
Nick’s Class:

Do many hands make light work?

Kartik Chandra, kach@cs

CS 254B, Spring 2019-20

Contents
1 The classes NCk 1

2 Why SORT ∈ NC1 2

3 Why NC1 ⊆ L 3

4 Why NL ⊆ NC2 4

5 Epilogue: Is NC = P? 5

1 The classes NCk

On the �rst day of CS254B, the professor thought

he had walked into the wrong lecture hall. It was

standing room only in Hewlett 200 — never be-

fore had a complexity theory class at any univer-

sity seen such enrollment numbers. But the pro-

fessor wasn’t mistaken; it really was the golden age

of complexity theory classes at Stanford. As he

shu�ed his notes around on the table waiting for

9:30am he couldn’t help but try to count the num-

ber of students. “It looks like there are n of you,”

he said, “Welcome to CS254B!”

Meanwhile, head TA Nick’s heart rate was go-

ing up rapidly. As he looked out at the crowd,

he could only think one thought: “That’s a lot of

grading.” He did not look forward to doing Θ(n)
work every week. With conference deadlines com-

ing up, he knew he could only reasonably spend

O(polylog(n)) time on his part-time TA-ship.

Then Nick had an idea. He opened up his laptop

and began an email to the department chair:

Dear chair:

Would it be possible to allocate funding

for extra CS254B TAs?

Soon enough, he got a response:

Sure. How many do you need? Would

O(1) be enough?

Nick thought for a moment. O(1) TAs would still

have to do Θ(n) work each. That was no real im-

provement, was it? Nick decided to push his luck.

That might not be enough. Could we

spring for poly(n)?

And soon enough came the response:

1

Done. We’ll hire some co-terms over the

weekend.

Nick breathed a sigh of relief and with all his heart

thanked the various entities that fund undergradu-

ate education in the CS department. At least this

�rst assignment would be just O(1) work for him...

From here on out, we will say that problems

which Nick’s team of O(poly(n)) TAs can

solve in O(logk(n)) time are in Nick’s Class

NCk and we’ll de�ne the union of all these sets

of problems as NC =
⋃∞

i=1NCi. To be clear,

NC1 ⊆ NC2 ⊆ · · · ⊆ NCi ⊆ · · · ⊆ NC

In a sense, we can regard problems in NC as

“e�ciently parallelizable,” especially in a world

where you can rent thousands of CPU cores

for just a few dollars.

2 Why SORT ∈ NC1

The �rst problem set was all graded and ready to

be handed back, but before that the teaching team

wanted some statistics on how students did.

“Would you be able to sort the n psets by grade

so that I can get a sense of the distribution?” Nick

asked Sara, one of the TAs.

Sara shrugged. “That’s O(n log n) work, and

grades are due in just a couple of hours,” she said.

“That’s true, but maybe we can split up the work

among the teaching team?”

Sara thought for a moment. “Sounds hard.”

“Why?” Nick was on a roll. “Suppose we did

mergesort in parallel. We could divide up the as-

signments, have di�erent parts of the team sort

those chunks simultaneously, and then merge them

real quick.”

“ ‘Real quick?’ Merging at the top level is still

O(n) work, Nick.”

“Oh,” said Nick, and he fell silent, thinking.

“But I like where you’re going. How about this:

each of us takes a paper and places it where it be-

longs in order. That sounds like O(1) work for

each of us, right?” Sara cleared o� n tables in the

basement room of Gates that the TAs were using as

headquarters. Then she put the tables in a row, and

labeled them 1, 2, . . . , n to illustrate her point. “So

the best paper goes on table n − 1, and the worst

paper goes on table 0, and...”[
A+ C− B

]
→

[
2 0 1

]
→

[
C− B A+

]
“Sure, Sara, but how do I know where my assign-

ment belongs? Its rank depends on everyone else’s

papers.”

“You’re right. But maybe the pairwise compar-

isons can happen simultaneously.”

“I see!” Nick got up and arranged n2 tables in

a grid. “Suppose we get n2 of us to consider each

possible pair of papers and decide which one has

a higher grade.” Nick began putting post-it notes

with a 0 or a 1 onto the desks to make his argument

clear.

[
A+ C− B

]
→


0 0 0

1 0 1

1 0 0

 →
[
2 0 1

]
“...oh, but counting is still an O(n) problem”

said Nick, disappointed again, “add this to the list

of failed ideas.”

“That’s it!” said Sara, “Adding! Instead of count-
ing the 1’s, let’s add them.”

“Isn’t that the same thing?” said Nick.

2

“Not quite,” said Sara, “Because adding a long

list of numbers is just like your mergesort but the

merging is super fast.”

Added by Alice at t=2︷ ︸︸ ︷
Added by Alice at t=1︷︸︸︷

1 + 0 +

Added by Bob at t=1︷︸︸︷
1 + 1

“Yes!” said Nick, somewhat redeemed, “We can

do that in log(n) time, if you consider each addi-

tion to be O(1).”
“Close enough,” said Sara.

