
ILP provides probabilistic upper and lower bounds that improve over time and are often tighter than variational methods 
 

 

The curse of dimensionality for high-dimensional integration 
 
 
 
 
 
 
 

Discrete Integrals (e.g., expectations,  partition function, quadrature) 

•We are given  
•  A set of 2n  items 
•  Non-negative weights w 

•Goal: compute total weight  
•Compactly specified weight function (e.g, graphical model) 
 
 
 

 

Generally intractable (e.g., 100 dimensions, sum over 2100 ~ 1030 items) 

pseudocode 

Discrete Integration 

WISH: Approximate Discrete Integration by Hashing and Optimization 
[ICML-13] 

Experimental results – Partition function via LP relaxations 

1) Requires  solving a small number of optimization instances (MAP) 
 

2) (1+ ε) approximation with high probability (e.g., 99.9%) 
 

3) Bounds on optimization → bounds on partition function  
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Connections with coding theory 

Optimization in the inner loop is NP-hard (even to 
approximate within any constant factor) 
 
Reduction from: 

 
 
 

Parity check nodes 

ML-decoding graphical model Our more general case 

Parity check nodes 

More complex 
probabilistic 
model 

Formulate the NP-hard optimization max w(x) subject to A x = b (mod 2) as an Integer Linear Program 
• Effective strategy for decoding low-density parity check codes 
• Compact encoding for parity constraints A x = b (mod 2) [Yannakakis,91]  
• Upper and lower bounds  

 
1) LP relaxations provide polynomial time (probabilistic) upper bounds on the partition function 
 
2) Branch and bound will eventually find an optimal integer solution (lower bound matches upper bound) 
Provably within a constant factor of the true partition function [ICML-13]  
 
 
 
Problems with sparse A x = b are empirically easier to solve (similar to LDPC codes) 
 
1) Reduce A x = b to row-echelon form using Gauss-Jordan elimination 
 
2) Generate sparse matrices A. Still provides probabilistic lower bounds 
(but no upper bounds) 

n times 

Integer Linear Programming for MAP inference subject to parity constraints 

Parity polytope Inducing sparsity to improve the relaxations 

Improvements from sparsification 

Can we make it more scalable by approximating the optimizations  in the inner loop? 


