A Flat Histogram Method for Computing the Density of States of Combinatorial
Problems’

1

Stefano Ermon, Carla Gomes, Bart Selman
Department of Computer Science
Cornell University
{ermonste,gomes,selmg@cs.cornell.edu

Abstract

Consider a combinatorial state spatesuch as the
set of all truth assignments f§ Boolean variables.
Given a partition ofS, we consider the problem of
estimating the size of all the subsets in whighs
divided. This problem, also known as computing
the density of states, is quite general and has many
applications. For instance, if we consider a Boolean
formula in CNF and we partition according to the
number of violated constraints, computing the den-
sity of states is a generalization of both SAT, MAX-
SAT and model counting.

We propose a novel Markov Chain Monte Carlo al-
gorithm to compute the density of states of Boolean
formulas that is based on a flat histogram approach.
Our method represents a new approach to a variety
of inference, learning, and counting problems. We
demonstrate its practical effectiveness by showing
that the method converges quickly to an accurate
solution on a range of synthetic and real-world in-
stances.

Introduction

extend this concept to the case of any energy function that
defines an interesting partition of the state space.

The information provided by the full density of states dis-
tribution is especially useful in the context of probabilis
tic models defined through combinatorial constraints sch a
Markov Logic Theoried12]. In fact, the description of the
state space can be used to efficiently compute not only the
normalization constant of the underlying probabilisticdab
(also known as thpartition functior), but also itgparameter-
ized versionThis level of abstraction is a fundamental advan-
tage for learning methods because it allows us to reasort abou
the system more abstractly. For example, as we will discuss
below, in the case of a Markov Logic Theory, we can parame-
terize the partition functio (w1, . . . ,wg ) according to the
weightswy, ..., wg of its K first order formulas that define
the theory. Upon defining an appropriate energy function and
obtaining the corresponding density of states, we can &se th
information about the partition function to directly contpu
the model parameters that best fit the training data.

To compute the DOS, we will consider a novel MCMC
sampling strategy, inspired by the Wang-Landau metté}
which is aflat histogrammethod from statistical physics.
Given a combinatorial space and an energy functiofiata
histogrammethod is a sampling strategy based on a Markov
Chain that adaptively changes its transition probabditie-

Consider a combinatorial state spaSe such as the set
{0,1}" of all possible truth assignments 2 Boolean vari-

ables. Given a partition aof into subsets, we consider the fi i v | tat in high-t
problem of estimating the size of all the subsets in the particonfigurations (usually, low energy states) as in high-tgns

tion. This problem is also known as computing the density"‘reas of the search space. This condition leads to a flat his-
of states. For instance, given a Boolean formula in CNF withiogram of the energy levels visited (hence the name of the
m clauses, we can define an “energy” function in terms ofmethOd)' o

the number of violated constraints and partition the setlofa We empirically demonstrate that our method converges
possible truth assignments accordingly. In this case, ¢éime d 9uickly and accurately on a range of instances. Our results
sity of states gives the size of all the subsets defined by tha'e very promising and we expect to see other applications
number of violated constraints, i.e., the number of truth asbPoth to counting, learning, and inference problems.
signments that violate exactkyclauses, fof) < k < m. The
problem of computing the density of states is a generatinati
of SAT, MAX-SAT and model counting. The term density of
states name is borrowed from statistical physics, wherengiv
an energy function the density of states (DOS) for a physic
system describes the number of microstates at each ener
level that are available to be occupied. In this paper, we wil

til it converges to a steady state where it will spend approx-
imately the same amount of time in areas with low-density

2 Density of states: problem definition

aYVe consider a state spaf@ 1}V defined as the set of all pos-
iple truth assignments t& Boolean variables;, ..., zxy.
iven such a space and an energy funcfion{0, 1}V — N,

the density of state€DOS)n is a functionn : range(E) —

*This paper is a condensed versior 4jf N that maps energy levels to the number of truth assignments