So they got to it. After an easy O(1) minutes

spent grading all n psets, the poly(n) TAs broke o�

into n teams of n each that compared their assigned

psets pairwise, doing n2 comparisons in another

O(1) time. Finally, each team added their compar-

ison bits hierarchically in O(log n) time and rear-

ranged the assignments based on the resulting rank-

ings. This was the hardest part, and they were done,

all things considered, in O(log n) time. The stu-

dents got their grades back on Tuesday night, just

in time for the Homework #2 to go out on Wednes-

day...

3 Why NC1 ⊆ L
This arrangement worked quite well for a couple of

weeks. But then, on the Monday of week 4, Nick

walked into the basement of Gates and found al-

most all of the poly(n) tables gone. In fact, there

were only log(n) tables left.

“DAHA tables? EOM” he asked the course sta�

mailing list (“Does Anyone Have Any tables? End

Of Message”).

“Oh, we took them for the CS254B midterm,”

wrote Sara, “We had to hold it out on the football

�eld because no lecture hall could accommodate all

n students.”

“Huh,” said Nick, “How are we going to sort the

papers today? There isn’t enough space to work.”

“I’ve been thinking about that,” said Sara. “You

know how until now we’ve been able to get grad-

ing done in O(log(n)) time? That means each of

us could only ever possibly look at what was on

O(log(n)) tables.”

Nick nodded, wondering where this was going.

“So what if we took turns doing what we used to

do simultaneously?”

“What do you mean?”

“We can share space. First TA #1 goes and does

whatever shewouldhave done, using theO(log(n))
tables however she wants. Then TA #2, and so

on...”

“Aha! So we �t our whole process into

O(log(n)) tables. Excellent!” Nick was getting ex-

cited. “But how long will it take if nothing can hap-

pen in parallel?”

Sara sighed. “It’ll take some time, but there’s no

new problem set this week...”

“Sounds good to me,” said Nick, “let’s do it.”

His crew went to work. First, the TAs arranged

themselves in a DAG, based on whose tasks they de-

pended on to do their own tasks. Then, Nick called

out names in a depth-�rst-search order; each TA

when called did his or her task in O(log(n)) space,

leaving behind the result for the next TA, and eras-

ing anything unnecessary. By the end of the week

the homeworks were all graded and sorted.

3

Though they may not have realized it at the

time, Nick and friends had shown that any

problem that they could solve in O(logk=1(n))
time (i.e. NC1) was in L, the class of logspace

problems. Hence, NC1 ⊆ L.

By the way, there is a hidden assumption

here that the “structure” of the computation

is easy for Nick to work out in order to coor-

dinate the TAs. To be more formal about this

we would have to de�ne a uniformNC1.

4 Why NL ⊆ NC2

It was the morning of the �nal, and the campus-

wide Internet was down thanks to a CS144 assign-

ment gone rogue. This would be �ne — the exams

were already printed — but the professor had not

yet told students where the �nal would be and now

couldn’t use Piazza to communicate with his stu-

dents.

“Do we haveanyother way to contact students?”

he asked Nick.

“Not everyone,” said Nick. “I only have An-

drea’s phone number because I was her RA in

FroSoCo last year.”

“I think Zoë’s on the undergraduate class coun-

cil, she might be able to mass-text everyone,” said

Sara, “Can Andrea reach Zoë?”

“I don’t know,” said Nick, “but I bet she can

reach Barry. Does Zoë know Barry?”

“No,” said Sara, “But Yan knows Zoë, they did

psets together. Maybe Barry knows Yan?”

“Hmm,” said Nick, “I’m not sure they know

each other. But let’s not give up, maybe we can �nd

another path from Andrea to Zoë. We’re computer

scientists, we know how to check graph connectiv-

ity.”

Sara sighed, “That sounds like a lot of time we

don’t have. DFS is poly(n) work.”

“But there are poly(n) of us!” said Nick.

“One of these days saying that is not going to save

you,” said Sara, “How are we splitting up the work

this time?”

Nick took a moment to think. This was a tough

one. “Let’s write down who we know is able to

reach whom, �rst.” He picked up the sharpie.

“Here’s a small example. Suppose we’re looking for

a path from myself to Vincent.”

Nick

Sara

Vincent

“This is getting unwieldy already,” said Sara,

“Maybe it’s better to write this information in a

nice, clean grid instead.”


N→ N = 1 N→ S = 1 N→ V = 0

S→ N = 1 S→ S = 1 S→ V = 1

V→ N = 0 V→ S = 0 V→ V = 1


“You mean a matrix?” said Nick.

“Sure, a matrix.” Sara erased the labels. “That

starred entry is zero, which means there’s no direct

4

one-step connection from Nick to Vincent.”

