
ILP provides probabilistic upper and lower bounds that improve over time and are often tighter than variational methods

The curse of dimensionality for high-dimensional integration

Discrete Integrals (e.g., expectations, partition function, quadrature)

•We are given
• A set of 2n items
• Non-negative weights w

•Goal: compute total weight
•Compactly specified weight function (e.g, graphical model)

Generally intractable (e.g., 100 dimensions, sum over 2100 ~ 1030 items)

pseudocode

Discrete Integration

WISH: Approximate Discrete Integration by Hashing and Optimization
[ICML-13]

Experimental results – Partition function via LP relaxations

1) Requires solving a small number of optimization instances (MAP)

2) (1+ ε) approximation with high probability (e.g., 99.9%)

3) Bounds on optimization → bounds on partition function

L L2 L3 Ln

n dimensional
hypercube

L4

1 4 0 5 …

2n Items

5 + 0 + 2 + 1 = 8 5 0 2 1
5

0

1

2

….

median M1

1 parity constraint 2 parity constraints

….

median M2 Mode M0 + + + ×1 ×2

Log(n)
times

Connections with coding theory

Optimization in the inner loop is NP-hard (even to
approximate within any constant factor)

Reduction from:

Parity check nodes

ML-decoding graphical model Our more general case

Parity check nodes

More complex
probabilistic
model

Formulate the NP-hard optimization max w(x) subject to A x = b (mod 2) as an Integer Linear Program
• Effective strategy for decoding low-density parity check codes
• Compact encoding for parity constraints A x = b (mod 2) [Yannakakis,91]
• Upper and lower bounds

1) LP relaxations provide polynomial time (probabilistic) upper bounds on the partition function

2) Branch and bound will eventually find an optimal integer solution (lower bound matches upper bound)
Provably within a constant factor of the true partition function [ICML-13]

Problems with sparse A x = b are empirically easier to solve (similar to LDPC codes)

1) Reduce A x = b to row-echelon form using Gauss-Jordan elimination

2) Generate sparse matrices A. Still provides probabilistic lower bounds
(but no upper bounds)

n times

Integer Linear Programming for MAP inference subject to parity constraints

Parity polytope Inducing sparsity to improve the relaxations

Improvements from sparsification

Can we make it more scalable by approximating the optimizations in the inner loop?