(configurations) with that energy, i.e., Sampling from a combinatorial space has applications to
N probabilistic inference, learning, and counting. In a dm
n(k) =[{o € {0,1}"[E(0) = k}|. problem, the goal is to estimate the cardinality of a%Ser a
pveighted sum of the formy_, _y, w(o), wherew is a weight
assigned to the elementsXf The general idea is that we can
often obtain an approximate solution to a counting problem
by looking at the statistical properties of a sequence af-ind
pendent random samples from a distributiorlefined over
¥ (seel[7] for details). The close connection between count-
ing and sampling has been formally studied in a complexity
theoretical sense ifg].
The Markov Chain Monte Carlo (MCMC) method is a gen-
Gral approach to combinatorial sampling that has received i

ues of the energy. In principle, the only thing we need is Lreasing attention over the past ten years, leading to major

partitioning of the state space, where the energy is just pro €Sults for counting problems in graphs (matchings, indepe
viding an index over the subsets that compose the partition. d€Nt Sets, colorings, and homomorphisii#)

Probabilistic reasoning. The notion of the density of _1he Markov Chain Monte Carlo method solves the sam-
states idea finds many natural applications in the context dfling Problem by constructing a Markov Chain with state
probabilistic reasoning and Markov Logic Networks (MLNs) SPacex and stationary distribution. The transition prob-
[12]. MLNSs are used to define complex probability distri- 2Piliti€sp, - for o, 0’ € X are designed so that the Markov
butions over a set gossible worldsvhich are truth assign- Chain asymptotically converges to the stationary distidou
ments to a set oV Boolean variables. The probability is 7 regardless of the initial stafa0]. Typically, this is ac-
specified through weighted constraints that are represeste  OMPplished by enforcing a condition known @estailed bal-
(CNF) formulas over the Boolean variables. Such consgaint2Nc€ which defines a reversible Markov Chain such that

can be eithehard or soft Hard constraints are such that if 7(7)Po—o’ = 7(0")por—o for all o,¢0" € X (a probability
a truth assignment € {0, 1}N violates one of them, it gets distribution that satisfies the detailed balance condition can

assigned probability. Otherwise, when satisfies all hard D€ Proved to be stationary). Moreover, transitions cowaep
constraints, its probability is given by to S|mple modifications of the eIemenFsX)(such as variable
flipping), so that the chain can be efficiently simulated hsuc
1 as a random walk on a graph.
P(o) = Zw) &P |~ > wixi(o) @ Given such a Markov Chain, the sampling process works as
v ieC follows. Given an arbitrary initial state € X, we run (sim-
ulate) the chain for a finite numbé&r of steps, and we output
the final state. The probability distribution of the outpahc
be made arbitrarily close to by taking a large enougdh.

So, we are interested in computing the number truth assig
ments (also called possible worlds in probabilistic re&spn
contexts) that satisfy certain properties that are spelcifge
ing an energy function. For instance, given a Boolean foamul
in CNF, we might define thenergyof a configurationF (o)
to be the number of constraints that are unsatisfied tthis
is known as the density of states for unweighted Boolean for
mulas[4]).

The MCMC algorithm we will use to compute the density

where( is the set of soft constraints;; is the weight corre-
sponding to the-th softconstraint and; (o) = 1 if and only
if o violates the-th constraint, and (w) is the normalization
constant also referred to as tpartition function )
In such a framework, many inference (e.g., comput-4 The flat histogram method

ing the probability ofo) and learning (e.g., finding the \ye ron6se a Markov Chain Monte Carlo method to compute
weights that maximize the likelihood of) tasks require g gensity of states based on the flat histogram idea imspire
the computation of the normalization constaftw). This .y yecent developments of statistical phyditd] as an alter-
is in general an intractable problem becaugéw) = “iveto Metropolis sampling.
>, XD (= Xiec wixi(0)) is defined as a sum over expo-  The jdea behind the method is as follows. The goal is to
nentially many states. _ L __construct a reversible Markov Chain on the space of all truth
A key advantage of the density of states idea is that it canygsjgnmentg0, 1}V such that the steady state probability of
be used to efficiently compute not only the partition func-, ¢th assignment is inversely proportional to the density
tion, but also itsparameterized versiorFor example, in the ¢ gtatess(E()). In this way, the stationary distribution is
case of a Markov Logic Theory, we can parameterize they,cp that all the energy levels are visited equally oftem,(i.
partition functionZ(w;, ..., wx) according to the weights \yhen we count the visits to each energy level, we see a flat

wi, ..., wi Ofits K first order formulas. We can use this pa- it histogram). Specifically, we define a Markov Chain with
rameterized version of (w) to directly compute the optimal 4 following transition probability

set of weights that provide the best fit to the training data.

