of its
high pan and tilt speed, and because the
command protocol is published, allowing me
to write my own drivers.

Figure 9 shows a series of consecutive
optical flow images. It's clear how nicely the
flow vectors stick to the vehicles. The
displayed vectors are the result of the
thresholding, which is hard coded.

Figure 6. The Sony EVI-D30 PTZ Camera

 4

Figure 9. Optical flow for two cars. Left to
right, top to bottom. Every 10th image is
displayed.

Figure 12. Acquisition of new car in view.

Summary
This paper presented a technique for

accurately tracking a primary remote control
car operating on a 40' x 20' track using a
single pan-tilt-zoom camera, and providing
estimates for nearby rc cars.

Figure 10 shows the corresponding
particle filters for the same images.

Color filtering was used to track the
primary car, and the resulting vector was
rotated and projected onto the ground plane.
Finally the camera was controlled to keep
the primary car in the center of view.

Optical flow and particle filters were
used to track nearby cars. Particles were
weighted based on their distance from flow
vectors and their distance from other filters.
Filters were collapsed to estimates using the
mean of the particles. Finally, image
estimates were rotated and then projected
onto the ground plane to give world
estimates for all nearby cars.

Figure 10. Particle filters for two cars. Left
to right, top to bottom. Every 10th image is
displayed.

Figure 11 shows the first two images
collapsed down to estimates. Estimates are
shown as green circles.

Results show that the primary car can
be accurately tracked using the techniques
presented. Also, it was shown that all cars
in the field of view are quickly and accurately
tracked using the techniques presented.

An interesting alternative to pursue
would be to place markers all over the track
and then use these markers to estimate the
pose of the camera for each frame received.
This would eliminate the small inaccuracies
experienced during the panning and tilting of
the camera. The downsides to this
technique would be more image processing
and added setup time to place the markers
around the track.

Figure 11. Position estimates for two frames
10 frames apart from each other.
 Figure 12 shows a series of images in
which, originally two particle filters are
locked on to a single car, but as a second
car comes into view, one filter quickly
transitions to it.

 5

References
1) Howard, A., "Mezzanine User Manual", USC Robotics Laboratory
2) Kato, H., Billinghurst, M. (1999) Marker Tracking and HMD Calibration for a video-based

Augmented Reality Conferencing System. In Proceedings of the 2nd International
Workshop on Augmented Reality (IWAR 99). October, San Francisco, USA

 6

	Abstract
	Introduction
	Approach
	Tracking Primary Car
	Locating Nearby Cars

	Results
	Tracking of primary car
	Location of nearby cars

	Summary
	References

