Spring 2011 CS264: Parallel POMDP

Mark Woodward
May 8, 2011

1 Introduction

My research is on robots interactively learning from humans. During the interaction there are questions
that the robot would like to know but can’t directly measure. Some examples of questions are: “Where do
the dishes go?”, “Which object is the human pointing at?”, and “Is the human finished with the teaching
session?”. Through its actions, the robot can elicit measurements that may provide answers to its questions.
The issue is which action to take on the next time step that, in expectation, will allow the robot to learn as
much as possible, as quickly as possible; formalized in the next section.

One model for action selection under uncertainty is a partially observable Markov decision process
(POMDP). Solving a POMDP requries a lot of processing power. This project describes a distributed
implementation of a POMDP solver.

I will describe my manipulations of the POMDP mathematics that allowed for parallelization, and I will
present the results of running the Parallel-POMDP solver on my current robot models (teaser: 2.9x speedup
on a 12 MPI processors).

2 Partially Observable Markov Decision Process (POMDP)

Figure 1 depicts a POMDP tree expanded one time steps into the future. Associated with each node is a
probability distribution, shown as a univariate guassian but in practice the distribution is multi-modal and
consists of hundreds of random variables. As each action a is taken and each measurement z is received the
distribution changes.

a
oy ' g) o
fhooa s 2 I | s L AN
o o (9] o o
a.I
now

Figure 1: A POMDP tree run out 1 time step over the next action and potential next measurements

The “now” node represents the current probability distribution at the current time. Looking backward
in time, the robot knows all actions that were taken and all measurements that were received. Looking
forward in time from “now”, the robot will take an action and receive a measurement at each time step,
only one timestep is shown in the figure. The goal is to expand the tree as far as processing will allow,
apply a cost function to the probability distribution at the leaf nodes, and work the cost back down the
tree, taking expectations as measurement nodes and minimizations at action nodes. To formalize this, let a’
be the action taken at time step ¢ and a*! be all actions taken from timestep 1 to time step ¢, and use the
same notation for measurements z* and z*!'. Then, the optimal action “now”, the action that minimizes the
expected cost for a time horizion H, is:

7(bo) = argming ExpectedCost(a')
with

ExpectedCost(a') = Ex min E.2 min .5 - - - min E.uCost(bg|2™, ™)
a a a

In my application, the cost function is entropy; meaning information entropy, not thermodynamic entropy
:). Entropy is a measure of uncertainty, so choosing actions to minimize entropy will choose actions to
minimize uncertainty, which is a reasonable objective for a learning robot.

3 Idea

One approach to parallelizing a POMDP solver would be to expand the tree on the master to a depth where
the number of leaves equals the number of servers and then give each server a leaf node to expand from
there. There are a couple problems with this approach. First the slave servers sit idle while the master is
performing the initial tree expansion, which is wasteful. Second, a full probability distribution is associated
with each node, and each distribution requires hundreds of megabytes to represent it, so moving the nodes
to the slave servers would be slow.

My idea is to slice up the “now” distribution, hand each server a partial distribution, and allow each
server to expand it’s full tree. This allows all servers to start processing immediately and vastly reduces
the network traffic. Below I describe the mathematical tricks that allowed for this implementation. In the
end, each server accumulates partial entropies for leaf nodes and statistics for normalization coefficients and
returns these to the master, who can quickly merge them to compute the expected entropy for each of its
next actions.

4 Reworking the POMDP for parallelization

4.1 Expected Entropy

In order to compute the expected entropy of a next action, I first need to calculate the entropy of the
probability distribution at each leaf node of the POMDP tree. Unfortunately the standard entropy formula
requires a normalized probability distribution, and in my formulation, the probability distribution is spread
out across servers.

By reworking the Entropy formula, I am able to use the unnormalized probability distribution to compute
a partial entropy that can be summed across nodes and merged when the normalization constant is available.

Let 2t be a potential assignment to all questions that the robot has at time step ¢, these would be called
latent random variables in the literature. I will sometimes refer to x* as the “state” at time ¢, but just
think of it as assignments to questions. Let p(zf|z%1,a*!) be the probability of the x! assignment at time
t, given the history of measurements z¥*! and the history of actions a’*!. Let p(z!|z¥!,a*!) be the same
probability, but unnormalized. The normalization constant that we can only know globally, but can’t know
on each server, is p(zf|z!7 11 a®*l), see the “Measurement Likelihood” section. The relationship between
these probabilities is:
Q<$tlzt:17 atl)
p(zt|2t—l:l7 at:l)

The classical entropy equation requires normalized probabilities. Here is the derivation of a form that is
amenable to distributed computation, making use of the unnormalized probabilities:

p(l‘t|2t:1, at:l) —

Entropy = _Zp(xtlzt:17at:l)log(p(xt|zt:1’at:l))

B t|Z at:l) l B(zt|zt‘1,at:1)
- _Z Zt|Zt L1 Ty 2 p(zt 2t 11 gt 1)
t|Z at:l) t‘Z at:l)

_ t t:l t:1 t)t—1:1 t:1
= _Z Zt|Zt 11 atl)IOQ(B(x |2 +Z Zt|zt 11 atl)ZOQ(p(Z |2 ,a))

B(qut:l’at:l) t ot el t)t—1:1 t:1 t 1 1
= —Zmlog(ﬂ(x |27, a"7)) + log(p(2']2 @))Zp(ﬂc |27, a"")
) Tt

Tt

= Wllatl(Zp t|zt1 at!)og(p(z t‘z atﬂ))) +log(p(zt|zt71:1,at:1))

The quantity in parentheses can be computed independently on each server using the server’s own unnormal-
ized probabilities. Fach server can pass back their partial “unnormalized entropy” as a single real number.
During the merge phase the partial unnormalized entropies can be summed up, and as long as we have the
normalization constant, p(z!|z!~%! a*1), we can compute the true entropy at that leaf using the equation
above.