G =


1 1 0

∗

1 1 1

0 0 1


“What about an indirect connection — say, at

most two steps away?” asked Nick.

“That’s easy, we can just do casework on who the

intermediate person would be,” said Sara:

GN→2V =
∨

X∈{N,S,V }
(GN→X ∧ GX→V)

“This looks awfully like matrix multiplication,”

said Nick. “I wonder...”

G2 =


2 2 1

2 2 2

0 0 1


“Isn’t this the number of ways to go from N to V
in two steps?”

“You’re right,” said Sara, “Actually, I think in

general (Gp)N→V is represents the number of ways

to go from N to V in p steps.”

“Why?” said Nick.

“Induction,” said Sara mysteriously.

“Okay, okay. ” said Nick. “Well, we’d only

ever need up to n steps, because there are only

n students. I suppose this means that check-

ing whether there is any path is simply checking

whether (Gn)N→V = 0.”

“That’s not too bad,” said Sara. “We can expo-

nentiate matrices with just log(n) matrix multipli-

cations by repeatedly squaring them.”

“How fast can we multiply matrices?”

“I think we can have n2 subteams of TAs do each

cell in parallel,” said Sara, “And each cell is just an

n-sized addition problem which we already know

how to solve in log-time using the hierarchical sum-

mation trick we used when sorting.”

“Okay, altogether that’s O(n3) TAs and

O(log(n) · log(n)) = O(logk=2(n)) time... yes, we

can do this!”

So Nick and friends organized themselves into

n2 teams of n, each dedicated to a cell of the Stan-

ford CS theory social graph matrix. They repeat-

edly squared this matrix (using O(log(n)) time per

squaring) a total of O(log(n)) times, and discov-

ered that Andrea could indeed reach Zoë. A quick

game of “telephone” later, all n students were as-

sembled on the Oval ready to take the CS254B �nal.

It turns out that checking connectivity be-

tween vertices in a directed graph is a com-
plete problem for the class NL, which repre-

sent problems that can be solved in logarithmic

space by a nondeterministic Turing machine.

(Why? Given a log-space Turing machine, take

each of the polynomially-many possible states

and treat it as a vertex in a graph. Set up edges

corresponding to transitions, and ask “is there

a path from initialization to accept?”) With

their algorithm, Nick and friends have shown

that NL ⊆ NC2.

5 Epilogue: Is NC = P?
Nick and his teaching team received glowing re-

views that quarter. The next fall, Nick and Sara

went on to become the CS 161 head TAs, helping

teach introductory algorithms. For the �rst assign-

ment, students were asked to implement bubble-

sort, and run it on the size-n class roster to alpha-

betize the names.

5

“Okay, team, you know the system — let’s get

started!” said Nick when it was time to start grad-

ing.

Sara paused. “I’m not sure we can grade these as-

signments in O(1) time each. What if the student’s

program takesΩ(2n) time? We could be in here un-

til Sunday waiting for it to end — if it ends at all!

What if it doesn’t even halt?”
Nick frowned. “You’re right. If it takes longer

than O(poly(n)) time,” he said, “We should just

write ‘TIMEOUT’ and move on.”

“That’s still poly(n) work per person, though.”

“But there are poly(n) of us, surely we can par-

allelize as we always have?” Nick got to work trying

to devise a scheme to get it done inO(logk(n)) time

with his poly(n) friends.

...and he’s still working, to this day! If

Nick’s TAs could solve this problem, then they

could e�ciently solve any problem in P by writing

a program to solve it in poly(n) time and then ac-

celerating its execution across the poly(n) workers.

On the other hand, it’s possible that there are prob-

lems inP that Nick’s team just cannot solve in poly-

log time — these problems would be inherently se-
quential. Over time, Nick and friends have found

many examples of complete examples for this class

of inherently-sequential tasks; they call these prob-

lems P-complete.

To summarize their results so far, however:

NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NC ⊆ P

For all we know, each of these inclusions could

be an equality...

My main source for this paper was Limits
to Parallel Computation: P-Completeness
Theory by Greenlaw, Hoover and Ruzzo.

You can �nd it online for free here:

https://homes.cs.washington.edu/
~ruzzo/papers/limits.pdf

In the real world, Nick’s Class is named

after computer scientist Nick Pippenger for

his work on circuits that are large but not

too deep, which correspond to e�ciently-

parallelizable programs. (For this reason, in

textbooks such as Arora-Barak you will typi-

cally �nd NC discussed in the context of cir-

cuits.)

6

https://homes.cs.washington.edu/~ruzzo/papers/limits.pdf
https://homes.cs.washington.edu/~ruzzo/papers/limits.pdf

	The classes NCk
	Why SORT NC1
	Why NC1 L
	Why NL NC2
	Epilogue: Is NC = P?

