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Abstract 
In this paper I present a method for tracking a single 

primary remote control car and locating other cars nearby 
using a single pan-tilt-zoom camera.  The method uses 
color filtering to track the primary car, and optical flow and 
particle filters to locate nearby cars. 

 
 

Introduction 
This paper presents a method for 

tracking a single primary remote control car 
on a racetrack, and for locating nearby cars.  
The method presented here utilizes a single 
pan tilt zoom camera. 

Previous systems for tracking objects in 
a laboratory environment fall short of what is 
presented here.  They either, use a single 
stationary camera and thus cannot cover as 
large of an area with the same accuracy, or 
they utilize multiple cameras and require 
more extensive setup. 

Tracking of the primary car was done by 
applying a color filter to the image, finding 
the point at the center of the matching 
pixels, rotating the point into the original 
extrinsic frame, and finally intersecting the 
point with the ground plane.  

In a parallel thread, the car is kept in 
view by commanding the camera to look at 
the center of the filtered color. 

Location of nearby cars was done with 
optical flow to find regions with high 
magnitudes of change, and particle filters to 
track these regions.  Particles were 
weighted based on their distance from flow 
vectors and their distance from other filters. 

Estimates of locations are produced by 
averaging the x and y locations for particles 
of a given filter, and then rotating and 
projecting those estimates onto the ground 
plane. 

Approach 
The problem of tracking robots in the lab 

environment has been studied in great detail 
by the robotics community.  My work was 
carried out because none of the commercial 

systems available fit my needs.  Specifically, 
I needed a system that was easy to set up, 
and that could track an RC Car as it roamed 
over a 40' x 20' area, with 10' high ceilings, 
to an accuracy of 2". 

Systems that use a single stationary 
camera were ruled out because of the 
limitations of the height of the ceiling.  If 
placed directly overhead, the coverage area 
for a standard webcam was only a 5' x 5' 
patch.  If the single camera was placed to 
one side, at a sufficient angle to cover the 
entire area, the perspective effects reduced 
the accuracy, preventing the desired 2" 
accuracy.   

Using a fish eye lens produces a 
combination of these bad effects.  Coverage 
area is still not what I need, and distortion 
reduces the accuracy. 

Other systems use multiple cameras to 
cover the entire workspace with high 
accuracy, see Mezzanine (1) developed at 
USC.  These systems do not fit my 
application because the multiple cameras 
are not easy to set up.  My specific 
application, namely tracking remote control 
cars during a race, requires quick setup and 
take down, since preparation time before 
races is limited. 

A system using a single pan tilt zoom 
camera meets all the above requirements.  It 
can be quickly setup at a racetrack, using a 
tripod, and can accurately track a car as it 
roams over a 40' x 20' area. 

The approach I developed solves two 
main problems.  The first is tracking a 
primary car on the racetrack.  The second is 
locating other remote control cars in the 
vicinity of the primary car. 
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Tracking Primary Car 
The primary car is tracked by applying a 

color filter to the video received from the 
pan-tilt-zoom camera, locating the center of 
the matching pixels, rotating the resulting 
vector to the frame in which the extrinsics 
were originally computed, intersecting the 
vector with the ground plane to find the 
world coordinates, and finally, in a separate 
thread, commanding the camera so that the 
primary car remains in the center of the 
view. 

A color filter is used because it provides 
a simple, accurate technique for locating an 
object when the color of the object is known 
a priori, and when that color is not found in 
large quantities in the viewing environment.  
If in practice, other cars are painted with the 
same color as the primary car, markers 
could be used.  But this would result in 
greater processing time. 

The filter simple thresholds the blue/red 
ratio, the blue/green ratio, and the blue 
intensity for a given pixel.  If the rgb values 
for a pixel are greater than the three 
thresholds, then the pixel is a match. 

A sum of the x coordinates for all 
matching pixels is kept, along with a sum for 
the y coordinates.  At the end of the single 
pass, the location of the car is, 
 
x = sum_x_coords/num_matching_pixels 
y = sum_y_coords/num_matching_pixels 
 

Figure 1 shows this filter applied to a 
given image.  The white pixels are the pixels 
that satisfy the filter.  The red crosshairs are 
drawn at the computed location of the car. 
 