4.2 Detergent State Bayes Filter

Bayes filtering is an important component of solving POMDPs, it updates the probability distributions along
the path to a leaf node and it is the step that dominates the processing. As shown here, in the special case
of divergent states, the probability of a state at the horizon depends only on the probability of a single
state at time 0, and an additive normalization constant. This means that we can safely split the probability
distribution at the “now” node and distribute the partial distributions across the servers.

The bayes filter update for the probability of a state x! given an action and measurement history, a®
and z*!, with divergent states, is as follows:

1

p(Zt|.Tt) szfl p(mt\at, l't_l)p(l't_llzt_l:l, at—l:l)
p(zt|zt71:17at:1)
p(Zt|.’17t>p($t‘CLt, l‘t_l)p(l‘t_llzt_l:l, at—l:l)
p(zt|zt71:1’at:1)

p(xt|zt:17at:1)

The second step is due to the fact that with divergent states the previous state z'~! is always known. i.e.
with divergent states, a state at time t — 1 leads probabilistically to multiple states at time ¢, but those
states can only be reached through state 2'~!, not through another state at time ¢t — 1. Again, this equation
depends on a single probability in the “now” node’s distribution, which is a requirement for my proposed
parallelization.

An interesting feature of the bayes filter update equation in general is that the denominator does not
depend on !, so it is a constant for p(zf|2¥!, a®1), since p(zf|2¥!, a"1) only varies with 2¢. In the non-parallel
case we can safely ignore this constant, since, if we want to later normalize the distribution, we can always
do so by dividing the probability by the sum of all unnormalized p(zf|z¥!, a*'). But, in the parallel case, the
unnormalized p(zf|2%1 atl) are spread across servers, so we can’t normalize when we need it. Thus we need
to efficiently keep around statistics that allow us to reconstruct the normalizing constant p(zt|zt=11 at1)
during the merging step. This is the focus of the next section.

4.3 Measurement Likelihood

We need the measurement likelihoods, p(z?|z , for two reasons: 1) as mentioned in the POMDP
section, expected cost is back propagated through measurement nodes by taking expected values, and the
p(2t|2t711 a®'l) are the probabilities needed for that expectation, and 2) we need the measurement likelihoods

t—l:l’ at:l)

as the normalization constants in the modified Entropy calculation above. To find a solution we expand the
measurement likelihood equation:

p(zt|zt71:1, at:l)

Zp(zt\:ct)p(xﬂztflzl, at:l)

2t

Zp(zt‘xt) Z p(xt|at7xtfl)p(l,t71|zt71:17atfl:l)
ZL’t

2t—1

Zp(zt\xt)p(xt|at, xt—l)p(xt—1|zt—1:1, at—l:l)
l’t

The third line follows from the second line and the divergent states property. Also, from the “Divergent
State Bayes Filter” section we know that p(z!~1|2!=11 a!~11) does not consist of any summations. This
means that p(z!|2!~1! a%1) is a summation of terms, where each term depends only on one xt. Thus, we
can compute partial sums for p(zt|at, 2!751 a!=11) on each server, based on the x'’s that that server is
computing, then transfer one real number per branch per server back to the master, and sum them up
during the merge step to get the full normalization coefficients p(zt|a?, 2=t a?~11).

5 Results

Figure 2 shows the speedup over the original serial code for one through 12 processes on the resonance
cluster. The speedup on 12 processes is 2.9x. The mean processing time of the original serial code is 4.64
seconds. The mean processing time of the parallel code on 12 processes is 1.54 seconds.

One of the reasons that the speedup is not linear is that the amount of network traffic increases with each
new process; each process returns the same number of normalization constant statistics, roughly 250,000,
so more processes means more network traffic (note that this is still substantially less traffic than passing
around full distributions).

I was very happy with this speedup, as my goal was a speedup of 2x, and it is likely that more processes
would show more speedup.

Parallel-POMDP Speedup over Serial-POMDP (99% intervals)

25 T
- }
bz
oL
o
=]
2 i
2 1
& T
15+
X
1
KN
05 Il Il Il Il Il Il J
0 2 4 6 8 10 12 14
MPI Nodes

Figure 2: Speed Up

6 Conclusions

I am happy with the results and excited about solving POMDPs by splitting the distribution, as apposed
to distributing branches of the tree. In the limit, this might be a good fit for Map-Reduce, where the map
would send out each element of the “now” distribution. But that’s for future work!

