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Abstract

As general purpose robots become more capable, pre-programming of all tasks at

the factory will become less practical. We would like for non-technical human owners

to be able to communicate, through interaction with their robot, the details of a new

task; I call this interaction “task communication”. During task communication the

robot must infer the details of the task from unstructured human signals, and it must

choose actions that facilitate this inference.

In this dissertation I propose the use of a partially observable Markov decision

process (POMDP) for representing the task communication problem; with the unob-

servable task details and unobservable intentions of the human teacher captured in

the state, with all signals from the human represented as observations, and with the

cost function chosen to penalize uncertainty.

This dissertation presents the framework, works through an example of framing

task communication as a POMDP, and presents results from a user experiment where

subjects communicated a task to a POMDP-controlled virtual robot and to a human-

controlled virtual robot. The task communicated in the experiment consisted of a

single object movement and the communication in the experiment was limited to

binary approval signals from the teacher.
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Abstract iv

This dissertation makes three contributions: 1) It frames human-robot task com-

munication as a POMDP, a widely used framework. This enables the leveraging of

techniques developed for other problems framed as a POMDP. 2) It provides an ex-

ample of framing a task communication problem as a POMDP. 3) It validates the

framework through results from a user experiment. The results suggest that the pro-

posed POMDP framework produces robots that are robust to teacher error, that can

accurately infer task details, and that are perceived to be intelligent.
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Chapter 1

Introduction

General purpose robots such as Willow Garage’s PR21 and Stanford’s STAIR

robot2 are capable of performing a wide range of tasks such as folding laundry [45],

and unloading the dishwasher [31] (figure 1.1). While many of these tasks will come

pre-programmed from the factory, we would also like the robots to acquire new tasks

from their human owners. For the general population, this demands a simple and

robust method of communicating new tasks. Through this dissertation I hope to

promote the use of the partially observable Markov decision processes (POMDP) as

a framework for controlling the robot during these task communication phases. The

idea is that we represent the unknown task as a set of hidden random variables. Then,

if the robot is given appropriate models of the human, it can choose actions that elicit

informative responses from the human, allowing it to infer the value of these hidden

random variables. I formalize this idea in chapter 2. This approach makes the robot

1http://www.willowgarage.com/pages/pr2/overview

2http://stair.stanford.edu/
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Chapter 1: Introduction 2

an active participant in task communication.3

Note that I distinguish “task communication” from “task execution”. Once a

task has been communicated it might then be associated with a trigger for later

task execution. This dissertation deals with communicating the details of a task, not

commanding the robot to execute a task; i.e. task communication not task execution.

1.1 Dissertation Contents and Contributions

In the following section we review work related to human-robot task-communication

and to communication using POMDPs. Chapter 2 presents the framework, with a re-

view of partially observable Markov decision processes (POMDPs), including Bayesian

Inference, Belman’s equation, and an overview of POMDP solvers. Chapter 3 works

through an example of encoding task communication as a POMDP for a simple task.

Chapter 4 describes results from a user experiment, which evaluates the proposed

POMDP framework. Chapter 5 summarizes the dissertation and outlines future re-

search directions. Finally, the appendices present the full state and transition model

used in the experiment.

This dissertation makes the following contributions:

• It frames human-robot task communication as a POMDP, a widely used frame-

work. This enables the leveraging of techniques developed for the many prob-

lems framed as a POMDP.

• It provides an example of framing a task communication problem as a POMDP.

3Though related, this is different from an active learning problem [34], since the interaction in
task communication is less structured than in the supervised learning setting.
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• It validates the framework through results from a user experiment. The results

suggest that the proposed POMDP framework produces robots that are robust

to teacher error, that can accurately infer task details, and that are perceived

to be intelligent.

1.2 Related Work

1.2.1 Demonstration

Many researchers have addressed the problem of task communication. A common

approach is to control the robot during the teaching process, and demonstrate the

desired task [10, 30, 23]. The problem for the robot is then to infer the task from

examples. My proposed framework addresses the general case in which the robot

must actively participated in the communication, choosing actions to facilitate task

inference. That said, demonstration is a common and efficient method of communica-

tion. Many of these approaches are compatible with the general framework proposed

in this dissertation, and would be appropriate when the robot chooses to observe a

demonstration (see section 1.3).

1.2.2 Action Selection During Communication

In other work, as in mine, the task communication is more hands off, requiring

the robot to choose actions during the communication, with much of the work using

binary approval feedback as in my experiment below [44, 2, 13]. The approach pro-

posed in this thesis differs in that it proposes the use of a POMDP representation,
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while prior work has created custom representations, and inference and action se-

lection procedures. This work does introduce interesting task domains, and the task

representations may be useful as representations of hypotheses as more complex tasks

are considered (see section 5.2.2).

The Sophie’s Kitchen work used the widely accepted MDP representation [40].

An important difference from the approach presented in this dissertation is in the

way that actions are selected during task communication. In their work the robot

repeatedly executes the task, with some noise, as best it currently knows it. In

my proposed approach the robot chooses actions to become more certain about the

task. Intuitively, if the goal of the interaction is to communicate a task as quickly

as possible, then repeatedly executing the full task as you currently believe it, is

likely not the best policy. Instead, the robot should be acting to reduce uncertainty

specifically about the details of the task that it is unclear on. In order to generate

these uncertainty reducing actions I feel that a representation allowing for hidden

state is needed, and I have proposed the POMDP. Unlike an MDP, with a POMDP

there can be a distribution over details of the task, and actions can be generated to

reduce the uncertainty in this distribution. The purpose of their work was to report

on how humans act during the teaching process. As such, it, and much of the work

from Social Robotics (section 1.2.4), is relevant for the human models needed in the

proposed POMDP.
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1.2.3 Control

Substantial work has also been done on human assisted learning of low level control

policies, such as the mountain car experiments, where the car must learn a throttle

policy for getting out of a ravine [16]. While the mode of input is the same as is used

in the demonstration of chapter 3 (a simple rewarding input signal), we are address-

ing different problems and different solutions are appropriate. They are addressing

the problem of transferring a control policy from a human to the robot, where ex-

plicit conversation actions to reduce uncertainty would be inefficient, and treating

the human input as part of an environmental reward is appropriate. In contrast I am

addressing the problem of communicating higher level tasks, such as setting the table,

in which case, explicitly modeling the human and taking communication actions to

reduce uncertainty is beneficial, and treating the human input as observations car-

rying information about the task details is appropriate. The tasks that would be

communicated with the proposed POMDP approach do assume solutions to these

control problems; such as avoiding obstacles and manipulating objects. In a deployed

setting, a robot will need to acquire these control skills in the field. Since a human is

present, hopefully these techniques can be employed to help the robot acquire these

control skills.

1.2.4 Social Robotics

The area of social robotics, which includes the Sophie’s Kitchen work discussed

above, is relevant and provides many insights for the problem of human-robot task

communication. Social robotics deals with the class of robots “that people apply a
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social model to in order to interact with and to understand”, Cynthia Breazeal [4].

The focus of social robotics research is on identifying important social interactions

and demonstrating that a robot can participate in those interactions.

Three examples of these interactions are vocal turn taking, shared attention, and

maintaining hidden beliefs about the partner. By encoding rules of vocal turn taking,

involving vocal pauses, eye movement, and head movement, Breazeal demonstrated

that a robot can converse with a human, in a babble language, smoothly and with few

“hiccups” in the flow [3]. Breazeal et al., and Scassellati motivated and demonstrated

shared attention, in which the robot looks at the human’s eyes to determine the object

of their focus and then looks at that object [5, 33]. Gray et al. demonstrated that

a robot can maintain beliefs about the goals and the world state as seen from the

conversation partner (these are not beliefs in the probabilistic sense, see section 2.1,

the robot tracks the deterministic observable state of the world and the changes that

the partner was present to observe; the goals are a shrinking list of the possible states

that the partner is attempting to reach.) [9, 6].

The work in social robotics provides a guide for desirable interactions and human

models. The hope is to develop robot controllers for which the robot’s actions in

these interactions are not scripted rules, triggered by observable state, but are chosen

to minimize a global cost function and operate in uncertain environments. The dis-

advantages of a set of action rules (situation → action) are that the set is unwieldy

to specify and maintain, it can have conflicting rules, and the long term effects of

the rules can be hard to predict (no global objective). For an introduction to social

robotics, see [4].
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1.2.5 Spoken Dialog Managers

A spoken dialog manager is an important component within a spoken dialog

system, such as an automated telephone weather information service. The dialog

manager receives “speech act” inputs from the natural language understanding com-

ponent, tracks the state of the conversation, and outputs speech acts to the spoken

language generator component. Like task communication in robotics, a spoken dialog

manager often seeks to fill in details of interest from noisy observations, and it can

direct the conversation through actions. The current state of the art systems use

POMDPs as the representation. As such, the techniques which allow these systems

to scale are relevant to human-robot task communication. The two main compo-

nents that resist scaling in a POMDP implementation are belief tracking and action

planning.

Spoken dialog manager researchers have scaled belief tracking through two tech-

niques: factoring and partitioning. In factoring, the details of interest are divided into

sets that can be tracked independently [50, 42]. If |A1| is the number of answers to

question one and |A2| is the number of answers to question two, then without factor-

ing we have |A1||A2| hypotheses to track, with factoring this is reduced to |A1|+ |A2|

hypotheses. Unfortunately, there is often a dependency between details of interest

which precludes factoring. Partitioning, on the other hand, can handle these depen-

dencies. It lumps hypotheses into partitions, each partition contains one or more

hypotheses, and tracks the probability of the partitions [46, 51]. For example, if we

are interested in the city to report weather for, based on the input so far, the agent

might be tracking four hypotheses (Boston, Austin, Houston, and !(Boston, Austin,
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or Houston)). Partitioning is effective because we can wait to enumerate hypothesis

until there is evidence to support them. It also scales with the availability of process-

ing and memory; with more processing and memory we can more finely partition the

hypothesis space, allowing for more accurate tracking.

The planning problem has been addressed by reducing the problem space over

which planning occurs. This is done by mapping the problem into a smaller feature

space, perform planning in this space, and mapping the solution back to the original

problem space [48, 49]. Using the telephone weather agent as an example of this

mapping, the only reasonable confirmation action is to ask confirmation for the most

likely city. Thus, the probability of all cities could be mapped to the two element

feature vector which contains the probability of the most likely city and, perhaps,

the entropy of the remaining cities, vastly simplifying the problem. These techniques

have led to spoken dialog systems that can handle very large problem spaces [15, 52].

While these and other techniques are relevant, there are two important distinc-

tions between spoken dialog management and human-robot task communication. The

first is that the observations in a spoken dialog system are usually in one-to-one cor-

respondence with details of interest, which allows for simplified inference through

techniques like factoring. In human-robot task communication it is often unclear

which task details the observation is relevant to (e.g. a pointing gesture could mean

the task involves moving the object you are holding to that location, or it could

mean that the task involves picking up another object at that location). The second

distinction relates to the the termination of the communication. Most spoken dia-

log systems seek to submit the details of interest quickly to another system, which
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makes the cost function reasonably easy to specify (penalize an incorrect submission,

reward a correct submission, and lightly penalize all non submit actions). Although

outside the work presented in this dissertation, in human-robot task communication,

the robot’s operation is broader than a single task communication exchange. A task

communication exchange is situated within the continuous operation of the robot,

and the robot’s actions should factor in the human’s desire to communicate yet an-

other task or to start the robot executing a task. Thus, the choice of a cost functions

is less obvious. See section 5.2.5 for a discussion of good cost functions for human

robot interaction. For an excellent overview of spoken dialog management, see [47].

1.3 Why Control the Communication?

In the task communication framework proposed below the robot plans its actions;

i.e. the robot is in control of its actions and chooses those actions in accordance with

an objective function. Since this planning adds a significant computational cost, why

is it important? The alternative would be for the human to provide demonstrations

of the task, either with their own body or by controlling the robot’s body. The robot

would still be required to infer the task from the demonstrations, but this would

eliminate the additional need for planning.

The benefit of planning is that it makes task communication faster and more

accurate:

• faster — With planning, the robot can direct the communication away from

details that are obvious to it (perhaps from related tasks), eliminating the time
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needed to demonstrate those details. Without planning, the human would need

to fully demonstrate all of the details for every task that they teach the robot.