L Lmind1, ME@L L g6 0') =1
3 Preliminaries on MCMC methods Pomsor =% N { n(E(e ))} a ,) @
0 dy(o,0') > 1

Sampling from a combinatorial space refers to the process of

generating samples from a probability distributiomlefined  wheredy (o, 0’) is the Hamming distance betweerando’.
over a large (but finite) sét, such as the set of possible con- The probability of a self-loop,_,, is defined by the normal-
figurations of a physical system or the set of all possiblgatru 1zation constrainp,_,, + qud},(g,gl):l Posor = 1. The
assignments to a Boolean formula. detailed balance equatid?(o)ps— o = P(0')ps—o IS Sat-



isfied by P(c) o< 1/n(E(c)). This meansthat the Markov it is set so that an histogram is considered flat when all the
Chain will reach a stationary probability distributidh (re-  values are betwee®0% and 100% of the maximum value,
gardless ofttfhe _itnhitia| stateésuchér(\a§ t.he'probatilhty otith  independently of". The value ofF is reduced according to
assighment with energy ., = L(o) IS INVErSely propor- - ne schedulg «+ +/F, with an initial valueF, = 1.5. By
tional to the total number of truth assignments with endtgy ; " ) 0 b
This leads to an asymptotically flat histogram of the ensrgiecor.lstrucﬁonfthe DOS ISI' obtained onl);] up to abi:on_st;}?t fac-
of the states visited becaus®(E) = 3, ;,_p P(0) tor: we therefore normalizeto ensure tha}_ , g(E) = 2%,

1 L : whereN is the number of variables in the formula.
n(E)m =1 (i.e., independent aF).

Technically MCMCFI at SAT is an example of an Adaptive
Markov Chain Monte Carlo method. In an Adaptive MCMC

Algorithm 1 MCMC- FI at SAT scheme, the transition probabilities are adjusted ovee tim
Startwithaguesg(FE)=1forall E=1,...,m order to achieve some optimality condition, learning the pa
Initialize H(E) =0forall E=1,...,m rameters while the chain ruh3]. This approach is closely
Start with a modification factoF = F, related to Simulated Annealidg; 19, Simulated Tempering
repeat [11], and Multicanonical Samplinf2]. The main contribu-

Randomly pick a truth assignmedt tion of the flat histogram idea is that it can simultaneously
repeat learn the optimal weights and at the same time sample from
Generate a new assignmetit(by flipping a variable) the re-weighted distribution. However, even though Adap-
Let E = E(o) andE’ = E(0’) tive MCMC algorithms can significantly improve the perfor-
Seto = ¢’ with probability min {1’ 9(E) } mance over standard MCMC methods, it is usually harder to
9(E") rigorously prove convergence properties.

Let E. = E(o) be the current energy level
Adjust the density(E.) = g(E.) x F
Update visit histograntf (E..) = H(E.) + 1

until until 7 is flat 5 Effectiveness and validation of

ReduceF MCMC- Fl at Sat

Reset the visit histogral
until F" is close enough to Despite the increasing popularity in statistical physioeplia
Normalizeg cations, the asymptotic properties of flat histogram method
return g as estimate of, are not yet fully understoofll]. Under some regularity as-

sumptions (which are generally hard to verify) it is possitol
prove certain formal results on the consistency of the neetho