 
Figure 1. Before and after color finding 
 

The location of the car defines a vector 
in the current camera orientation.  To find 
the location of the car in world coordinates, 
we need to intersect this vector with the 
ground plane of the racetrack.  But, the 
extrinsic for the ground plane were likely 
computed in another orientation of the 

camera.  So, we have to rotate the vector 
into the original frame 
 
P_car_in_orig_frame = 
R_y(pan)*R_x(tilt)*P_car_in_current_frame 
 
The vector for the point is then rotated into 
the world coordinates.  
 
P_car_in_world_frame = 
R_cam_to_world_frame*P_car_in_orig_frame 
 
Where R_cam_to_world_frame is found 
from the original extrinsic camera 
calibration.  
 
The intersection of the car vector with the 
ground plane is found by solving the 
following for t, x, and y 
 
P_cam_in_world_frame + 
t*P_car_in_world_frame = [x, y, 0]^T 
 

This gives the location of the car in 
world coordinates.  Without further action, 
the car would quickly move out of the field of 
view of the camera, and be lost. 

To keep the car in view, my approach 
uses a separate thread that constantly 
monitors the P_car_in_current_frame vector, 
which is an output of the previous thread.  
Given the angle of view of the camera, the 
thread computes the pan_error and 
tilt_error.  These are the angles required to 
bring P_car_in_current_frame in line with 
the vector defined by the principle point.  
Finally, the thread commands the pan-tilt-
zoom camera by these angles.  This loop is 
executed as fast as possible, which in the 
tested camera case is about 4Hz. 

Figure 2 shows two consecutive frames, 
as the camera centers itself on a car that 
has stopped. 
 

 
Figure 2. Pan to center car 
 

Given a known color, the system can 
accurately track a car over the desired area 
and to the desired accuracy. 
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Locating Nearby Cars In the update weights step, for each 
particle, in each particle filter, the nearest 
optical flow vector is found.  The particle is 
weighted higher the closer the optical flow 
vector is.   

The second problem addressed is the 
location of remote control cars that are 
nearby, in this case so that the client 
application can control the primary car to 
avoid them.   

Also, the particle is weighted higher the 
further it is from the center of all previous 
filters that have been processed.  This 
creates the repulsive force, which results in 
covering all cars in the view. 

The solution presented here is to use 
optical flow to find features that have moved 
a lot in consecutive images, and maintain a 
particle filter per car, whose particles are 
weighted by their proximity to optical flow 
vectors and by their distance from other 
filters. 

After all particles in a given filter have 
been weighted, all flow vectors used by any 
particle in that filter are flagged, so that they 
cannot be used by future filters in the 
iteration.  This further servers to spread out 
the particle filters. 

The optical flow field is computed using 
the Shi and Tomasi algorithm to find 
features to track, and then the Pyramidal 
Lucas Kanade Optical Flow algorithm to 
compute optical flow vectors for those 
features.  

During the prediction step of each filter, 
particles jump to a random location with a 
probability of .05.  This allows the filters to 
quickly acquire cars that come into the 
scene. Optical flow was used because of its 

ability to capture magnitude, and because of 
its ability to quickly pull out the objects of 
motion in the image.  As seen in figure 3, 
once the proper threshold was applied, all 
flow vectors refer to points on the car. 

The right image of Figure 4 shows two 
filters locked on to two different vehicles.  
The particles that have jumped to random 
locations can also be seen sprinkled 
throughout the image. 

  

  Figure 3. Before and after optical flow Figure 4. Before and after particle filters 
  

An alternative to optical flow might be 
frame differencing.  But frame differencing 
does not as easily avail itself to magnitude 
estimates, which when thresholded 
significantly reduce the number of features.  
After the frame differencing, the application 
would be left with deciding which pixels are 
relevant. 

When a client application requires the 
position of each car in the image, the 
particle filters need to be collapsed to 
specific estimates.  This is done using an 
average.  The x and y components of each 
particle contribute to the x and y sum for that 
filter respectively.  Then the sums are 
divided by the number of particles. 

The optical flow vectors are then used in 
the weighting step of the particle filters.   

Figure 5 shows the collapsing of two 
filters using this technique.  The green 
circles in the right image are centered on the 
vehicle locations. 

The technique presented here uses at 
least one particle filter per vehicle in the 
race.  Since the number of vehicles in a race 
is always known before the race begins, this 
can be hard coded.   