• more accurate — With planning, the robot can direct the communication

towards details of the task that are not yet clear. Without planning, the teacher

can easily omit demonstrations that might clarify a task detail. For example, if

the human is teaching the “pour a glass of milk” task, they could easily provide

all demonstrations with the glass roughly one foot from the sink, leaving the

robot uncertain about the importance of this distance. With planning, the

robot could plan to clarify the importance of the distance to from sink.

Both of these benefits have at their core the fact that only the robot knows what

the robot knows, and planning can leverage this knowledge.

Note that planning does not preclude demonstrations, but the act of observing the

demonstration should be an action that, through planning, is expected to improve

communication. If the observed action loses its benefit over time, the robot can

interrupt the observation and take a more productive action.

As an example of the benefit of planning in a familiar human setting, we can look

at a professor’s office hours. A student may choose to listen to their professor’s expla-

nation, but they are still free to interrupt the professor and direct the communication;

perhaps informing the professor that they are clear on the aspect that the professor

is explaining, but are unclear on another aspect. The ability of the student to direct

the communication makes office hours more efficient.
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(a) PR2 from Willow Garage (b) STAIR from Stanford

(c) ASIMO from Honda

Figure 1.1: Three examples of modern general purpose robots. PR2 image from
http://www.willowgarage.com/pages/pr2/overview, c©Willow Garage. STAIR im-
age from http://stair.stanford.edu/ c©Stanford University. ASIMO image from
http://world.honda.com/ASIMO/ c©Honda Motor Co.



Chapter 2

Framework

2.1 POMDP Review

A partially observable Markov decision process (POMDP) provides a standard

way of representing sequential decision problems where the world state transitions

stochastically and the agent perceives the world state through stochastic observa-

tions. A standard representation allows for the decoupling of problem specification

and problem solvers. Once a problem is represented as a POMDP, any number of

POMDP solvers can be applied to solve the problem. A POMDP solver takes the

POMDP specification and returns a “policy”, which is a mapping from belief states

to actions. POMDPs have been successfully applied to problems as varied as au-

tonomous helicopter flight [21], mobile robot navigation [29], and action selection in

nursing robots [26].

In this section we review the POMDP, including Bayesian inference, Belman’s

equation, and the state of the art in POMDP solvers. For additional reading on

12
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POMDPs see [36], [43], and [12].

2.1.1 Definitions

Random variables will be designated with a capital letter or a capitalized word;

e.g. X. The values of the random variable will be written in lowercase; e.g. X = x.

If the value of a random variable can be directly observed then we will call it an

“observable” random variable. If the value of a random variable cannot be directly

observed then we will call it a “hidden” random variable, also known as a “latent”

random variable. If the random variable is “sequential”, meaning it changes with

time, then we will provide a subscript to refer to the time index; e.g. Mt below. A

random variable can be multidimensional; e.g. the state S below is made up of other

random variables: Mov, Mt, etc. If a set of random variables contains at least one

hidden random variable then we will call it “partially observable”.

P (X) is the probability distribution defined over the domain of the random vari-

able X. P (x) is the value of this distribution for the assignment of x to X. P (X|Y )

is a “conditional” probability distribution, and defines the probability of a value of

X given a value of Y . A “marginal” probability distribution is a probability dis-

tribution that results from summing or integrating out other random variables; e.g.

P (X, Y ) : ∀x∈X,y∈Y P (x, y) =
∑

z∈Z P (x, y, z). When a probability distribution has a

specific name, such as the “transition model” or the “observation model” we will use

associated letters for the probability distribution; e.g. T (...) or Ω(...).
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2.1.2 POMDP Specification

A POMDP specification is an eight element tuple: 〈S,A,O, T,Ω, C, γ, b0〉. S is

the set of possible world states; A is the set of possible actions; O is the set of

possible observations that the agent may measure; T is the transition model defining

the stochastic evolution of the world (the probability of reaching state s′ ∈ S given

that the action a ∈ A was taken in state s ∈ S); Ω is the observation model that

gives the probability of measuring an observation o ∈ O given that the world is in

a state s ∈ S; C is a cost function which evaluates the penalty of a state s ∈ S

or the penalty of a probability distribution over states (called a belief state b, b :

∀s∈S
[
0 ≤ b(s) ≤ 1 and

∑
s∈S b(s) = 1

]
); γ is the discount rate for the cost function;

and, finally, b0 is the initial belief state for the robot, i.e. the initial probability

distribution over world states. Given a POMDP representation, a POMDP solver

seeks a policy π, π(b) : b→ a, that minimizes the expected sum of discounted cost.1,

The cost is given by C, the discounting is given by γ, and the expectation is computed

using T and Ω.

The state of the robot S should capture all quantities relevant to the decision

making process. For example, the state for a path planning robot might consist of

the two dimensional position of the robot (S = (X, Y )). An assignment to all of

the quantities in S is often called a hypothesis. The number of hypotheses is the

number of joint assignments to all quantities in S. A belief state b is a probability

distribution over hypotheses; i.e. it assigns a probability to every hypothesis. Often

1Often a reward function is used instead of a cost function, but these are interchangeable; mini-
mizing the cost function C is the same as maximizing the reward function -C.
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this is explicitly represented as an array of probabilities, where each element is the

probability of one assignment to S. One of these arrays represents one belief state.

b0 might be initialized to a uniform distribution; i.e. each element of the array has

the same value:
(

1
size(array)

)
.

World

Agent

ActionObservation

Figure 2.1: The POMDP world view. In one timestep the agent selects an action and
receives an observations from the world. The agent incurs costs associated with its
updated belief based the action and the observation. The agent models the world by
T and Ω; the new state is sampled from T , and the observation received is sampled
from Ω.

Figure 2.1 depicts the problem that a POMDP represents. An agent performs an

action a ∈ A, given this action the world state changes according to the transition

model T . Given the new world state, an observation o ∈ O is generated according

to the observation model Ω. The agent receives this observation, updates its internal

belief about the true world state, and incurs a cost C(b) associated with this new

belief. The goal of the agent is to choose actions that minimize the sum of costs over

its lifetime, discounted by γ.

In the next two sections I show mathematically how the agent updates its belief
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Figure 2.2: An illustration of history as seen from the POMDP perspective. Circles
represent beliefs based on a history of actions and observations. The label of the
belief is shown below a circle, a cartoon belief histogram is shown above the circle,
and arrows are marked by the action or observation that effected the new belief. In
one time step the robot receives an action at and an observation ot; the action at
moves the robot’s belief state from bt−1 to the intermediate belief state b′t, and the
observation ot moves the robot’s belief state from the intermediate belief state b′t to
the new belief state bt.

from one timestep to the next and I formally define the equation that the agent seeks

to minimize. Note that due to the complexity of literally implementing this update

and minimization, nearly all POMDP solvers approximate the update and/or the

minimization.

2.1.3 Bayes Filtering (Inference)

The agent starts each timestep with a belief (b0 for timestep zero), it then takes

an action and receives a measurement related to the world state at the next timestep.

These two pieces of information at+1 and ot+1 are all the agent has to update its

belief about the world from bt to bt+1. If we introduce an intermediate belief state

b′t+1, which captures the belief after incorporating at+1, but before receiving ot+1, we

get the graphically depicted scene in figure 2.2.

The beliefs can be updated recursively using the following two formulas, which

are the Bayes filter update equations.

Update Equations:
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b′t+1(st+1) =
∑
st∈S

T (st+1|at+1, st)bt(st) (2.1)

bt+1(st+1) = ηΩ(ot+1|st+1)b
′
t+1(st+1) (2.2)

b0(s0) is defined to be the probability of the state at time zero; b0(S0) = P (s0).

This is called the prior distribution for the system’s state and is specified ahead of

time.

This update from bt to bt+1, given at+1 and ot+1, is called the Bayes filter. Most

filtering algorithms are Bayes filters, notably the Kalman filter and the particle fil-

ter [43].

I will now derive equations 2.1 and 2.2, but first an additional notation is helpful.

For a temporal random variable X, we denote xt:1 to be an assignment of values to

X for each of the timesteps from 1 to t; i.e. (xt, xt−1, xt−2, . . . , x2, x1).

The recursive expression for the belief bt+1(st+1) in terms of the belief bt(st) is

derived as follows:

bt+1(st+1) = P (st+1|at+1:1, ot+1:1) (2.3)

=
P (ot+1|st+1)P (st+1|at+1:1, ot:1)

P (ot+1|at+1:1, ot:1)
(2.4)

=
P (ot+1|st+1)

∑
st∈S P (st+1, st|at+1:1, ot:1)

P (ot+1|at+1:1, ot:1)
(2.5)

=
P (ot+1|st+1)

∑
st∈S P (st+1|at+1, st)P (st|at+1:1, ot:1)

P (ot+1|at+1:1, ot:1)
(2.6)

= ηP (ot+1|st+1)
∑
st∈S

P (st+1|at+1, st)P (st|at+1:1, ot:1) (2.7)

= ηP (ot+1|st+1)
∑
st∈S

P (st+1|at+1, st)P (st|at:1, ot:1) (2.8)

= ηΩ(ot+1|st+1)
∑
st∈S

T (st+1|at+1, st)bt(st) (2.9)



Chapter 2: Framework 18

Line 2.3 is the definition of the belief state bt+1(st+1); i.e. the probability distribution

over states given the full action and observation history. Line 2.4 uses Bayes rule to

pull out ot+1 from the history and the fact that an observation ot+1 is independent

of the history, given the current state st+1. Line 2.5 introduces st using the law of

total probability. Line 2.6 uses the definition of conditional probability and the fact

that the next state st+1 is independent of the history, given the action taken at+1 and

the previous state st (Markov property). Line 2.7 uses the fact that the denominator

is not a function of the variable of interest for the probability distribution (st+1),

thus it is constant for all assignments to st+1 and we can recover its value after the

update; it is one over the sum of the unnormalized distribution. In line 2.8 the at+1 is

dropped. This is typically justified for pure filtering problems by saying that future

actions are randomly chosen. In a control problem actions are determined by a policy

(at+1 = π(bt)). So the explanation is more complicated,

P (st|at+1:1, ot:1) =
P (at+1|st, at:1, ot:1)P (st|at:1, ot:1)

P (at+1|at:1, ot:1)
(2.10)

=
P (at+1|at:1, ot:1)P (st|at:1, ot:1)

P (at+1|at:1, ot:1)
(2.11)

= P (st|at:1, ot:1) (2.12)

Line 2.10 is from Bayes Rule and 2.11 is because the action at+1 is independent of

the true state, since it is chosen based on the belief state bt which is a function only

of the history. Finally, in the derivation of bt+1(st+1), line 2.9 substitutes Ω, T , and

bt in place of their definitions.

For implementation we do this update in two steps, one for the action, which leads

to an intermediate belief state b′t+1(st+1). This intermediate belief state is the belief
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after incorporating the action but before incorporating the measurement.

b′t+1(st+1) = P (st+1|at+1, at:1, ot:1) (2.13)

=
∑
st∈S

P (st+1|at+1, st)P (st|at+1, at:1, ot:1) (2.14)

=
∑
st∈S

P (st+1|at+1, st)P (st|at:1, ot:1) (2.15)

=
∑
st∈S

T (st+1|at+1, st)bt(st) (2.16)

To incorporate the observation into the belief we plug equation b′t+1(st+1) into

equation (2.9). This gives us our two recursive update equations mentioned above:

b′t+1(st+1) =
∑
st∈S

T (st+1|at+1, st)bt(st) (2.1)

bt+1(st+1) = ηΩ(ot+1|st+1)b
′
t+1(st+1) (2.2)

2.1.4 Belman’s Equation (Planning)

Intuitively, certain belief states are more attractive to the agent then others. Not

just because they receive a low immediate cost C(b) but because they are on a path

that will have a low sum of costs.

Let EC(b), formally defined below, represent how much the agent dislikes a belief;

i.e. the immediate cost plus the long run cost. Given EC(bt+1) for each belief state

one time step away, i.e. reachable by one action and one observation, depicted in

figure 2.3, we can ask two important questions: 1) what action should the robot take

in the current state?, and 2) what is EC(bt) for the current belief bt?