Since the density of states is unknown a priori, and comgutin [1; 11_ but little is known about the rate of convergence and
it is precisely the goal of the algorithm, it is not possilie t the_ efficiency of the method. The goal of this section is to
directly set up a Markov Chain with transition probabilig)(  Verify the convergence d¥CMC- Fl at Sat and to empiri-
However it is possible to start from an initial guess of theCally evaluate the accuracy of the solution obtained forgyne
DOS and keep changing the current estingitea systematic functions defined through combinatorial constraints.
way using a modification factoF' (used as a multiplier to For all our experiments, we consider formuleisn CNF
adapt the density estimagto produce a flat histogram of the over a set” of variables withm clauses. We say that a vari-
energy levels visited and simultaneously make the estiinateable assignment satisfies a claus€' if at least one literal
density of states converge to the true valfé). of C'is TRUE. A literal is a variable or its negation. We de-
The modification factor plays a critical role because it fine the energy of a configuratiafi(c) to be the number of
controls the trade-off between the convergence rate oflthe aclauses that are unsatisfied whEris evaluated under. If
gorithm and its accuracy. Large initial valuesBfimply a  FE(o) = 0, theno satisfiesF’ ando is called a model, solu-
substantial diffusion rate and therefore fast convergén@ tion, a ground state or satisfying assignment#for

rather inaccurate solution. This rough initial estimateu'b- We first empirically check the accuracy of the results ob-
sequently refined as the value bfdecreases untii’ ~ 1, (ained for small structured formulas, for which we can com-
at which point when a flat histogram is producgd) has e the true density by exact enumeration of the entire (ex-
converged to the true density ). _.__ponentially large) state space. We also M3WVC- FI at Sat
While in [4] we generated new states by randomly flipping o, jarger synthetic formulas for which we derive an anasftic

a variable, greedier strategies can lead to faster cormeege ey pression for the true density of states, as well as on rando
rates{3]. In particular, we have shown that introducing a ran-3_saT formulas. For larger structured instances, for which
dom walk component (i.e., flipping variables from violated n known method can be used to compute the true DOS, we
clauses with a higher probability) can significantly impov ake use of partial consistency checks to validate theteesul

the convergence rat¢g3]. . .
Due to statistical fluctuations, a perfectly flat histogram o WWhen the true DOS is known, we employ several metrics to
curs with an extremely low probability. Therefore in our im- evalu?te thehaé:curacy of thg resul;[s.bV}/e consider the\;ilatl
lementation we use a flatness parameter; in our experimen0r for each data point and two global measures reprasente
pi P P by the Kullback-Leibler (K-L) divergence and the Total Vari
The chain is finite, irreducible, and aperiodic, therefore ergodic.ation distance. The Kullback-Leibler divergence is a stadd



Instance variables| clauses| KL-divergenceDxk . (n|lg) | Total Variationd(n,g) | Max relative error
ramk3_n7.ra0.cnf 21 70 4.0x107° 0.0038 2.3%
ramk3_n8.ra0.cnf 28 126 1.2x107° 0.0019 5.1%

johnson8-2-4.clg.cnf 28 420 4.6 x107° 0.0039 5.5 %
t3pm3-5555.spn.cnf 27 162 1.3x 1077 0.0020 3.1%
Synth. formula-Uniform 50 100 1.2x107° 0.0021 3.0%
Synth. formula-PigeonHole 200 750 1.2x 1077 0.0006 22%

Table 1: Exact and estimated density of states comparedmstef KL-divergence and maximum relative error.

information theoretic non-symmetric measure defined as: of formulas¢ that are encoding of a Pigeon Hole problem
m (Synth. formula-PigeonHole), and the conjunction of formu
Dyr(nllg) = Z n(E) log <”(E)) las ¢ that have a u.niform.density (Synth..formula-Uni_form).
ot Z 2\ y(E) The ground truth is obtained by computing the density of
- by direct enumeration and then carrying over the convahstio
whereZ = 2" is used to normalize the DOS to probability according to Equation (3). When comparing the exact density
distributions. The Total Variation distance is often used t with the estimate obtained by runnibCMC- Fl at Sat di-
evaluate the convergence of MCMC methods and is definetkctly on the large formula, we get a relative error that isene
as greater thar3%, as confirmed by the small Kullback-Leibler
§(n,g) = lHn — gl = lz |9(E) — n(E)| djvergences reported in Table 1. Th'e' samp!ing strategy de-
2 24 fined by MCMC- Fl at Sat is very efficient, since it needs
about2 x 107 samples to collect fine grained statistics about
5.1 Structured problems: exact counts a much larger the state spa@‘(~ 10'° truth assignments)

