Active One-shot Learning

Mark Woodward¹ and Chelsea Finn²

¹Independent Researcher; ²University of California, Berkeley

Introduction

Goal: Online active-learning from few examples **Approach:**

- ► Frame as an RL problem
- ► Train on a modified one-shot learning task

Key Insights:

- ► Train on short randomized episodes
- ► Train on a dataset with a large number of classes

Task Methodology

Rewards:

$$r_t = \begin{cases} R_{req}, & \text{if a label is requested} \\ R_{cor}, & \text{if predicting and } \hat{y}_t = y_t \\ R_{inc}, & \text{if predicting and } \hat{y}_t \neq y_t \end{cases}$$

Loss:

$$\mathcal{L}(\Theta) := \sum_{t} [Q_{\Theta}(o_t, a_t) - (r_t + \gamma \max_{a_{t+1}} Q_{\Theta}(o_{t+1}, a_{t+1}))]^2$$

Omniglot Dataset

Character 0156:

Character 0790:

- ▶ 20 hand drawn images for each character (1,623 characters)
- ► Lake et al., Human-level concept learning through probabilistic program induction. *Science*, 2015

Experimental Setup

- $ightharpoonup Q(o_t, a_t)$ is a 200 unit, single layer LSTM
- ightharpoonup Q-learning of $Q(o_t, a_t)$
- $ightharpoonup \epsilon$ -greedy exploration (0.05)
- ▶ 30 images per episode
- ▶ 3 classes per episode
- ▶ 50 episodes per training batch

Conclusions

- Online active one-shot learning is possible
- ► The choice of rewards can trade off accuracy for requests

Results: Learning to Request Labels

Requests:

Accuracy:

- ► Fewer requests and higher accuracy on later instances of a class
- ► At 100,000 episodes, training stops and data switches to test set

Results: Considering Uncertainty

Switch classes on step 6:

Switch classes on step 11:

- ▶ Note: This is a different task from the rest of the paper
- ▶ Shows that label requests are based on comparisons (difference in step 6's)
- Disproves that a simple policy was learned

Results: Trading Accuracy for Requests

	Accuracy (%) Requests (%)	
Supervised	91.0	100.0
RL	75.9	7.2
RL Prediction	81.8	7.2
RL Prediction $(R_{inc} = -5)$	86.4	31.8
RL Prediction $(R_{inc} = -10)$	89.3	45.6
RL Prediction $(R_{inc} = -20)$	92.8	60.6

- ▶ % of steps that are correct and % of steps where requests are made
- ► Increasing the penalty for an incorrect label increases accuracy at the cost of more label requests
- "Supervised" is task from Santoro et al., One-shot Learning with MANNs, ICML 2016