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Introduction

Goal: Online active-learning from few examples
Approach:
I Frame as an RL problem
I Train on a modified one-shot learning task

Key Insights:
I Train on short randomized episodes
I Train on a dataset with a large number of classes

Task Methodology

Task structure:
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Rreq, if a label is requested

Rcor, if predicting and ŷt = yt

Rinc, if predicting and ŷt 6= yt

Loss:

L(Θ) :=
∑

t

[QΘ(ot, at)− (rt + γ max
at+1

QΘ(ot+1, at+1))]2

Omniglot Dataset

Character 0156:

· · ·
Character 0790:

· · ·
I 20 hand drawn images for each character (1,623 characters)
I Lake et al., Human-level concept learning through probabilistic program

induction. Science, 2015

Experimental Setup

I Q(ot, at) is a 200 unit, single layer LSTM
I Q-learning of Q(ot, at)
I ε-greedy exploration (0.05)
I 30 images per episode
I 3 classes per episode
I 50 episodes per training batch

Conclusions

I Online active one-shot learning is possible
I The choice of rewards can trade off accuracy for requests

Results: Learning to Request Labels

Requests:
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Accuracy:
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I Fewer requests and higher accuracy on later instances of a class
I At 100,000 episodes, training stops and data switches to test set

Results: Considering Uncertainty

Switch classes on step 6:
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Switch classes on step 11:
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I Note: This is a different task from the rest of the paper
I Shows that label requests are based on comparisons (difference in step 6’s)
I Disproves that a simple policy was learned

Results: Trading Accuracy for Requests

Accuracy (%) Requests (%)

Supervised 91.0 100.0
RL 75.9 7.2
RL Prediction 81.8 7.2
RL Prediction (Rinc = −5) 86.4 31.8
RL Prediction (Rinc = −10) 89.3 45.6
RL Prediction (Rinc = −20) 92.8 60.6

I % of steps that are correct and % of steps where requests are made
I Increasing the penalty for an incorrect label increases accuracy at the cost of

more label requests
I “Supervised” is task from Santoro et al., One-shot Learning with MANNs,
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