Referencing figure 2.3, these questions assume that we are given the four EC(bt+1)

for each of the four leaf nodes. We can compute the EC(b′t+1) for the two b′t+1 by
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Figure 2.3: A belief tree expanded one time step into the future for a POMDP with
two actions (a1, a2) and two observations (o1, o2). The belief label bi is shown below
the node, a cartoon histogram of the belief is shown above the node, and the expected
sum of discounted costs EC(bi) from the belief bi onward is shown below the belief.
The EC(bi) are useful for choosing optimal actions. The actions and observations
that effect the beliefs are shown on their arrows. Beliefs are propagated from the
left to the right according to the Bayes filter equations (2.1 and 2.2). EC(bi) are
propagated from right to left using Belman’s equation (2.22)).

weighting each EC(bt+1) by the probability of the observation that led to its belief



Chapter 2: Framework 21

node.

EC(b′t+1) =
∑
ot+1

p(ot+1|at+1, at:1, ot:1)EC(bt+1) (2.17)

= E
ot+1

EC(bt+1) (2.18)

The optimal action is then just the action that leads to the b′t+1 with the smallest

EC(b′t+1).

at+1 = arg min
at+1

EC(b′t+1) (2.19)

= arg min
at+1

E
ot+1

EC(bt+1) (2.20)

And EC(bt) is the immediate cost C(bt) plus the EC(b′t+1) under the optimal action,

discounted:

EC(bt) = C(bt) + γmin
at+1

EC(b′t+1) (2.21)

= C(bt) + γmin
at+1

E
ot+1

EC(bt+1) (2.22)

Equation 2.22 is called Belman’s equation and is the recursive constraint that guar-

antees optimal action selection.

An intuitive, though computationally demanding, POMDP solver would, starting

at the current belief, roll out the action selection tree of figure 2.3 to a finite horizon

T . For each leaf bT it could approximate EC(bT ) as

EC(bT ) = C(bT ). (2.23)

It could then back up the EC using Belman’s equation (equation 2.22; taking expec-

tations of observation branches and minimums of action branches), until EC(bt+1) for

all beliefs bt+1 had been computed. Finally it would select the optimal action using

equation 2.20.
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Derivation

I now derive why Belman’s equation enforces optimal action selection, and I for-

mally define EC in the process. By definition, the optimal next action is the action

that minimizes the expected sum of discounted costs over action and observation

futures:

at+1 = arg min
at+1

E
ot+1

[
C(bt+1) + γmin

at+2

E
ot+2

[
C(bt+2) + γmin

at+3

E
ot+3

[. . . ]

]]
(2.24)

We define EC(bt+1) as the quantity in the outer square brackets,

EC(bt+1) = C(bt+1) + γmin
at+2

E
ot+2

[
C(bt+2) + γmin

at+3

E
ot+3

[. . . ]

]
. (2.25)

We can express EC(bt+1) recursively in terms of EC(bt+2) by substituting EC(bt+2)

into equation 2.25 to get,

EC(bt+1) = C(bt+1) + γmin
at+2

E
ot+2

EC(bt+2). (2.22)

This is Bellman’s equation. Substituting EC(bt+1) into the optimal action equation

2.24, gives,

at+1 = arg min
at+1

E
ot+1

EC(bt+1). (2.20)

Thus, if we have EC(bi) for which Belman’s equation holds, then the actions selected

by equation 2.20 are optimal.

Lastly, in Belman’s equation we take an expectation over observations (Eot+1 EC(bt+1)),

I now express this expectation in terms from the previous section on Bayes filtering.
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E
ot+1

EC(bt+1) =
∑

ot+1∈O

p(ot+1|at+1, ot:1, at:1)EC(bt+1) (2.26)

where

p(ot+1|at+1, ot:1, at:1) =
∑
s′∈S

P (ot+1|s′)P (s′|at+1, ot:1, at:1) (2.27)

=
∑
s′∈S

P (ot+1|s′)
∑
st∈S

P (s′|at+1, st)P (st|ot:1, at:1) (2.28)

=
∑
s′∈S

Ω(ot+1|s′)
∑
st∈S

T (s′|at+1, st)b(st) (2.29)

2.1.5 POMDP Solvers

The goal of a POMDP solver is to choose an action a for a belief state b that

minimizes the expected sum of discounted rewards (equation 2.24). POMDP solvers

can be classified into two broad categories, offline or online. An offline solver does

all of its processing before the agent is run and produces a policy π(b), which maps

every belief state b to an action a. An online solver uses the time between actions to

compute the next action at+1 given the current belief state bt.

Both offline and online solvers have their tradeoffs. An offline solver generally has

more time for computation but the computation must be spent on a range of belief

states, since the policy must specify an action for any belief state. Also, since the

policy returned by an offline solver is typically a simple mapping, it can be rapidly

evaluated by the running agent, which can be important if the processing time between

actions is limited. In contrast, an online solver has less time for computation (only

the time between actions) but it can focus this processing on the immediately relevant
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belief states.

There is strong overlap between offline and online approaches. Advances in one

can often be applied to others. And, in general, offline processing policies can be used

to improve the quality of online policies. The best performing systems make use of

all of the online processing available and augment this with a policy from an offline

solver, see the heuristic solver below. Here is a brief overview of several offline and

online POMDP solvers.

Offline Solvers

Most offline solvers (included all but one of the reviewed solvers) solve the POMDP

by seeking the expected cost for all belief states EC(b) (equation 2.25). The optimal

action can then be determined by either direct lookup (often the optimal action that

lead to minimizing EC(b) is stored), or by using equation 2.20 to compute the optimal

action in terms of EC(b).

• exact expected cost — Early on it was shown that the expected cost of a

belief state bt can be expressed as a concave linear function of bt, where the

parameters are derived from the expected cost for one time step in the future

ECt+1 (which is also a convex linear function of the belief state bt+1 [35]).

By starting with EC(b) = C(b), and repeatedly computing the expected cost

one timestep early, as the number of updates goes to infinity, the expected cost

approaches the true expected cost (equation 2.25). Unfortunately the number of

linear equations that make up the expected cost grows exponentially with each

update, thus this approach is only appropriate in extremely simple domains.
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• point based — Point based POMDP solvers also solve Belman’s equation

(equation 2.22), but only for a small set of beliefs [18]. Implementations vary

on how they select the belief set. The distribution of the belief set is critical

to the accuracy of the solution. In general, the more beliefs in the set, the

more accurate the estimate of expected cost, but, also, the more processing

required. Two recent algorithms using the point based approach are PBVI [25]

and Perseaus [37].

• upper bound — Some solvers return strict upper or lower bounds for the

expected cost function EC(b). These can be useful as heuristics for online

solvers. One example of an upper bound solver evaluates the expected cost

of always executing the same action, called a “blind” policy [11]. Since these

policies are independent of observations, their expected cost can be solved with

an MDP-like value iteration. EC(b) is then computed in the same way as the

MDP lower bound example below. Even a bound as loose as this can be helpful

as a heuristic [28]. A tighter upper bound can be achieved using a point based

solver, but this comes at the cost of more computation.

• lower bound — A lower bound solver computes a strict lower bound on EC(b).

One example of a lower bound solver is to solve the underlying MDP, which

make the assumption that the state is observable [17]. Let ECMDP (s) be the

expected cost under this assumption for the state s. We then compute EC(b)

as EC(b) =
∑

sEC
MDP (s)b(s). Solving the underlying MDP results in a lower

bound because it ignores uncertainty, and is thus overly optimistic. Recent

lower bound POMDP solvers include QMDP [17], and FIB [11].
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• policy search — A policy search method directly modifies a parameterized

policy. If we can efficiently compute the expected cost of a policy, and if the pa-

rameterized policy is differentiable, then we can apply gradient descent methods

directly on the policy [1]. Applications where a differentiable policy is appropri-

ate are more common in control than in artificial intelligence. If the conditions

are met, a policy search algorithm can be an efficient solver.

• permutable POMDPs — A permutable POMDP is a sub-class of POMDPs [7].

In many applications the optimal policy only depends on the shape of the cur-

rent belief and not on the value of a state variable. For example, for a telephone

directory agent, the agent may be seeking the first name of the person you want

to reach. The optimal policy is independent of the value of the first name. If the

belief were in a particular shape, the optimal policy would “ask confirmation

of the most probable value for the first name”; whether to ask this question

would not depend on the value of the most probable first name. Solvers can

take advantage of the permutable property by computing expected costs only

for a sorted belief state. Because the states are permutable, this also provides

the expected cost for any permutation of that belief state. Simple transforma-

tions to and from the sorted belief state are used online to extract the expected

cost for the current belief state. Doshi and Roy showed that this results in

an exponential reduction in the belief space, making the POMDP easier to

solve [7]. In their implementation, they wrapped these transformations within

a point based value iteration solver, but it should be broadly applicable to most

POMDP solvers when the POMDP has the requisite permutable structure.
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Online Solvers

Most online solvers, including those presented here, recommend an action by ex-

panding the belief tree (figure 2.3), evaluating the expected cost of leaf nodes, and

backing them up, using Belman’s equation (equation 2.22), to the current node. The

action recommended is the very next action that resulted in the current belief node’s

minimum value. These approaches differ in how they expand this tree, as described

below.

• branch and bound — Branch and bound techniques maintain a lower bound

and an upper bound on EC for each each node in the tree [24]. If the lower

bound for one action node a′ is higher than the upper bound for another action,

then we can stop exploring all branches below a′, since the other action is

guaranteed to result in a lower EC. The full process is as follows: the tree

is expanded to a depth; the upper and lower bounds are computed for the

leaf nodes (typically using an offline solution); these bounds are propagated up

the tree; branches are then pruned beyond actions that will never be taken;

and the the process repeats, expanding the tree from the remaining leaf nodes.

This pruning saves significant computation, but we can do even better; see the

heuristic solver below.

• monte carlo — A monte carlo solver also expands the belief tree, but stochas-

tically traverses observation branches based on the probability of that observa-

tion [19]. This is effective because it steers the search towards observations that

are more likely.
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• heuristic — Heuristic solvers are similar to branch and bound solvers in that

they maintain an upper and lower bound for each node’s expected cost, but

unlike branch and bound they do not uniformly expand leaf nodes. Heuristic

solvers apply a heuristic function to all leaf nodes and expand the node with the

best value. One effective heuristic is the contribution of that leaf nodes error

(upper bound - lower bound) to the root node’s error [27]. A leaf node’s error

contributes to the root’s error in proportion to the discounted probability of

reaching that leaf. This heuristic encourages the expansion of leaf nodes that

will aid in the immediate decision of which action to take.

A good overview with references to further reading on POMDP solvers can be

found in Ross et al. [28]. The current state of the art in POMDP solvers are heuristic

methods with simple upper and lower bounds computed by an offline solver. For

human-robot task communication in complex task domains, a reasonable option for

a POMDP solver would be the combination of a heuristic solver (using “blind” and

QMDP for bounds) with the approach of mapping to a reduced planning space (from

the spoken dialog manager work in section 1.2). If the number of observations makes

the evaluation of all leaf nodes intractable, then the monte carlo approach could be

used to select a subset of leaf nodes to evaluate for expansion.

2.2 Task Communication as a POMDP

This dissertation proposes the use of a POMDP for representing the problem

of a human communicating a task to a robot. Specifically, for the elements of the

POMDP tuple 〈S,A,O, T,Ω, C, γ, b0〉, the partially observable state S captures the
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details of the task along with the mental state of the human (helpful for interpreting

ambiguous signals); the set of actions A capture all possible actions of the robot

during communication (for example words, gestures, body positions, etc.); the set of

observations O capture all signals from the human (be they words, gestures, buttons,

etc.); and the cost function C should encode the desire to minimize uncertainty over

the task details in S. The transition model T , the observation model Ω, the discount

rate γ, and the initial belief state b0 fill their usual POMDP roles.

The next chapter provides a demonstration of representing a human-robot task

communication problem as a POMDP, including examples of T , Ω, and b0.