 

 

At any given time, multiple filters may 
latch on to a single car, but as long as all 
cars in the given view, which approximates 
the area near the car, contain at least one 
filter then all obstacles to avoid have been 
detected. Figure 5. Before and after collapse. 

 3



 Averaging was chosen because of its 
accuracy/speed trade off.  Only a single 
pass was required for each filter. 

The RC car used for testing is the XRAY 
M18 (figure 7).  It was chosen because of its 
small size and because it has an active 
racing community in the San Francisco bay 
area. 

A faster method is to randomly pick one 
of the particles.  While on average, this 
would give accurate readings, occasionally it 
would randomly pick particles that had 
jumped to random locations, producing large 
jumps in the location of the vehicle. 

 

 

A more accurate estimate would have 
been the location of the median particle.  
But, this would have required the sorting of 
all particles in the x and y directions, which 
is much more processing intensive than the 
average technique used here. 

Figure 7.  The XRAY M18 RC Car 
 

Here I present several image sequences 
that illustrate the success of the proposed 
technique. 

The averaging of each filter results in 
car locations given in the current camera 
frame coordinates.  The collapse routine 
then projects the computed locations onto 
the ground plane in the same manner as 
was done for the location of the primary car, 
taking into account the current pose of the 
camera.   

Tracking of primary car 
The next set of images show the 

camera actively tracking the car. The track 
lags behind the center of the car due to time 
delays in commanding the camera.  The first 
frame is the bottom left. 

These steps result in world coordinate 
estimates for all cars near the primary car. 

 Incidentally, the optical flow generated 
by the primary car will also attract a particle 
filter and thus give a location estimate.  The 
client application can easily throw these 
estimates out by removing all estimates that 
are within a radius that corresponds to the 
radius of the primary car. 

 

Results 
The camera used to test the technique 

is the Sony EVI-D30 (figure 6). It is capable 
of 12 times optical zoom, 200 degrees pan 
at a rate of 80 degrees per second, 50 
degrees tilt at a rate of 50 degrees per 
second, and is controllable via a serial port 
connection.  

Figure 8. Tracking the primary car.  Bottom 
left, clockwise.  1 second per image. 

Location of nearby cars This camera was chosen because of its 
high pan and tilt speed, and because the 
command protocol is published, allowing me 
to write my own drivers. 

Figure 9 shows a series of consecutive 
optical flow images. It's clear how nicely the 
flow vectors stick to the vehicles.  The 
displayed vectors are the result of the 
thresholding, which is hard coded. 

 

 

 

Figure 6. The Sony EVI-D30 PTZ Camera  
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Figure 9. Optical flow for two cars.  Left to 
right, top to bottom.  Every 10th image is 
displayed. 

Figure 12. Acquisition of new car in view. 

Summary  
This paper presented a technique for 

accurately tracking a primary remote control 
car operating on a 40' x 20' track using a 
single pan-tilt-zoom camera, and providing 
estimates for nearby rc cars. 

Figure 10 shows the corresponding 
particle filters for the same images. 
 

 

Color filtering was used to track the 
primary car, and the resulting vector was 
rotated and projected onto the ground plane.  
Finally the camera was controlled to keep 
the primary car in the center of view. 

Optical flow and particle filters were 
used to track nearby cars. Particles were 
weighted based on their distance from flow 
vectors and their distance from other filters.  
Filters were collapsed to estimates using the 
mean of the particles.  Finally, image 
estimates were rotated and then projected 
onto the ground plane to give world 
estimates for all nearby cars. 

Figure 10. Particle filters for two cars.  Left 
to right, top to bottom.  Every 10th image is 
displayed. 
 

Figure 11 shows the first two images 
collapsed down to estimates.  Estimates are 
shown as green circles. 

Results show that the primary car can 
be accurately tracked using the techniques 
presented.  Also, it was shown that all cars 
in the field of view are quickly and accurately 
tracked using the techniques presented. 

 

 

An interesting alternative to pursue 
would be to place markers all over the track 
and then use these markers to estimate the 
pose of the camera for each frame received.  
This would eliminate the small inaccuracies 
experienced during the panning and tilting of 
the camera.  The downsides to this 
technique would be more image processing 
and added setup time to place the markers 
around the track. 

Figure 11. Position estimates for two frames 
10 frames apart from each other. 
  Figure 12 shows a series of images in 
which, originally two particle filters are 
locked on to a single car, but as a second 
car comes into view, one filter quickly 
transitions to it. 
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