We compare the true and estimated densities for several smal

instances (all with less tha&® variables) from the MAXSAT-

2007 competition benchmark, which are encodings of thregg 3 Random formulas
classes of problems (Ramsey Problems, Spin Glasses, and

Max Cliques). The true density is computed by exact enuqn this section we present the resultsMiMC- FI at Sat for
meration. ) ) random3-SAT formulas as a function of the ratio clauses to
Our experiments show that the estimate is accurate anghriablesa. In particular, we compute the average DOS over
that the relative error per count obtainedM§VC- Fl at Sat 1900 random instances for each valuewfn the range con-
compared to the exact count for a given energy level is nevegjgered.
greater thar5.5%. The high degree of accuracy obtained is ; , )
confirmed by the Kullback-Leibler divergences presented i”forl:lnoutigi Itggtlvtgr? S}\//erage DOE[g(7)]) for randomk-SAT
Table 1. The sampling strategy is also very efficient. For
instance, for the instangehnson8-2-4.clq.cnit takes about

6 fli 1987 ~ 8 ) m\ (1Y) 1\,
8 x 10° flips for a search space of si2&” ~ 1.3 x 108. E[g(i)] = (Z> <2k> (1 _ Qk) 9 4)
5.2 Synthetic formulas: exact analytic counts

Consider a formula which is the logical conjunction of  wherei is the number of violated constraints amds the to-
copies of another formula, each one involving a different tal number of clauses. This is because given a random truth

set of variables:q, . . ., zy: assignmen#, the probability ofr violating a clause of sizé
is 1/2%. Therefore, by the linearity of expectation we obtain
F(ay,...,20) = ¢(x1) Ap(z2) Ao A d(@e). formula (4). The comparison with the analytic result (4) in

Figure 1(a) confirms the good accuracyMiMC- Fl at Sat .
Moreover, as shown in figure 1(b), the density of states gives
not only the number of models (i.e2(0)), but also the the

By noticing that the subformulas iRl do not share variables,
it is easy to see that the density of statgg E) of F' can be

computed as a nested convolutionQf -
log-partition functionlog Z(T) = log (ZU e—TE(“)) for

nr(E) = (ngx... xng)(E), ®) all the valuesof T. The temperaturd” can be thought as

wherex is the convolution operator. This result is analogousthe softnes®of the constraints or, alternatively, we can define
to the fact that the probability density function (PDF) oéth it in terms of thehardnessw = 1/T with the notation used
sum of independent random variables is equal to the convan (1). In the limitlimr_o Z(T), Z(T') counts the number
lution of the PDFs of the addends (concentrating the measuraf models (i.e., as the constraints become hard we recower th
on the mean). traditional number of satisfying assignments). Howeuee, t

We test the effectiveness WNEMC- FI at Sat onlarge syn-  fact that we can compute it as a function of an external param-
thetic instances, for which exact enumeration would not beeter (in this case thsoftnessl") turns out to be fundamental
possible, by comparing the estimated DOS with the analytifor probabilistic reasoning applications, such as weigatt-
cal results given by (3). In particular, we use the conjuorcti  ing in Markov Logic Networkg3].
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Figure 1: Average DOS (a) and log-partition function as afiom of the temperature paramefé(b). The number of variables
isn = 50 (see pdf for color version of figures).

5.4 Large structured instances density of states, this is equivalent to the problem of com-

In this section we present the results obtained on large-stru Puting the value ofn(0). We compare the performance
tured formulas for which the exact DOS is unknown and di-of MCMC- Fl at Sat with two state-of-the-art approximate
rect enumeration is not feasible. Given that we are not awarg10del counters: SampleCou6{ and SampleMiniSATExact

of any complete solver that is able to compute the exact DO5]. The instances used are taken from the benchmark used
we need to resort to partial consistency checks to assess tHel5; 6. The results in Table 3 show theCMC- Fl at Sat
accuracy oMCMC- FI at Sat . In particular, when it is possi- almost always obtains more accurate solution counts, and is
b|e1 we Compar@(o) with the exact model count given by a often S|gn|f|Cant|y faster, eSpeCIally for random instasce
complete solver such as Cachkit4]).