2.2.1 Choice of Cost Function

I say above that the cost function C should encode the desire to minimize uncer-

tainty over the task details in S; i.e. the cost function should penalize uncertainty. As

mentioned in section 1.2.5, in the field of spoken dialog managers, the cost function

is chosen to penalize communication time and incorrect submission of the quanti-

ties being communicated, and reward correct submissions. The system still explores

(reducing uncertainty about the quantities), but only in pursuit of timely, correct

submissions. Unlike an uncertainty penalizing cost function, this cost function has

the added benefit of being linear in the belief state, which is a requirement of some

POMDP solvers. Eventually, the robot will be in a situation where communication

must be terminated in order to perform another function, such as task execution; but

for this dissertation, the setting is solely task communication. As such, a terminal

submit action is not appropriate, since it would end the robot’s actions and prevent
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further communication. An uncertainty penalizing cost function is promoted because

it focuses the robot’s actions on task communication, which is the problem at hand,

with the added benefit of being parameter free. That said, I do view this as a tem-

porary cost function until a more encompassing cost function is developed for the

broader problem of task communication and task execution (see section 5.2.5).
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Demonstration

In this chapter I provide a demonstration of representing a human-robot task

communication problem as a POMDP. The representation is what is used in the

experiment in chapter 4. The task to be communicated relates to a simulated envi-

ronment shown in figure 3.1. As such we begin with a description of the simulator

and its virtual world.

3.1 Simulator

The virtual world is shown in figure 3.1. It consists of 3 balls and the robot,

displayed as circles and a square (3.1.a). The robot can “gesture” at balls by lighting

them (3.1.b), it can pick up a ball (3.1.d), it can slide one ball to one of four distances

from another ball (3.1.e), and it can signal that it knows the task by displaying

“Final” (3.1.f). The experiment in chapter 4 will contain trials in which a human

acts as the robot. For these comparison trials the robot actions are controlled by left

31
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Figure 3.1: Typical human-robot interactions on the simulator. (a) The state all
trials start in; the square robot, holding no balls, surrounded by the three balls. (b)
The robot lighting one of the balls, as if to ask, “move this?” (c) The human teacher
pressing the keyboard spacebar, displayed in the simulator as a rectangle, and used
to indicate approval with something the robot has done. (d) The robot holding one
of the balls, the four relative distances are displayed to the remaining two balls. (e)
The robot has slid one of the balls to the furthest distance from another ball. (f) the
robot has displayed “Final”, indicating that it knows the task, and that the world is
currently in a state consistent with that task.

and right mouse clicks on the objects involved in the action; e.g. right click on a ball

to light it or turn off the light, left click on a ball to pick it up, etc. In this simulator



Chapter 3: Demonstration 33

the teacher input is highly constrained; the teacher has only one control and that is

the keyboard spacebar, visually indicated by a one half second rectangle (3.1.c), and

is used to indicate approval with something that the robot is doing or has done. The

simulator is networked so that two views can be opened at once; this is important for

the comparison trials, where the human controlling the robot must be hidden from

view.

Timesteps are 0.5 second long, i.e. the robot receives an observation and must

generate an action every 0.5 seconds. The simulator is free running, so, in the com-

parison trials where the human controls the robot, if the human does not select an

action, then the “no action” action is taken. “no action” actions are still taken in

the case of the POMDP-controlled robot, but they are always intentional actions

that have been selected by the robot. I provide enough processing power so that the

POMDP-controlled robot always has an action ready in the allotted 0.5 seconds. The

simulated world is discrete, observable, and deterministic.

3.2 Toy Problem

The problem we wish to encode is as follows. A human teacher will try to com-

municate, through only spacebar presses, that a specific ball should be at a specific

distance from another specific ball. Spacebar presses from teacher should be inter-

preted by the robot as approval of something that it is doing. The robot has to

infer the relationship the teacher is trying to communicate from the spacebar presses.

When the robot thinks it knows the relationship, it should move the world to that

relationship and display “Final” to the teacher.
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Figure 3.1 shows snap shots from a possible communication trial. The robot

“questions” which ball to move (3.1.b), the teacher indicates approval (3.1.c), the

robot picks up the ball (3.1.d), the robot “questions” which ball to move the one it

is holding to (not shown), the robot slides the ball toward another ball (3.1.e), the

teacher approves a distance or progress toward a distance (not shown), and, after

further exploration, the robot indicates that it knew the task by displaying “Final”

(3.1.f).

Although this problem is simplistic, a robot whose behaviors consist of chainings

of these simple two object relationship tasks could be useful; e.g. for the “set the

table” task: move the plate to zero inches from the placemat, move the fork to one

inch from the plate, move the spoon to one inch from the fork, etc.

I chose the spacebar press as the input signal for the demonstration and for the

experiment because it carries very little information, requiring the robot to infer

meaning from context, which is a strength of this approach. For a production robot,

this constrained interface should likely be relaxed to include signals such as speech,

gestures, or body language. These other signals are also ambiguous, but the simplicity

of a spacebar press made the uncertainty obvious for the demonstration.

3.3 Formulation

In this section I formulate this problem as a POMDP. This is only one of many

possible formulations. It is perhaps useful to note that the formulation presented here,

and used in the user experiment below, was the first attempt; neither the structure

nor the parameters needed to be adjusted from my initial guesses. This suggests that



Chapter 3: Demonstration 35

the proposed approach is reasonably insensitive to modeling decisions.

3.3.1 State (S)

The state S is composed of hidden and observable random variables. The task

that the human wishes to communicate is captured in three hidden random variables

Mov, WRT , and Dist. Mov is the index of the ball to move (1 − 3). WRT is the

index of the ball to move ball Mov with respect to. Dist is the distance that ball

Mov should be from ball WRT .

The state also includes a sequential hidden random variable, Mt, for interpreting

the observations Ot. Mt takes on one of five values: (waiting, mistake, that mov,

that wrt, or that dist). A value of waiting implies that the human is waiting for some

reason to press the spacebar. A value of mistake implies that the human acciden-

tally pressed the spacebar. A value of that mov implies that the human pressed the

spacebar to indicate approval of the ball to move. A value of that wrt implies that

the human pressed the spacebar to indicate approval of the ball to move ball Mov

with respect to. A value of that dist implies that the human pressed the spacebar

to indicate approval of the distance that ball Mov should be from ball WRT . In

addition to these hidden random variables, the state also includes observable random

variables for the physical state of the world; e.g. which ball is lit, which ball is being

held, etc.

Finally, the state includes “memory” random variables for capturing historical

information, e.g. the last time step that each of the balls were lit, or the last time

step that M = that mov. The historical information is important for the transition
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model T . For example, humans typically wait one to five seconds before pressing the

spacebar a second time. In order to model this accurately we need the time step of

the last spacebar press. See appendix B for a detailed description of the full state

along with examples of the observable state variables for several configurations of the

world.

state Mov

WRT

Dist

M

〈world state variables〉

〈historical variables〉

3.3.2 Actions (A)

There are six parameterized actions that the robot may perform. Certain actions

may be invalid depending on the state of the world. The actions are: noa, for

performing no action and leaving the world in the current state; light on(index)

or light off(index), for turning the light on or off for the ball indicated by index;

pick up(index), for picking up the ball indicated by index; release(index), for putting

down the ball indicated by index; and slide(index 1, distance, index 2), for sliding

the ball indicated by index 1 to the distance indicated by distance relative to the

ball indicated by index 2. Note that only a few actions are valid in any world state;

for example, slide(index 1, distance, index 2) is only valid if ball index 1 is currently

held or currently at a distance from ball index 2 and if distance is only one step away

from the current distance. See appendix C.1 for effects of these actions.
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actions noa

light on(index)

light of(index)

pick up(index)

release(index)

slide(index 1, distance, index 2)

3.3.3 Observations (O)

An observation takes place at each time step and there are two valid observations:

spacebar or no spacebar, corresponding to whether the human pressed the spacebar

on that time step.

observations spacebar

no spacebar

3.3.4 Transition Model (T )

A transition model gives the probability of reaching a new state, given an old state

and an action. In this example, Mov, WRT , and Dist are non-sequential random

variables, meaning they do not change with time, so T (Mov = i, ...|Mov = i, ...) =

1.0. The transition model for the physical state of the virtual world is also trivial,

since the virtual world is deterministic.

The variable of interest in this example for the transition model is the sequential

random variable M that captures the mental state of the human (waiting, mistake,

that mov, that wrt, or that dist). The transition model was specified from intuition,

but in practice I envision that it would either be specified by psychological experts, or
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(b)(a) (c)

0.0

0.1

T(M=that_mov | Mov=i,...)

ball i is lit
ball i's light 
turned off

M=that_mov
in the past

Figure 3.2: This is an illustration of part of the transition model T . Here I show the
probability that the human will signal their approval (via a spacebar press) of the
ball to be moved, T (M = that mov|Mov = i, ...), where, in this hypothesis, the ball
to be moved is ball i. (a) once the robot has lit ball i, the probability increases from
zero to a peak of 0.1 over 2 seconds. (b) after the light has turned off there is still
probability of an approving spacebar press, but decreasing over 2 seconds. (c) If the
teacher has signaled their approval (M = that mov), then the probability resets. The
structure and shape of these models was set from intuition.

learned from human-human or human-robot observations [41, 39]. For the experiment

I set the probability that M transitions to mistake from any state to a fixed value of

0.005, meaning that at any time there is a 0.5% chance that the human will mistakenly

press the spacebar indicating approval. I define the probability that M transitions

to that mov, that wrt, or that dist as a table-top function, as shown in figure: 3.2.

I set the probability that M transitions to waiting to the remaining probability;

T (M = waiting) = 1 − T (M = mistake ∨ that mov ∨ that wrt ∨ that dist). See

appendix C for the full transition model.
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3.3.5 Observation Model (Ω)

The observation model I have chosen for this problem is a many to one determin-

istic mapping:

P (O = spacebar|M) =

 0.0 if M = waiting

1.0 otherwise

Note that this deterministic model does not imply that the state is observable

since, given O = spacebar, we do not know why the human pressed the spacebar,

M
?
= (mistake ∨ that mov ∨ that wrt ∨ that dist). 1

3.3.6 Cost Function (C)

As mentioned earlier, the cost function should be chosen to motivate the robot

to quickly and accurately infer what the human is trying to communicate. In our

case this is a task captured in the random variables Mov, WRT , and Dist. The cost

function I have chosen is the entropy of the marginal distribution over Mov, WRT ,

and DIST :

C(p) = −
∑
x

p(x) · log(p(x)). (3.1)

Where p is the marginal probability distribution over Mov, WRT , and Dist, and x

takes on all permutations of the value assignments to Mov, WRT , and Dist.

Since entropy is a measure of the uncertainty in a probability distribution, this

cost function will motivate the robot to reduce its uncertainty over Mov, WRT , and

Dist, which is what we want.

1If there were noise in the spacebar key then this would not be a deterministic mapping.
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3.3.7 Discount Rate (γ)

γ is set to 1.0 in the experiment, meaning that uncertainty later is just as bad as

uncertainty now. The valid range of γ for a POMDP solver evaluating actions to an

infinite horizon is 0 ≤ γ < 1.0, but the solver only evaluates to a 2.5 second horizon.

In practice, the larger the value of γ, the more willing the robot is to defer smaller

gains now for larger gains later.

3.3.8 Initial Belief (b0)

The initial distribution b0 over the joint values of the hidden random variables

Mov, WRT , Dist, and M are set as follows. M0 is assumed to be equal to waiting.

All 24 (3 × 2 × 4 × 1) hypotheses, constructed from the permutations of the hidden

random variables (Mov = (1, 2, 3),WRT = (1, 2, 3), Dist = (20, 40, 60, 80),M =

waiting), are set to the uniform probability of 1/24.

3.3.9 Action Selection

The problem of action selection is the problem of solving the POMDP. As de-

scribed in section 2.1.5, there are many established techniques for solving POMDPs [20,

28]. Given the simplicity of the world and the problem, I can take a direct approach.

