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» 20 hand drawn images for each character (1,623 characters) ~ Note: This is a different task from the rest of the paper

» Lake et al., Human-level concept learning through probabilistic program » Shows that label requests are based on comparisons (difference in step 6's)

induction. Science. 2015 » Disproves that a simple policy was learned

Experimental Setup Results: Trading Accuracy for Requests

» Q(0;, a;) is a 200 unit, single layer LSTM Accuracy (“%) Requests (%)

» Q-learning of Q(o;, at) Supervised 91.0 100.0
» e-greedy exploration (0.05) RL 75.9 (.2
» 30 images per episode RL Prediction 81.8 7.2
» 3 classes per episode RL Dreciction (Rinc = —95) 86.4 31.8
» 50 episodes per training batch RL Prediction (Rinc = —10) 89.3 45.6

i P © RL Prediction (Rj,c = —20) 02.8 60.6

Conclusions

» Online active one-shot learning is possible

» [ he choice of rewards can trade off accuracy for requests
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» % of steps that are correct and % of steps where requests are made

» Increasing the penalty for an incorrect label increases accuracy at the cost of
more label requests

» "Supervised” is task from Santoro et al., One-shot Learning with MANNSs,
ICML 2016

mwoodward@cs.stanford. edu

http://cs.stanford.edu/"woodward/



