Optimization With Parity Constraints: From Binary Codes to Discrete Integration
 Stefano Ermon* Carla Gomes* Ashish Sabharwal ${ }^{+}$Bart Selman* "Computer Science Department, Cornell University, USA

Discrete Integration

The curse of dimensionality for high-dimensional integration

Discrete Integrals (e.g., expectations, partition function, quadrature)

- We are given
- A set of 2^{n} items
- Non-negative weights w
- Goal: compute total weight
$2^{\text {n }}$ Items
(1) (4) $\cdots \quad$ (0)
(5) $\sum_{x} w(x)$
- Compactly specified weight function (e.g, graphical model)
(5)(2)(1) $\longrightarrow 5+0+2+1=8$

Generally intractable (e.g., 100 dimensions, sum over $2^{100} \sim 10^{30}$ items)
WISH: Approximate Discrete Integration by Hashing and Optimization

[ICML-13]

1) Requires solving a small number of optimization instances (MAP)
2) $(1+\varepsilon)$ approximation with high probability (e.g., 99.9\%)
3) Bounds on optimization \rightarrow bounds on partition function

Can we make it more scalable by approximating the optimizations in the inner loop?

Connections with coding theory

Optimization in the inner loop is NP-hard (even to approximate within any constant factor)

Reduction from:
Definition 1 (MAXIMUM-LIKELIHOOD DECODING). Given a binary $m \times n$ matrix A, a vector $b \in\{0,1\}^{m}$, and an integer $w>0$, is there a vector $z \in\{0,1\}^{n}$ of Hamming weight $\leq w$, such that $A z=b \bmod 2$?

ML-decoding graphical model

Parity check nodes

Our more general case

Parity check nodes

Integer Linear Programming for MAP inference subject to parity constraints

Formulate the NP-hard optimization $\max w(x)$ subject to $A x=b(\bmod 2)$ as an Integer Linear Program

- Effective strategy for decoding low-density parity check codes
- Compact encoding for parity constraints A $x=b$ (mod 2) [Yannakakis,91]
- Upper and lower bounds

1) LP relaxations provide polynomial time (probabilistic) upper bounds on the partition function
2) Branch and bound will eventually find an optimal integer solution (lower bound matches upper bound) Provably within a constant factor of the true partition function [ICML-13] Inducing sparsity to improve the relaxations

Parity polytope Problems with sparse $A x=b$ are empirically easier to solve (similar to LDPC codes)

1) Reduce $A x=b$ to row-echelon form using Gauss-Jordan elimination
2) Generate sparse matrices A. Still provides probabilistic lower bounds (but no upper bounds)

Experimental results - Partition function via LP relaxations

ILP provides probabilistic upper and lower bounds that improve over time and are often tighter than variational methods