The robot expands the action-observation tree (figure 2.3) out 2.5 seconds into the

future, and takes the action that minimizes the sum of expected entropy over this

tree. This solution is approximate, since the system only looks ahead 2.5 seconds,

but, as I will show in chapter 4, it results in reasonable action selections for the toy

problem used in the demonstration and experiment.
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When the marginal probability of one of the assignments to Mov, WRT , and

Dist is greater than 0.98 (over 98% confident in that assignment), the robot moves

the world to that assignment and displays “Final”.2

2This termination is outside of the proposed POMDP approach of the dissertation. It was
implemented in order to collect data in the experiment. The dissertation deals only with task
communication, not with termination of communication to perform some other function. In a strict
implementation of the proposed approach, the robot would never stop acting to reduce its uncertainty
about the task. See section 5.2.5 for future work on the integration of task communication and task
execution modes



Chapter 4

Performance

4.1 Experiment

The experiment consisted of multiple trials run on the simulator described in

section 3.1, where each trial was one instance of the problem described in section 3.2.

In half of the trials the virtual robot was controlled by the POMDP described in

section 3.3, and in the other half the virtual robot was controlled by a human hidden

from view. At the beginning of each trial the teacher was shown a card designating

the ball relationship to teach. The robot, either POMDP or human controlled, had to

infer the relationship from spacebar presses. When the robot was confident about the

desired relationship it would move the world to that relationship and end the trial by

displaying “Final” to the teacher. The teacher would then indicate on paper whether

the robot was correct and how intelligent they felt the robot in that trial was.

The experiment involved 26 participants, consisting of undergraduate and grad-

uate students ranging in age from 18 to 31 with a mean age of 22. Four of the

42
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participants were randomly selected for the “human robot” role, leaving 22 partici-

pants for the “teacher” role. The participants rated their familiarity with artificial

intelligence software and systems on a scale from 1 to 7; the mean score was 3.4

with a standard deviation of 1.9. Participants were paid $10.00 for their time in the

experiment. See appendix A for the raw data from the experiment.

4.2 Calibration of the Teacher to a Human Robot

The data below is reported on 44 teaching trials: 2 trials for each of the 22

teachers, one teaching the human-controlled robot and one teaching the POMDP-

controlled robot. In early trials we realized that the human teacher was not teaching

in a way that either the human robot or the POMDP robot expected. Both the

human-controlled robot and the POMDP-controlled robot had the model that the

teacher would first teach it which ball to move (ball Mov), and then which ball to

move it to (ball WRT ), but the teacher would often press the spacebar the first

time that ball WRT was lit. Both the human and POMDP robot would then pick

up ball WRT , thinking it was the ball to move. This would lead to a long trial

before the human or POMDP-controlled robot recovered. Research has shown that

an inconsistency in models is only temporary; over time humans will adjust to their

partner’s models [4]. We believe that there was an inconsistency because the spacebar

interaction was novel to the teacher. As we move to more natural interactions I expect

that the human teacher would be well calibrated to the model of a human student. To

achieve calibration in the experiment, each teacher was given three calibration trials

with the human-controlled robot (the robot identity was hidden from the teacher).



Chapter 4: Performance 44

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1.0
← Picked up ball 1

Put down ball 1 →

Seconds

P
ro

b
a

b
ili

ty

Mistake Recovery

 

 

P(Mov = ball 1)

P(Mistake at 3s)

Figure 4.1: This figure shows a typical recovery from a mistaken spacebar press. In
this figure the teacher mistakenly pressed the spacebar at the three second mark while
the robot was lighting ball 1. The probability that ball 1 was the ball to be moved
immediately spiked. At the same time there was a low probability that the spacebar
press was a mistake. At 4 seconds the robot picked up ball 1 and started moving
it, exploring tasks involving the movement of ball 1. As the trial progressed without
further spacebar presses, the probability that the spacebar press at 3 seconds was
a mistake increased and the probability that ball 1 was the ball to move decreased.
Finally, at 36 seconds the approximately optimal policy was to put down ball 1 and
reassess which object was to be moved.

All 22 teachers showed calibration to the human-controlled robot after the first two

calibration trials. The three calibration trials were followed by the two experiment

trials, one with the human-controlled robot and one with the POMDP-controlled

robot (the controller order was randomized).

4.3 Robustness to Teacher Error

The strength of using a probabilistic approach such as a POMDP is in its ro-

bustness to noise. In the experiment, noise came in the form of mistaken spacebar



Chapter 4: Performance 45

presses. Figure 4.1 illustrates a typical mistaken spacebar press. In this trial, at the

three second mark, the human mistakenly pressed the spacebar while ball 1 was lit,

when in fact ball 1 was not involved in the task. As expected, the robot’s marginal

probability that ball 1 was the ball to move immediately spiked. Yet there was still

a small probability that the random variable M equaled mistake at the three second

mark. The trial proceeded with the robot making use of the strong belief that ball 1

was the ball to be moved: it picked up ball 1 at 4 seconds and lit ball 2 and ball 3. As

time progressed, and the robot did not receive further spacebar presses that would

be consistent with a task involving ball 1, the probability that the human mistakenly

pressed the spacebar increased and the probability that ball 1 was the ball to move

decreased. At thirty six seconds, the belief that a mistake occurred was strong enough

that the action which minimized the expected entropy was to put down ball 1 and

continue seeking another ball to move.

4.4 Ability to Infer the Task

The second result from the experiment is that the robot accurately inferred the

hidden task and the hidden state of the teacher. In all trials the human teachers

reported that the robot was correct about the task being communicated. Figure 4.2

shows a look at the robot’s marginal probabilities, for one of the trials, of the random

variables Mov, WRT , and Dist. In this trial, as was typical of the trials, the robot

first grew its certainty about Mov followed by WRT and then Dist. Figure 4.3 shows

the probability of the true assignment to M at the time of the spacebar press and at
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the end of the trial, for four assignments to the variable M .1 This shows that as each

trial progressed the robot became correctly certain about what the human meant by

each spacebar press.

4.5 Quality of Resulting Actions: POMDP vs. Hu-

man Controlled Robot

Three metrics were captured in an effort to evaluate the quality of the POMDP

selected actions: a subjective rating of the robot’s intelligence, the time the trial took,

and the value of the cost function v.s. time.

4.5.1 Perceived Intelligence

After each trial, the teacher rated the robot’s intelligence. Figure 4.4 shows the

ratings for the human-controlled robot and the ratings for the POMDP-controlled

robot. The human received higher intelligence ratings, but not significantly; I believe

that this gap can be improved with better modeling (see section 5.2.1).

4.5.2 Communication Time

The communication time was measured as the time until the robot displayed “Fi-

nal”. Figure 4.5 is a histogram of the time until the robot displayed “Final” for the

POMDP robot and for the human-controlled robot. Here again the human-controlled

1I did not include before and after for M = waiting because the observation model Ω makes this
assignment deterministic.
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robot outperformed the POMDP-controlled robot, but the POMDP-controlled robot

performed reasonably well. Part of this discrepancy could be due to inaccurate mod-

els, as in the intelligence ratings, but in this case I believe that the threshold for

displaying “Final” was higher for the POMDP robot (over 98% confident) than for

the human. Notably, I often observed the human-controlled robot displaying “Final”

after a single spacebar press at the final location. In contrast, the POMDP robot

always explored other distances; presumably to rule out the possibility that the first

spacebar press was a mistake. Only after a second spacebar press would the POMDP

robot display “Final”.

4.5.3 Reduction of Cost Function

Of interest as well is the POMDP robot’s ability to drive down the cost function

over each trial. Figure 4.6 plots the cost function (entropy) as a function of time

for each of the trials with the POMDP-controlled robot. During several trials the

entropy increased significantly before dropping again. This corresponds to the trials

in which the teacher mistakenly pressed the spacebar; the POMDP robot initially

believed that there was information in the key press, but over time realized that it

was a mistake and carried no information. The figure shows the reduction of entropy

in all trials to near zero.
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Figure 4.2: This figure shows the robot’s inference of the ball to mov (a), the ball
to move it with respect to (b), and the distance between the balls (c) for one of the
trials. The vertical lines designate spacebar presses. The solid line in each figure
shows the marginal probability of the true assignment for that random variable. The
marginal probabilities for the true assignments are driven to near 1.0 by information
gathered from the spacebar presses elicited by the robot’s actions.
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Figure 4.3: This figure shows the marginal probability of the four approval mental
states at the time the spacebar was pressed (dark gray) and at the end of the trial
(light gray). The true states were labeled in a post processing step. All spacebar
presses from all 22 POMDP trials are included. This shows that, for each of the mental
states, the marginal probability of the correct state increases as the trial progresses
and ends at near certainty. This is most pronounced in the case of M = mistake,
in which the initial probability that the spacebar was a mistake is low, but increases
dramatically as the trial progresses.
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Figure 4.4: The 22 human teachers each participated in two trials, one teaching the
human-controlled robot and one teaching the POMDP-controlled robot. The order of
human or POMDP robot was randomized, and the true identity of the robot controller
was hidden from the teacher. Following each trial the teacher rated the intelligence
of the robot on a scale from 1 to 10, with 10 being the most intelligent. With the
exception of one teacher, all teachers rated the human-controlled robot the same or
more intelligent than the POMDP-controlled robot (mean of 9.30 vs. 8.26).



Chapter 4: Performance 51

10s−25s 25s−40s 40s−55s 55s−70s
0

5

10

15

20
Distribution of teaching times

N
u
m

b
e
r 

o
f 
tr

ia
ls

Seconds until robot displayed "Final"

 

 

Human

POMDP

Figure 4.5: A histogram of the times until the robot, human or POMDP controlled,
displayed “Final”. The robot displayed “Final” to signal that they knew the task
and that the world was displaying the task. The POMDP-controlled robot displayed
“Final” when the marginal probability for a particular task, P (Mov = i,WRT =
j,Dist = k), was greater than 0.98. In all trials the robot, human or POMDP-
controlled, correctly inferred the task. Task communication, as expected, took longer
for the POMDP-controlled robot than for the human-controlled robot.
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Figure 4.6: This figure shows the decrease in the cost function over time for all 22
trials of the POMDP-controlled robot. The cost function used was the entropy of the
marginal distribution over the Mov, WRT , and Dist random variables. All trials
began at the same entropy, the entropy of the uniform distribution over Mov, WRT ,
and Dist. In all trials the entropy was driven to near zero in less than 70 seconds.
Rapid drops correlate with spacebar presses, while large increases correspond to trials
where the teacher mistakenly pressed the spacebar.
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Conclusion

5.1 Summary

This dissertation proposed the use of a POMDP for representing the human-robot

task communication problem, reviewed the POMDP, demonstrated the representation

on an example problem, and evaluated the approach through a user experiment. The

experiment suggested that this representation results in robots that are robust to

teacher error, that can accurately infer task details, and that are perceived to be

intelligent. Relevant work related to human-robot task communication was reviewed,

and an in depth review of POMDPs was provided, including Bayes filtering, Belman’s

equation, and a review of cutting edge POMDP solvers.
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5.2 Future Work

5.2.1 Learning Model Structure and Model Parameters

In the POMDP representation described in chapter 3 the structure and parameters

of T and Ω were set from intuition. I believe that both the structure and the parame-

ters of the models can be “learned”, in the machine learning sense. The models could

be learned either from observations of humans communicating with other humans

or from observations of humans communicating with robots. This is an important

area of research as it may be unrealistic to expect social scientists to accurately and

exhaustively model human teachers.

5.2.2 Complex Tasks

In the experiment presented in chapter 4, the task communicated consisted of

a single object movement. Future work should aim to communicate more complex

tasks, with chains of primitive task and ordering constraints (allowing the robot to

select the optimal order of execution). These complex tasks could be represented as

a directed graphs, where each node is a task that must be performed, and links links

would capture task ordering constraints. Gray et al., describes a task representation

that could be used for this purpose [9]. Just as in the demonstration of section 3,

the robot would maintain a distribution over hypotheses, except here each hypothesis

would be a fully specified task graph. Through communication the probability of the

true hypothesis (the true task graph that the human is trying to communicate) would

increase.
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5.2.3 Complex Signals

Also in the experiment presented in chapter 4, the observations were limited to

spacebar key presses. As research moves to tasks involving object movements in the

real world, further observations should be incorporated, such as the gaze direction

of the teacher and pointing gestures from the teacher, perhaps using a laser pointer

[14]. Note that social behavior such as shared attention, argued for in [32], where

the robot looks at the human to see where they are looking, would naturally emerge

once the teacher’s gaze direction, along with the appropriate models, is added as an

observation to the system; knowing what object the human is looking at is informative

(reduces entropy), so actions leading to the observation of the gaze direction would

have low expected entropy and would likely be chosen.

