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INTRODUCTION:

    For my project I addressed the problem of creating a light, accurate, inexpensive, and easy to 
implement localization system for small mobile robots.  There are only two assumptions made 1) that 
the robot will be operating on a uniform flat surface and 2) that the area directly in front of the robot is 
clear.  Both of these will be elaborated on in the Approach section.  

    Current systems fail these requirements in a number of ways, including being too heavy, too 
expensive, inaccurate, or difficult to implement.  For example, a very popular sensor to use in 
localization is a SICK laser range scanner.  Not only does the SICK scanner cost several thousand 
dollars, it is also a large sensor, unsuitable for small mobile robots (see Background). 

    The system presented here uses the well known Canny edge detection algorithm, for which there are 
numerous implementations one can use, and Monte Carlo Localization (MCL), an algorithm that is 
straightforward to implement.  Images from a video camera are processed to find the edges nearest the 
robot, which, given the uniform flat ground plane assumption, correspond to obstacles in the 
environment; the Canny edge detector is used to extract edges.  These edges are then projected onto the 
ground plane to form range and bearing estimates which are then used by the Monte Carlo Localization 
Algorithm to localize the robot.  The system is light (12 grams), inexpensive ($150), easy to implement 
(Canny Edge Detection and Monte Carlo Localization), and accurate (see Approach and Results).

BACKGROUND:

    Before describing my system I will present a number of current systems and why they fail to meet 
the requirements.  Table 1 lists each approach followed by the reason(s) for failure.

System Specifics Failure(s)

Laser Range Scanners Heavy, expensive (~$2,000)

GPS (non-differential) Inaccurate, doesn't work indoors

GPS (differential) Expensive, doesn't work indoors

Stereo Vision Expensive, Requires texture

Feature based monocular vision
(doorways, etc)

Inaccurate (few measurements)

Feature based monocular vision
(markers)

Inaccurate (few measurements), need to 
modify the environment

Table 1. Common localization systems and their failures 
for the task of localizing small mobile robots

MY APPROACH:

    The system proposed here uses video captured from a single camera.  Obstacles appear as the edges 
nearest to the vehicle, since the ground plane is assumed to be uniform.  These edges are detected using 
the Canny Edge detector.  The range and bearing to the obstacles are computed by projecting the image 
pixels corresponding to the obstacle edges onto the ground plane, which is possible given the 



orientation of the camera and because of the flat ground plane assumption.  These range and bearing 
values are then used as measurements for the Monte Carlo Localazation algorithm (1).

 1) Capture a video frame
 2) Run the Canny edge detector on the video frame
 3) Find the lowest edge in each column of the image
 4) Project each edge onto the vehicle ground plane
 5) Treat the projections as range and bearing estimates
 6) Run Monte Carlo Localization using the range and bearing estimates

Figure 1. The localization algorithm

    Figure 1 summarizes the algorithm presented here.  figure 2 shows a typical image captured from a 
small mobile robot operating in an indoor environment.  Figure 3 shows the result of running the canny 
edge detector on the image from figure 1.  The Canny edge detector takes in two parameter which can 
be adjusted until a small region in front of the robot, which is assumed to be free, is free from any 
edges; see (2) for details on the Canny edge detector algorithm.  Figure 4 then shows the extraction of 
the nearest edges to the vehicle for each column in the image.

Figure 2. A typical image captured from a small mobile robot



Figure 3. The output of the Canny edge detector run on figure 2

Figure 4. The lowest edges in figure 3



    In the next step of the algorithm the pixel representing the nearest edge is projected onto the ground 
plane, producing range and bearing values in robot coordinates.  Figure 5 shows the result of projecting 
the pixels in figure 4 onto the ground plane for a specific robot.

    These range and bearing values are then used as sensor measurements in the Monte Carlo 
Localization algorithm.  For details on the Monte Carlo Localization algorithm see (1).

PLATFORM:

    The platform used to develop this technique is shown in figures 6 and 7.  The mobile robot is a 
1/18th scale remote control truck equipped with a wireless camera.  Control commands were issued and 
logged using a standard hobby radio transmitter modified with a PC interface circuit which I 
developed.

Figure 5. The projection of figure 4 onto the ground plane for a specific robot.



    It was also necessary to develop a motion model for this vehicle.  Figure 8 shows the performance of 
the motion model and figure 9 shows the cost curve as one of the parameters is being fit. 

Figure 6. 1/18th scale R/C truck equiped with a 
wireless video camera

Figure 7. Standard hobby R/C radio transmitter 
equipped with my PC interface board

Figure 8. Dead reckoning with the trained motion model vs. the actual trajectory.



RESULTS:

    The results from running this system in the on the basement of the Stanford Gates building are 
shown in figure10.  Monte Carlo Localization is able to successfully localize the robot using the range 
and bearing measurements computed using the system described in this paper.

Figure 9. The error curve during one of the minimization steps for fitting the 
parameters of the motion model.



PROBLEMS:

    There were two major sources of error in the range and bearing estimates during my experiment, 
these were inaccuracies in the pitch of the robot and corrupted images.

    Because the robot is so small, the distance between the camera and the ground is much smaller than 
the distance between the robot and an obstacle.  Given this setup, a tiny error in the pitch estimate can 
result in a large (+-1 meter) error in range estimation, as a result my experiment ignored measurements 
beyond 7 meters.  In future work, I hope to solve the pitch problem by estimating pitch from cues in the 
image, i.e. parallel obstacles can be assumed to continue to be parallel, and thus the distance between 
them should remain constant, which can be used to correct for pitch.

    The problem of corrupted images is due to corruption during the wireless transmission of images 
from the robot to the laptop for processing.  Since the frame rate of the video is sufficiently high, 
corrupted images, if detected, can be thrown away.  So, all that is needed is a classifier for corrupted 
images.

CONCLUSION:

    In this paper I presented a light, accurate, inexpensive, and easy to implement localization system for 
small mobile robots.  An Image from a video camera was processed to find the edges nearest the robot,
which, given the uniform flat ground plane assumption, correspond to obstacles in the environment; the 
Canny edge detector was used to extract the edges.  These edges were then projected onto the ground 
plane to form range and bearing estimates which were then used by the Monte Carlo Localization 
Algorithm to localize the robot.  Experimental results showed that the system is accurate and can be 
used to localize a small mobile robot.
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Figure 10. The path of the mean particle (blue) and 
the path predicted by the motion model alone 

(white).


