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Abstract

Markov Decision Processes arise as a natural model
for many renewable resources allocation problems.
In many such problems, high stakes decisions with
potentially catastrophic outcomes (such as the col-
lapse of an entire ecosystem) need to be taken by
carefully balancing social, economic, and ecologic
goals. We introduce a broad class of such MDP
models with a risk averse attitude of the decision
maker, in order to obtain policies that are more bal-
anced with respect to the welfare of future genera-
tions. We prove that they admit a closed form solu-
tion that can be efficiently computed.

We show an application of the proposed framework
to the Pacific Halibut marine fishery, obtaining new
and more cautious policies. Our results strengthen
findings of related policies from the literature by
providing new evidence that a policy based on pe-
riodic closures of the fishery should be employed,
in place of the one traditionally used that harvests a
constant proportion of the stock every year.
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the sum of (discounted) economic rewards over time. How-
ever, in many domains arising in the emerging field of Com-
putational SustainabilitfGomes, 200R this approach can

be inadequate. In fact in many such problems, high stakes
decisions with potentially catastrophic outcomes (sudhas
collapse of an entire ecosystem) need to be taken by care-
fully balancing social, economic and ecologic goals. More
in general, a fundamental challengesofstainability science
[Clark, 2007 is how to take decisions that balance the wel-
fare of current and future generations and to devise pslicie
that provide guarantees on the welfare of future genersition
In this contextrisk-neutralapproaches are usually not capa-
ble of providing such guarantees. For instance, in the chse o
the management of an animal population, policies that are to
aggressive may cause the collapse of an entire population.

As a partial answer to these questions, we propose the in-
troduction of decision theoretic concepts into the optamiz
tion frameworks, by leveraging the significant advancement
made by the Al community. In general, we can model and
solve MDPs with general utility functionit.iu and Koenig,
2004, so that we can capture the behavior of almost every
rational decision makdion Neumanret al,, 2007 and cast
resource allocation problems into a much richer framework.
In particular, in the context of natural resources, it igicri
cal to introducerisk-averseattitudes of the decision makers

In this paper, we consider a broad class of MDPs that can by choosing suitable utility functions, as opposed to saadd
used as a model for the management of a renewable resourdisk-neutralapproaches. By enforcing risk-aversion, we ob-
While the most common examples are probably living re-tain policies that are more cautious and less prone to those
sources, such as animal populations or forests, other tyfpes Catastrophic_outcomes that might endanger the welfare-of fu
resources such as time, energy, and financial resourcegcanire generations.

also consideretErmonet al, 2014. In fact, the problem of

With similar goals, Ermon et a[Ermonet al,, 2014 pro-

managing the stock of a resource dynamically changing ovepose the use of worst-case scenarianalysis (which is anal-
time is quite general and it arises in many different fields un ogous to a game against nature) in order to minimize the risk

der different names. In particular, inranewableresource

of collapse in resource allocation problems. However, avail

allocation problem, the stock of a (valuable) resource is dyrisk-neutral approach might be too optimistic, the worsse
namically growing over time. Such growth processes might scenario is often too pessimistic. To overcome these prob-
occur on a continuous or discrete time scale, they are subjetems, we propose the use of an exponential utility function
to nonlinear dynamics and they are affected by randomnessf the formU(x) = exp(yx) that maps revenues to utili-
When we also factor in social and economic aspects, thes@es. Our approach is significantly more general, because by
multiple levels of complexity can easily lead to very chal- choosing the right value of we are able to capture a broad
lenging sequential decision making problems.

ature on the management of such resources is basegken

Most of the work[Clark, 1990; Conrad, 19%9n the liter-

range of risk-attitudes between the two extreme caseslof
neutral andworst-caseapproaches. In fact, when the popu-
lation becomes dangerously small, the revenue will drop and

neutral formulations, where the goal is that of maximizing the exponential scaling will significantly penalize thdlitti



of such scenarios. While on one hand we lose the theoretfunction. This framework is quite general and finds applica-
cal lower-bound guaranteed by the game against nature afioens in many different fields. In fact, the stock variable ca
proach, on the other hand in any practical application thereepresent resources such as time, energy, natural and finan-
is always another level of uncertainty affecting the esteda cial resources, depending on the application domains. €Thes
support of the probability distributions involved (i.e.etset  include natural resources management, supply chain manage
of available moves in the game against nature framework)ment, vaccine distribution and pollution contf&rmonet al.,
Therefore, in reality, such theoretical lower-bounds ass| 2014.
reliable than one might expect because of the uncertainty in We consider a discrete-time continuous-space problem
the model parameters. Moreover, exponential utility func-where the state variable, € R represents the available stock
tions are particularly suitable for sequential decisiorkimg  of the resource at time step The stockz,, is modeled as a
problems because they are the only class of utility funstion Markov Chain with non-linear dynamics evolving according
(together with linear ones) that satisfy the so-caltkdta  to the following difference equation
property, that allows for optimal policies that are not history-
dependent and hence are easy to describe and to implement Tpp1 = f(Tn — hn,wn), (1)
in real-world problems.