5.2.4 Processing

As described in section 2.1.5, substantial progress has been made towards efficient

solutions of POMDPs, yet processing remains a significant problem for POMDPs with

complex domains. Further research is warranted, perhaps leveraging and extending

techniques used in spoken dialog managers.

5.2.5 Smooth Task Communication and Task Execution Tran-

sitions

This dissertation focused on task communication, but a robot will also spend time

executing communicated tasks. The formulation should be extended to apply to the

entire operation of the robot; with optimal transitions between task communication
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and task execution. A choice of a broader cost function will be an important first

step. One choice for this cost function might be the cost to the human under the

human’s cost function. The human’s cost function would be captured in random

variables, perhaps through a non-parametric model. The POMDP solver could then

choose actions which would inform it about the human’s cost function, which would

aid in minimizing the cost to the human. Note that task communication would still

occur under this cost function; for example, the robot might infer that doing a task

is painful to the human, and communication would allow the robot to do this task

for the human, thus performing communication actions would be attractive.1

5.2.6 IPOMDPs

In a classical POMDP the world is modeled as stochastic, but not actively rational;

e.g. days transition from sunny to cloudy with a certain probability, but not as

the result of the actions of an intelligent agent. In a POMDP the agent is the

only intelligence in the world. An Interactive POMDP (IPOMDP) is one of several

approaches that extend the POMDP to multiple intelligent agents [8]. It differs from

game theoretic approaches in that it takes the perspective of an individual agent,

rather than analyzing all agents globally; the individual agent knows that there are

other intelligent agents in the world acting to minimize some cost function, but the

actions of those agents and their cost functions may be only partially observable.

I feel that the task communication problem falls into this category. The human

teacher has objectives and reasons for communicating the task, knowing those reasons

1Research has shown that inferring another agent’s cost function is possible (see inverse rein-
forcement learning)[22].



Chapter 5: Conclusion 57

could allow the robot to better serve the human. Understanding the human and

their objectives is important to the smooth communication and execution transitions

described before. Thus future work should extend the proposed framework from the

POMDP representation to the IPOMDP representation.

Unfortunately, an IPOMDP adds exponential branching of inter-agent beliefs to

the already exponential branching of probability space and action-observations in a

POMDP. Thus, while it is a more accurate representation it does make a hard problem

even harder. That said, an IPOMDP may serve as a good formulation that we then

seek approximate solutions for.



Chapter 6

Comparisons and Generalizations

This chapter compares the proposed task communication as a POMDP approach

to other algorithms and generalizes the approach to other problems. For the com-

parisons I apply the Q-learning algorithm [38] and the TAMER algorithm [16] to the

problem from chapter 3. Q-learning and TAMER are two algorithms used in recent

literature to address the problem of learning from a human. I then generalize the pro-

posed approach to the Sophies Kitchen problem [40]. The Sophies Kitchen problem

has recently been used to evaluate reinforcement learning algorithms [40]. The com-

parisons and generalizations are presented without experimental results. The goal of

this section is 1) to allow practitioners who are familiar with Q-learning and TAMER

to quickly compare those algorithms with the proposed approach on the problem

from chapter 3, and 2) to use Sophies Kitchen to provide an example of applying the

proposed approach to new problems.
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6.1 Comparisons

In this section I describe how to apply the Q-learning algorithm and the TAMER

algorithm to the task communication problem from chapter 3.

6.1.1 Q-learning

The Q-learning algorithm learns a Q function for all state-action pairs, where

Q[s, a] is the expected sum of discounted rewards for executing action a in state s

and thereafter executing a specific policy, π [38]. In a world with a finite set of actions

and observations, Q can be represented with a table, where Q[s, a] indexes the entry

for state s and action a. If we knew Q under the optimal policy, π∗, then the optimal

action, a, in a state s is:

a = arg max
a

Q[s, a]. (6.1)

Q-learning attempts to learn the true value of Q under the optimal policy by encor-

porating rewards as they are received. Assuming the robot executes action a in state

s, transitions to state s′ and receives reward R, then Q-learning would update Q[s, a]

as follows:

Q[s, a] = Q[s, a] + α(R + γmaxa′Q[s′, a′]−Q[s, a]). (6.2)

From the robot’s experience, the quantity (R+ γmaxa′Q[s′, a′]) is a good estimate of

Q[s, a]; i.e. Q[s, a] is the expected sum of discounted rewards, which is the immediate

reward, R, plus the expected sum of discounted rewards going forward, γQ[s′, a′].

The equation takes a gradiant decent step towards this estimate, where the step size

is controlled by α.



Chapter 6: Comparisons and Generalizations 60

As mentioned, the optimal action is apparant if Q-learning has converged to the

optimal Q values, but how should the robot choose actions during this convergence?

There are many schemes for choosing actions during this phase. A common action

policy is to randomly select the next action in proportion to the current values of

Q[s, :]:

a ∼ PQ[s,:]. (6.3)

This is the policy used by researchers applying Q-learning to human-robot interac-

tion [40]. After enough time, or after the average change in Q drops below some

threshold, the robot could switch to the optimal policy given by equation 6.1. For

details on the Q-learning algorithm, see [38].

In order to apply Q-learning to the task communication problem from chapter 3

we need to specify the States S, the actions A, and the rewards R. For S we will use

the world state described in appendix B, consisting of: holding, lit, relative ball mov,

relative ball wrt, and relative dist. For A we will use the actions from section 3.3.2,

consisting of: noa, light on, light of , pick up, release, and slide. As is consistent

with prior work applying Q-learning to the problem of learning from a human [40],

the reward, R, will be the human input; 1 or 0 for the space-bar presses described in

section 3.2.

A table-based Q function will be used. The Q value for the last state-action pair

will be updated according to equation 6.2 after each time step. We will set α = 0.3

and γ = 0.75, as was done in [40]. Actions will be chosen stochastically according to

equation 6.3, as was the policy in [40].

I will now describe some advantages and dissadvantages of applying Q-learning
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to this problem. Since no experiments were performed, this is only speculation. Q-

learning has many advantages: it is easy to implement (see equation 6.2); it is easy to

apply to new problems, merely specify the states and actions (no need for time con-

suming modeling); Q-learning action selection typically requires very little processing

power; and Q-learning updates as well typically require very little processing power.

The dissadvantages of Q-learning would be: slow communication times, inability to

infer hidden state, and difficulty of incorporating non-reward signals, such as gestures

or spoken language.1

For the task communication problem from chapter 3, the main dissadvantage of Q-

learning would be slower communication time. In the literature, Q-learning applied to

a similar human robot communication problem resulted in an average communication

time of twenty seven minutes, as apposed to sub-one minute in our experiments [40].2

I believe that the speedup of the POMDP implementation is due mainly to a reduction

of the problem complexity; Q-learning must learn a value for every permutation of

the physical world state and the actions, while the POMDP only needs to learn the

three values (Mov, WRT ,Dist). Unfortunately these three relevant variables are

hidden, so Q-learning cannot directly learn them. The speed of communication for

the POMDP implementation comes at the cost of modeling and extra computation.

The POMDP approach excels where there is useful hidden state and where there

are reliable models that link the hidden state to observations. If there is useful hidden

1As described in section 2.2, with the proposed POMDP approach, non-reward signals are incor-
porated in the same way that reward signals are incorporated. Namely, we add states and models
that link the new signals to the hidden states that are relevant to the problem at hand.

2The authors did not directly report the average communication time. They did report the
average number of actions per communication to be 816. With two seconds per action, we can infer
that the average communication time was twenty seven minutes.
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state, but no way to reliably link the hidden state to observations, then we cannot

take advantage of the hidden state. Human robot communication is a good example

of a case where we have useful hidden state and reliable models for linking that hidden

state to observations.

For an example of the speed penalty due to Q-learning not modeling hidden state,

we can look at the senario where the robot lights one of the balls and the human

then presses the spacebar. Even though there is useful information in this spacebar

press, this information is lost to Q-learning. Q-learning would just as readily pick

up another ball, as it would pick up the ball that was lit when the spacebar was

pressed. Thus, much more exploration, and time, would be needed for the Q-learning

algorithm.3

6.1.2 TAMER

The TAMER algorithm is another algorithm that has been recently applied to

the problem of learning from a human [16]. As with Q-learning, TAMER learns

the function Q. The difference is in the treatment of the reward from the human.

TAMER views the reward as an estimate of Q, rather than as a part of the sum that

makes up Q. Accordingly, the Q-learning update equation 6.2, becomes:

Q[s, a] = Q[s, a] + α(R−Q[s, a]). (6.4)

This is because R is viewed as a direct estimate for Q[s, a].

The TAMER algorithm also provides a credit assignment mechanism, since the

3In addition, Q-learning would generate a policy that takes actions which are irrelevant to task
execution; such as lighting balls.
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human’s feedback may be delayed in settings where the timestep is short. The al-

gorithm maintains a list of state-action pairs, (st, at), recently visited. After each

timestep, the Q value for each state-action pair in the current list is updated as

follows:

Q[st, at] = Q[st, at] + c(t)α(R−Q[st, at]). (6.5)

Where c(t) indexes into a probability distribution modeling the human’s feedback

delay.4

The authors of TAMER recommend that actions be selected according to the

optimal policy equation 6.1 [16], repeated here:

a = arg max
a

Q[s, a]. (6.1)

The task communication problem from chapter 3 would be formulated for TAMER

as it was for Q-learning in section 6.1.1; with the same S, A, R, and α. I would use

the action selection policy recommended for TAMER, equation 6.1. Also, since the

time step in this problem is short enough to question which timestep the human was

giving feedback for, I would make use of TAMER’s credit assignment mechanism,

with a Gamma(k = 2,Ω = 0.5) distribution. This distribution has a mean of one

second, and a reasonable shape for feedback arrival times.

As they are very similar algorithms, TAMER has the same advantages and dissad-

vantages as Q-learning: easy of implementation, broad applicability, and low compu-

tational demands, but slow communication times, inability to infer hidden state, and

difficulty when incorporating non-reward signals. With TAMER, since feedback only

4This credit assignment approach is equivalent to eligibility traces from reinforcement learn-
ing [38], but with a non-exponential probability distribution, and a discount rate, γ, set to one.
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updates the current state, the problem of slow communication would be worse. The

credit assignment mechanism would help to spread the approval back to states leading

to the approval state, although this is not it’s purpose. Also, with binary feedback,

as seen in this problem, TAMER may not be conceptually appropriate; when the user

presses the spacebar, issueing a one to the robot, it is not clear that one is the user’s

example of Q, the expected sum of discounted rewards from this state on. That said,

due to the use of TAMER’s credit assignment mechanism, I would expect TAMER

to perform similarly to Q-learning on this problem.

6.2 Generalizations

In this section I apply the proposed framework to the Sophie’s kitchen prob-

lem [40].

6.2.1 Sophie’s Kitchen

Problem

Figure 6.1 is a screenshot from the Sophie’s Kitchen world. The world consists of

six objects: the Agent, Flour, a Bowl, a Tray, Eggs, and a Spoon. The objects are

parameterized by their location: Shelf , Table, Oven, or Agent. The Bowl has an ad-

ditional parameter describing its state: Empty, Flour, Eggs, Both, or Mixed. The

Tray also has an additional parameter describing its state: Empty, Batter, or Baked.

Figure 6.1 shows the world in the following state: 〈Agent.loc = Shelf, F lour.loc =

Shelf, Bowl.loc = Shelf, Bowl.state = Empty, Tray.loc = Table, T ray.state =
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Empty, Eggs.loc = Table, Spoon.loc = Agent〉. All objects start with their loca-

tion set to Shelf .

Figure 6.1: This is an image of the Sophie’s Kitchen simulator, created by Andrea
Thomaz at MIT [40]. The goal is to bake a cake. The human can provide feedback
via the green slider. See the text for a description of this world.