6 Conclusions and Future Work

A further consistency check can be obtained by looking alye describedVCVC- Fl at Sat

o a Markov Chain Monte
the moments of the DOS. Intuitively, the moments represent

concentrated in the right regions. Theh order momentis \jqes a deep characterization of the state space. In fact, it

defined as: (E) gives not only the partition function of the model (e.g., rum
M(k) = ZE’“— ber of models), but also its parameterized version (e.g., fo
E 4 all the levels of hardness of the constraints). This type of

where Z = 2" is again used to normalize to a probability infqrmation is crucial i'n many_probabilistic reasoning Bpp
distribution. For example) (1) is the average number of cations, both for learning and inference tak¥s
violated clauses by a random assignment. This value is com- We demonstrated the effectivenessMEMC- FI at Sat ,

pared with thesamplek-th moment both in terms of convergence and accuracy, on a broad range
‘ of structured and synthetic instances. Because of the glener
M, (k) = 1 Z B(X,)" ity and the effectiveness of the flat histogram idea, we expec
14 — that this approach will find many other applications both in

. counting and probabilistic inference applications.
where X, X, ..., X, are samples drawn uniformly from the 9 P PP

set of all truth assignmen{®), 1} V.

The results presented in Table 2 show a good agreement Acknowledgments
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5.5 Model counting References

To further demonstrate the scalability and the accuracy of1] Y.F. Atchadk and J.S. Liu. The Wang-Landau algorithm
our method, we test its effectiveness as a method to com-  in general state spaces: applications and convergence
pute the number of models of a formula. In terms of the analysis.Statistica Sinica20:209-233, 2010.



Instance var | clauses g(0) #models| M,(1) | M(1) | M.(2) | M(2)

brock40Q2.clg.cnf 40 1188 0 0 297.0 | 297.0| 88366 | 88372
spinglass5L0.pm3.cnf| 125 750 0 0 187.5 | 187.5| 35249 | 35247
MANN _a27.clg.cnf 42 1690 0 0 4225 | 4225 | 178709 | 178703
bw_large.a.cnf 459 | 4675 1 1 995.3 | 995.3 | 996349 | 996634
hole10.cnf 110 561 0 0 137.5 | 137.5| 19621 | 19643
sw100-1.cnf 500 | 3100 || 8.04 x 10%7 753.1 | 753.1 | 571718 | 571863

Table 2: Comparison of the moments. Sample moments estinatie ¢ = 10° uniformly sampled truth assignments. Exact
model counting is done with Cachet.

Instance n m Exact # SampleCount SampleMiniSAT MCMC- Fl at Sat
Models Time Models Time Models Time
2bitmax6 | 252 | 766 | 2.10 x 10%° | >2.40 x 10*® 29 | 2.08 x 10>° 345 | 1.96 x 10*° 1863
wff-3-3.5 | 150 | 525 | 1.40 x 10 | > 1.60 x 10'®> 240 | 1.60 x 10'* 145 | 1.34 x 10'* 393
wff-3.1.5 | 100 | 150 | 1.80 x 10%! | > 1.00 x 10*° 240 | 1.58 x 10** 128 | 1.83 x 10?! 21
wff-4-5.0 | 100 | 500 >8.00x 10 120 | 1.09 x 10" 191 | 8.64 x 10'¢ 189
Is8-norm | 301 | 1603 | 5.40 x 10'! | >3.10 x 10'° 1140 2.22 x 10** 168 | 5.93 x 10! 2693

Table 3: Comparison with model counters. Timings for Sa@plent and SampleMiniSATEXxact are taken from the respective
papersMCMC- Fl at Sat timings are obtained on a comparaBl&H > machine.
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