The task for the agent is to bake a cake. Towards that end, the agent can perform

four parameterized actions, the effects are shown in parenthesies: Go(right|left)

(moves the Agent.loc one step clockwise or counterclockwise), Pick-Up(object) (if

object andAgent are at the same location, then object.loc = Agent), Put-Down(object)

(if object.loc = Agent then object.loc = Agent.loc), and Use(object1, object2) (If

object1.loc = Agent, then object1 is “used” on object2; using Flour or Eggs on Bowl

changes Bowl.state to Eggs, Flour, or Both; If Bowl.loc = Agent and Bowl.state =

mixed and Agent.loc = Tray.loc, then Use(Bowl, Tray) results in Tray.state =
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batter).

The following is a sequence of actions which would accomplish the task of baking

the cake, starting from the initial state of all objects at the shelf:

PickUp(Eggs)
Use(Eggs,Bowl)
PutDown(Eggs)
PickUp(Flour)
Use(Flour,Bowl)
PutDown(Flour)
PickUp(Spoon)
Use(Spoon,Bowl)
PutDown(Spoon)
PickUp(Bowl)
Use(Bowl, Tray)
PutDown(Bowl)
PickUp(Tray)
Go(left)
PutDown(Tray)

The agent receives feedback from the human as a real number between -1 and 1,

potentially associated with an object. The human provides feedback by clicking with

the mouse and dragging up or down. The feedback is sent when the mouse is released.

If the mouse is clicked over an object then the agent is notified of the object that the

mouse was clicked over, otherwise the feedback is general. The green bar shows the

human the value of the current feedback, if they were to release the mouse button.

The simulator is free running. Though not specified in the text, the timestep

between actions is assumed to be two seconds5. Many state-action pairs reset the

simulator. The state-action pairs that reset the simular are not fully specified in the

5In [40], they report that the number of feedbacks per action at one point exceeds 1. This implies
that their is enough time between actions to more than once decide on a feedback and use the mouse
to administer it. Roughly two seconds seems to fit this information.
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literature. For this section, we will assume that any Put-Down() action while the

agents location is Oven resets the simulator.

POMDP Encoding

I will now represent this problem as a POMDP as proposed in this thesis. To do

this we need to specify the eight elements of the tuple: 〈S,A,O, T,Ω, C, γ, b0〉. This

is a first pass at the encoding, if issues came up, I would modify the encoding.

State (S)

As with the example from chapter 3, the state S consists of the physical world

state, the hidden state for the task to be learned, and the hidden mental state of the

human. The physical world consists of 8 discrete variables: the location of each of

the six objects, plus the “state” of the Bowl and the “state” of the Tray.

The hidden goal state that the human is trying to communicate will be the tripple,

Goal = 〈Goal S,Goal I,Goal A〉. Goal S and Goal A are the desired final state-

action pair. Goal I is an eight dimensional indicator random variable disignating

which of the eight state variables are important. The Goal state for baking a cake
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would be:

Goal = 〈Goal S,Goal I,Goal A〉 (6.6)

Goal S = 〈Agent.loc = Oven, F lour.loc =?, Bowl.loc =?, (6.7)

Bowl.state =?, T ray.loc = Agent, Tray.state = Batter, (6.8)

Eggs.loc =?, Spoon.loc =?〉 (6.9)

Goal I = 〈1, 0, 0, 0, 1, 1, 0, 0〉 (6.10)

Goal A = Put-Down(Tray) (6.11)

The agent is facing the oven, holding a tray with batter on it, and then puts down

the tray. Since the agent is given the transition function for the physical world, it

can always reach Goal by planning.6

As with the representation from chapter 3, the mental state of the human, M , is

a dynamic random variable (depends on time) and explains the feedback given at the

current time step. Here are the values that I have defined for M to take on: waiting,

mistake pos, mistake neg, good ob fut (ob), good ob past (ob), bad ob past (ob), good past,

or bad past. There are twenty of these assignments; good ob fut (ob), good ob past (ob),

and bad ob past (ob) are each placeholders for the five values of ob: good ob past flour,

good ob past bowl, good ob past tray, etc. waiting: The waiting state corresponds

to no feedback being received. mistake pos and mistake neg: Unlike the ex-

ample in chapter 3, the feedback here is both positive and negative. Thus there

is a positive and a negative mistake state. good ob fut (ob): Our experiments

have shown that humans will give feedback to direct future actions. My intuition

6If more than the final state-action pair is important, then additional variables would be created
for the possibly infinite set and orderings of state-action pairs.
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is that this feedback 1) will always be positive, and 2) will always be directed at

a specific object. Thus the only mental state corresponding to directing future ac-

tions is good ob fut (ob). good ob past (ob), bad ob past (ob), good past,

and bad past: For feedback relating to the past, it seems reasonable that gen-

eral and object specific positive and negative feedback will be given. Thus there are

four mental states corresponding to feedback relating to the past: good ob past (ob),

bad ob past (ob), good past, and bad past.

The transition model for the mental state needs to know the object involved in

the last action perfomed. So we add a single history variable to the state: last ob.

Actions (A)

The four parameterized actions are identical to those described in section 6.2.1:Problem.

Observations (O)

There are two observations for this representation, both capture the human feed-

back. The first, o.feedback, represents the sign of the feedback: {none,−1, 1}.

o.feedback = none, corresponds to a timestep when the human did not give feedback.

My intuition is that the magnitute of the feedback carries very little information in

this domain. Thus, only the sign of the feedback is used in this encoding. The second

observation, o.ob, represents the value of the object that the feedback corresponded

to: none, Agent, Flour, Bowl, Tray, Eggs, or Spoon. o.ob = none would correspond

to a general (i.e. non-object) feedback.
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Transition Model (T )

The transition model corresponding to the physical world is deterministic; e.g.

P (Spoon.loc=Agent|Pick-Up(Spoon))=1.0. As with the encoding from chapter 3,

the complexity of the Sophie’s Kitchen encoding is in the transition model for the

mental state, M , of the human. Here I specify the probability for each of the eight

parameterized values of M given the state S, which includes Goal.

The following is my conceptual tree for distributing probability among the types

of feedback. This forms a probability tree, where branches for a given node sum to

one and the probability of a leaf is the product of the branches leading to that leaf:

0.10 waiting

0.01 mistake pos

0.01 mistake neg

0.88 GUIDANCE (0.88)

0.5 FUTURE (0.44) → good ob fut (ob)

0.5 PAST (0.44)

0.2 OBJECT SPECIFIC (0.088)

0.5 POSITIVE (0.044) → good ob past (ob)

0.5 NEGATIVE (0.044) → bad ob past (ob)

0.8 GENERAL (0.352)

0.5 POSITIVE (0.176) → good past

0.5 NEGATIVE (0.176) → bad past
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Here are the probabilities for each of the eight mental states, conditional on the

world state.

P (M = waiting|S) = 0.1

P (M = mistake pos|S) = 0.01

P (M = mistake neg|S) = 0.01

For a given Goal, the robot can solve for the set of optimal paths to Goal. Let

next ob be the set of objects involved in the next action for all optimal paths. Simi-

larly, let nnext ob and nnnext ob, be the set of objects involved two and three time

steps away. Note that the optimal path takes into consideration Goal I, so only the

relevant state needs to be reached.

P (M = good ob fut (ob)|S)

= 0.44×



0.6 if ob ∈ next ob

0.3 if ob 6∈ next ob ∧ ob ∈ nnext ob

0.1 if ob 6∈ (next ob ∪ nnext ob) ∧ ob ∈ nnnext ob

0.0 otherwise

An object is “on” an optimal path if it is involved in an important action to the

achievement of Goal.
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P (M = good ob past (ob)|S) = 0.044×

 1.0 if ob = S.last ob ∧ ob is on path

0.0 otherwise

P (M = bad ob past (ob)|S) = 0.044×

 1.0 if ob = S.last ob ∧ ob is not on path

0.0 otherwise

P (M = good past|S) = 0.176×

 1.0 if S.last ob is on path

0.0 otherwise

P (M = bad past|S) = 0.176×

 1.0 if S.last ob is not on path

0.0 otherwise

As with the transition model from chapter 3 we need to make sure that, for

a given S, this is a proper probability distribution. This is done by computing the

probabibility for each value of M and then normalizing by the sum of all probabilities.

Observation Model (Ω)

The observation model is as follows:

switch(s.M)
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case s.M = waiting :

P (o|s) =

 1.0 if o.feedback = none ∧ o.ob = none

0.0 otherwise

case s.M = mistake pos:

P (o|s) =

 1/7 if o.feedback = 1, for each of the seven values of o.ob

0.0 otherwise

case s.M = mistake neg:

P (o|s) =

 1/7 if o.feedback = −1, for each of the seven values of o.ob

0.0 otherwise

case s.M = good ob fut (ob):

P (o|s) =

 1.0 if o.feedback = 1 ∧ o.ob = ob

0.0 otherwise

case s.M = good ob past (ob):

P (o|s) =

 1.0 if o.feedback = 1 ∧ o.ob = ob

0.0 otherwise

case s.M = bad ob past (ob):
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P (o|s) =

 1.0 if o.feedback = −1 ∧ o.ob = ob

0.0 otherwise

case s.M = good past:

P (o|s) =

 1.0 if o.feedback = 1 ∧ o.ob = none

0.0 otherwise

case s.M = bad past:

P (o|s) =

 1.0 if o.feedback = −1 ∧ o.ob = none

0.0 otherwise

As with the encoding from chapter 3, this observation model is deterministic.

Again, if there was noise in the positive or negative feedback then this would be

captured here. Stochastic observation models would be appropriate for signals that

inherently contain noise, for example, spoken language, where M = Boston some-

times comes through as O = Austin.

Cost Function (C)

The cost function is Entropy(Goal) as in chapter 3. Thus the agent will act

to reduce uncertainty about the components of Goal: the goal state, the goal state

indicators, and the goal action.

Discount Rate (γ)

γ = 1, as in chapter 3.
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Initial Belief (b0)

The initial belief is set to a uniform distribution over all permutations of the

elements of Goal.

Expected Performance

The original research on the Sophie’s Kitchen problem applied the Q-learning al-

gorithm. I described the tradeoffs of Q-learning in section 6.1.1. As in that analysis,

for this problem, I expect that the POMDP approach would result in faster communi-

cation times. Also, I would expect to see more deliberate behavior with the POMDP

approach. For example, if the robot were exploring around non-recoverable states,

such as stiring the eggs and flour, I would expect to see the robot deliberately head-

ing for reset states, such as putting anything in the over. These reset states would

allow the robot to quickly get back to exploring the area that is most immediately

informative. Finally, I would expect to see consequences of feedback, which would

not be present in a Q-learning approach. For example, for tasks where the final goal

does not involve the spoon, actions such as picking up the spoon then immediately

putting down the spoon would be unecessary. So, if the robot received an approval

immediately after picking up the spoon, then we would expect to see the robot ex-

ploring tasks that involve the spoon, and certainly, the robot would not immediately

put down the spoon. This type of consequence would not be seen with the Q-learning

approach.
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Appendix A

Raw User Experiment Data

Table A.1 and A.2 presents the raw data from the user experiment described in
chapter 4.
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1 1 m 65 1 p 7 t 46.5
2 1 m 65 1 h 10 t 24.5
3 2 m 21 1 h 10 t 19.0
4 2 m 21 1 p 10 t 12.5
5 3 m 22 3 p 10 t 36.5
6 3 m 22 3 h 10 t 18.0
7 4 m 20 4 p 8 t 45.0
8 4 m 20 4 h 9 t 36.0
9 5 m 21 4 h 10 t 43.0
10 5 m 21 4 p 10 t 17.0
11 6 f 20 4 p 5 t 38.0
12 6 f 20 4 h 10 t 21.0
13 7 m 20 4 p 9 t 13.0
14 7 m 20 4 h 9 t 12.0
15 8 m 24 4 p 9 t 22.5
16 8 m 24 4 h 8 t 18.0
17 9 m 31 4 h 10 t 17.0
18 9 m 31 4 p 10 t 15.0
19 10 m 26 3 h 8 t 19.5
20 10 m 26 3 p 8 t 19.5
21 11 f 28 1 p 7 t 22.5
22 11 f 28 1 h 7 t 20.0
continued in table A.2

Table A.1: This is the raw data from the experiment described chapter 4
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continued from table A.1
23 12 f 21 7 h 10 t 22.5
24 12 f 21 7 p 10 t 9.5
25 13 m 22 7 p 8 t 27.5
26 13 m 22 7 h 10 t 24.5
27 14 f 19 1 h 9 t 33.5
28 14 f 19 1 p 9 t 22.5
29 15 f 25 5 p 10 t 22.5
30 15 f 25 5 h 10 t 22.0
31 16 f 23 6 h 8 t 17.0
32 16 f 23 6 p 8 t 16.0
33 17 f 22 3 p 9 t 11.0
34 17 f 22 3 h 10 t 18.5
35 18 f 19 1 p 10 t 51.0
36 18 f 19 1 h 10 t 16.5
37 19 f 18 1 h 10 t 17.5
38 19 f 18 1 p 10 t 12.5
39 20 m 22 2 h 9 t 14.5
40 20 m 22 2 p 10 t 25.5
41 21 f 21 4 p 8 t 14.0
42 21 f 21 4 h 8 t 16.5
43 22 m 18 4 h 10 t 14.0
44 22 m 18 4 p 10 t 66.0

Table A.2: This is a continuation from table A.1 of the raw data from the experiment
described chapter 4



Appendix B

Full Experiment State (S)

In the tables below I list all of the variables that make up the system state for

the POMDP representation described in chapter 3. The variables are presented in

groups according to their types. It is helpful to introduce some terminology:

• static vs. dynamic: A static variable is a variable that does not change with

time. A dynamic variable does change with time.

• hidden vs. observable: A hidden variable cannot be directly measured by the

robot. An observable random variable can be directly measured. Information

about hidden variables is only provided through observable variables.

• deterministic vs. random: A deterministic variable is a variable whose value

does not depend on a probability. A random variable is a variable whose value

does depend on probability. A deterministic variable could depend on the value

of a random variable, but only deterministically; i.e. If we knew the value of the

random variable it would fully determine the value of the deterministic variable.
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The need for inference, and the motivation for task communication, is due to the

variables that are hidden and random. In the POMDP representation described in

chapter 3, the variables that capture the details of the task are static hidden random

variables (they do not depend on time), and the variables that capture the mental

state of the teacher are dynamic hidden random variables (they do depend on time).

The other variables are either observable, so we can directly measure their values, or

deterministic, so we know their value given other variables.

Task Variables (static hidden random variables)

Mov The ball (1-3) the human wishes the robot to

move.

WRT The ball (1-3) the human wishes the robot to

move ball Mov with respect to.

Dist The distance (20,40,60,80) the human wishes

the robot to move ball Mov with respect to

ball WRT .

Human State (dynamic hidden random variable)

M The mental state of the teacher (waiting,

mistake, that mov, that wrt, or that dist)

at the present time.
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World State (dynamic observable deterministic variables)

t The current time step (1-∞).

holding The ball (1-3) the robot is holding, 0 if none.

lit The ball (1-3) the robot has lit, 0 if none.

relative ball mov The ball (1-3) that is in a relative pose, 0 if

none.

relative ball wrt The ball (1-3) that relative ball mov is a dis-

tance from, 0 if no ball is in a relative pose

relative dist The distance, in percent (20,40,60,80),

that ball relative ball mov is from ball

relative ball wrt, 0 if no ball is in a relative

pose
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World State History (dynamic observable deterministic variables)

last lit on holding(b1, b2) The last timestep when the light of ball b1

changed from off to on while holding ball b2,

−1 if this event has never occurred. If b2 = 0

then this indicates the last time ball b1 was

lit while the robot was not holding any ball.

last lit off holding(b1, b2) The last timestep when the light of ball b1

changed from on to off while holding ball b2,

−1 if this event has never occurred. If b2 = 0

then this indicates the last time that the light

on ball b1 went from on to off while the robot

was not holding any ball.

last dist(b1, b2, d) The last timestep that ball b1 arrived at the

distance d from ball b2, −1 if this event has

never occurred.

last not dist(b1, b2, d) The last timestep that ball b1 left the dis-

tance d from ball b2, −1 if this event has

never occurred.
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Human State History (dynamic hidden deterministic variables

last M(m) The last timestep that the teacher was in the

mental state m, −1 if the teacher was never

in this state.

Figure B.1 shows the values of the world state variables (dynamic, observable, and

deterministic) for four world configurations. The assignments are shown next to the

corresponding simulator scene.
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robot
1

2

3

robot

1

2

3

1

robot

2

3

1

robot

2

3

t=?
holding=0
lit=1
relative_ball_mov=0
relative_ball_wrt=0
relative_dist=0

t=?
holding=1
lit=0
relative_ball_mov=0
relative_ball_wrt=0
relative_dist=0

t=?
holding=0
lit=0
relative_ball_mov=1
relative_ball_wrt=3
relative_dist=80

t=?
holding=0
lit=0
relative_ball_mov=1
relative_ball_wrt=3
relative_dist=40

Figure B.1: Four assignments to the world state variables.
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Full Experiment Transitions Model

(T )

A transition model provides the probability of transitioning to all states in S after

executing a specific action a while in a specific state s.

Here I present the full transition model for the POMDP representation described

in chapter 3 in two sections. The first section presents the transition model for the

world state and the second section presents the transition model for the task variables

and the human mental state. These can be presented separately since the world state

transitions are independent of the human’s state.

C.1 World State Transition Model

The world state is deterministic, i.e. the position and lighting of the balls is fully

determined by the previous position and lighting of the balls and the action that was
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performed. In this case it is most intuitive to define the transition model in terms of

the effects of actions on the world state. This translates to a probabilistic transition

model where all of the probability mass is on the determined state. e.g. if ŝ is the

deterministic state that results from executing action a in state s then the transition

model is:

T (s′|a, s) = P (s′|a, s) =

 1 if s′ = ŝ

0 otherwise

(C.1)

The robot can perform six parameterized actions: noa, light on(b), light off(b),

pick up(b), release(b), and slide(b1, d, b2). For a description of these actions see

section 3.3.2. Here I present the preconditions and effects of each of these actions.

In the effects below, if a variable of the world state is not mentioned, then it is

unchanged from the previous timestep. Variables used on the right hand side of an

assignment or anywhere in the conditions are from the previous time step.

action: noa

preconditions:

effects:

description:

The world substate is unchanged

action: light on(b)

preconditions:

lit == 0

effects:
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lit = b

last lit on holding(b, holding) = t

description:

Turns on the light for ball b. The event is recorded in the history state. Only one

ball’s light can be on at a time.

action: light off(b)

preconditions:

lit == b

effects:

lit = 0

last lit off holding(b, holding) = t

description:

Turns off the light for ball b. The event is recorded the history state

action: pick up(b)

preconditions:

lit == 0

holding == 0

relative ball mov == 0 ∨ (relative ball mov == b ∧ relative ball dist == 80)

effects:

holding = b

relative ball mov = relative ball wrt = relative ball dist = 0

description:
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A ball can be picked up if it is in its original pose or if it is at the position closest to

the robot (i.e. the position furthest from another ball d=80). Not allowed if another

ball is being held.

action: release(b)

preconditions:

lit == 0

holding == b

effects:

holding = 0

description:

Returns the ball to its starting location. No ball can be lit. The robot must

currently be holding the ball.

action: slide(b1, d, b2)

preconditions:

lit == 0

((relative mov == b1 ∧ relative wrt == b2 ∧ relative dist == d± 20)

∨(holding == b1 ∧ d == 80))

effects:

holding = 0

relative mov = b1

relative wrt = b2

relative dist = max(min(d, 80), 20)
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description:

Slides ball b1 one step relative to ball b2. No ball can be lit. Distance d must

be one step away from the current distance; i.e. either the current distance plus or

minus 20, or 80 if the robot is currently holding ball b1.

C.2 Task and Human State Transition Model

The task and teacher mental state are captured in the random variables Mov,

WRT , Dist, and M . Since Mov, WRT , and Dist are static random variables (they

do not change with time), their transition model is trivial.

P (mov′, wrt′, dist′|mov,wrt, dist, . . . ) =

 1 if (mov′, wrt′, dist′) = (mov,wrt, dist)

0 otherwise

(C.2)

The teacher mental state M is a dynamic random variable (it changes with time)

taking on values that mov, that wrt, that dist, waiting, and mistake. To specify

the transition model for M we must specify the probability of transitioning to each

of the values (that mov, that wrt, that dist, waiting, and mistake) for any state of

the world.

The complexity of the transition model for M comes from the fact that there is

often delay in the human’s response to the robot’s actions (light on, light off, slide,

etc).

If the robot lights the ball that the human wishes them to move, it may take a few

time steps for the human to push the spacebar (i.e. the probability of transitioning to
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T(M=(that_mov, that_wrt, that_dist)|...)

Figure C.1: The transition model for three of the assignments to M (that mov,
that wrt, and that dist) each use this model, containing three distinct phases. 1) The
transition becoming more likely after an event ev1 and maxing out at ptop, the tran-
sition probability resetting upon event ev2, and the transition probability decreasing
after an event ev3. Each of these three values of M has their own set of the seven
parameters (ptop, t(ev1), dp1, t(ev2), dp2, t(ev3), dp3).

that mov from waiting should start at zero after ball mov is lit, but quickly increases).

Furthermore, the human may push the spacebar a timestep after the robot has turned

off the light, since they didn’t have time to stop themselves from pressing the spacebar

(i.e. the probability of transitioning to that mov from waiting should decrease after

the light has been turned off, but not immediately be set to zero).

Figure C.1 shows the function used for M = (that mov, that wrt, and that dist).

The functions differ in their events and the parameters, but the structure is the same:

some event occurs, ev1, followed by a rising probability dp1 to a maximum pmax; if

the spacebar is pressed under a certain mental state, ev2, then the probability resets

to zero and increases at the rate of dp2 to pmax; if the supporting event is removed,

ev3, then the probability decreases at the rate of dp3. Let t(evi) be the time when

event evi occurred.

If [t(ev1) > t(ev2) ∧ t(ev3)], then

P = min(dp1 · (t− t(ev1)), pmax).



Appendix C: Full Experiment Transitions Model (T ) 96

If [t(ev2) > t(ev1) ∧ t(ev3)], then

P = min(dp2 · (t− t(ev2)), pmax).

If [t(ev3) > t(ev1) ∧ t(ev2)], then

P = max(dp3 · (t− t(ev3)) + pmax, 0).

M=that mov:

t(ev1) = last lit on holding(Mov, 0)

dp1 = 0.02

ptop = 0.1

t(ev2) = last M(that mov)

dp2 = 0.02

t(ev3) = last lit off holding(Mov, 0)

dp3 = -0.04

M=that wrt:

t(ev1) = last lit on holding(WRT,Mov)

dp1 = 0.02

ptop = 0.1

t(ev2) = last M(that wrt)

dp2 = 0.02

t(ev3) = last lit off holding(WRT,Mov)

dp3 = -0.04
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M=that dist:

t(ev1) = last dist(Mov,WRT,Dist)

dp1 = 0.02

ptop = 0.1

t(ev2) = last M(that dist)

dp2 = 0.02

t(ev3) = last not dist(Mov,WRT,Dist)

dp3 = -0.04

M=mistake:

The probability of a mistake on any time step is 0.005:

P (M = mistake| . . . ) = 0.005

M=waiting:

And the probability that the human transitions to waiting is the remaining proba-

bility:

P (M = waiting| . . . ) = 1− P (M = (that ob ∨ that wrt ∨ that dist)| . . . )

The only variables left that we need to specify a transition model for are the

human state history: last M(m). Since these are deterministic variables, given a

hypothesis with M = m, where m could be (that mov, that wrt, that dist, mistake,

or waiting), the deterministic update is:

last M(m) = t.

For m′ 6= m, last M(m′) remains unchanged. Expressed as a probability function
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this is:

P (last M(m) = t′| . . . ) =


1 if (M = m ∧ t′ = t) ∨

(M 6= m ∧ t′ = last M(m))

0 otherwise

(C.3)