Previously, risk-sensitive policies for harvesting bkl

populations were considered[idorwood, 199%. The author . ; g
extended some known optimality results to the risk-seresiti internal growth processes are modeled usirsgoak recruit

case for some continuous-time models which were originaly €Nt functionf (x) that is, in general, density dependent, in
introduced in[Clark, 1990. However, except in the linear order to capture phenomena such as competition for limited

dynamics and quadratic cost case, the obtained results weF%Od _and hablt'at in animal pppulatlons. We suppose thaqather
is’a finite maximum stock size denoted fy Uncertainty is

heuristic or characterizations of thecal optimality of the introduced into the model using the random variabesas-
policies (with necessary but not sufficient conditions lbase . : 9 §Sas’
sumed to baliscreteand independent. As an example, in a

on Pontryagin's Maximum Principle). In contrast, our mainfisher modehw,, are used to model factors such as weather
result (Theorem 2) proves that a general class of disciee-t condi'zons cIimnate change or the temperature of the waller
MDPs with exponential utility functions admits a closedfor uncontrollable factors that affect the growth rate of thuekt

optimal solution (i.e. with a given structure that allows fo " .
: : o, - To complete the description of the MDP, we introduce
a compact analytical representation) that can be easily im- . !
P y b ) y standard economic model used [Glark, 1990; Conrad,

plemented by policy makers. These results are especiall )
interesting because there are only a few MDPs with know 999; tErr?o_ne;th al, 2019 and others. We 'lsuppOf]e that a
closed form solutions. The proof is based on a generalizeaVeSt Of siz€h generates a revenue equalitp, wherep

Is a fixed constant selling price. We assume that there is a

notion of concavity known -concavity originally intro- . . .
otion of concavity known as-concavity originally intro marginal harvesting cosf(z) per unit harvested when the

duced to study inventory control probledcarf, 1960. In & o ; :
order to prove Theorem 2, we first show some useful resultSCCK Siz€ isc and that each time a harvest is undertaken there
Is a fixed set-up cosk’, independently of the size of the har-

on the composition of<-concave functions that generalize ! ) . :

some fundamental properties on the composition of standar St The net revenue (§gl!lng proflts_mln_us COStS). assatiat

concave functions. with a harvesth from an initial populationz is then given by
We demonstrate the practical applicability of the proposed z

framework by studying the Pacific Halibut fishery manage- ph — / 9(y)dy — K = R(x) — R(x —h) - K, (2)

ment problem. This domain of applications is particularly z—h

important because marine fishery resources are one of thgnere

most poorly managed and most endangered ones due to over- .

exploitation[FAO, 2009. Our results provide new evidence I

that a new policy based on periodic closures of the fishery R(x) = pz /0 9(y)dy.

should be employed, instead of the traditional policy tfaat h

vests a constant proportion of the stock every year. The marginal harvesting cogtx) is_ assumed to be a decreas-
ing function ofz, so that harvesting becomes cheaper when

A . the stock is abundant. We defimg to be the stock size such
2 Preliminaries thatg(xzo) = p, that is thezero profit level As a consequence
2.1 Risk-sensitive MDP formulation for all z > xz, we have that the functio®(z) defined in

We consider a class of Markov Decision Processes that arisé‘?squ""t'On (2) is non decreasing and convex.
as a general model for many renewable resources allocati . I Lo

problgms. Examples of su){:h real-world problems are th(?'2 Risk-sensitive optimization

management of natural resources such as animal species According to Utility Theory[Von Neumanret al., 2007, ev-
forests, as described in detaili@lark, 1990; Conrad, 1999; ery rational decision maker who accepts a small number of
Ermonet al, 201J. However, our model is more general axioms has a utility functio/ that maps their real-valued
and our results apply to a broad class of so called genedalizenvealth levelsw into finite real-valued utilitied/ (w) so that
inventory control problem$Scarf, 1960 that are extended they always choose the course of action that maximizes their
with the introduction of a stock-dependent internal growthexpected utility.

whereh,, is the control variable, representing the amount of
resource that is extracted or harvested at time ste@he



In decision theory, the attitude towards risk of a decisionDefinition 1. A functionj3(-) is K-concave on an interval
maker is represented by the utility functiéh Given aran- ifforall z,y, z < y, and for allb > 0 such thaty + b € I

dom variablev (often called dottery), in general not all out- Bly +b) — B(y)

comes ofv are equally significant: the decision maker ranks B(z) — B(y) — (x —y) <K. (5
them according to the utility functioti. In particular, a deci- b

sion maker isisk-aversedf E[U(v)] < U(E[v]) meaning that ~ Equivalently,3(-) is K-concave if for allz < 2z € I and
he prefers the expected value of the lottery over the lotteryA € [0, 1]

itself. AB(z) + (1= N)B(z) < KX+ B(Ax + (1 — \)z)

While MDPs with general utility functions can be solved o ]
using the method proposed[ih'u and Koenig’ ZOOB the re- The fundamental result O[K—COHC&VIty is the fO"OWIng
sulting optimal policy is defined in an extended state-spacéemma:
and is in general history-dependent. Of particular inteids  Lemma 1. The following properties hold:
the case of sequential decision making is the case of exponegy a concave function is-concave and hende-concave for
tial (and linear) utility functions, that as shown fjrloward all K >0
and Matheson, 19thave a constant aversion to risk that pro- -
vides the kind of separability required to implement dynami P) If 51(¢) and 82(¢) are K;-concave and<;-concave, re-
programming and lead to optimal policies that are not hystor ~ SPectively, for constant&; > 0 and K, > 0, then
dependent. Instead of considering the traditional casimof | @51(¢) +0f2(q) is (K1 + bK3)-concave for any scalars
ear utility function (risk-neutral approach), in this papee a>0andb > 0.
consider the case of exponential utility functions, so that c) If 5(-) is nondecreasing and concave drand is non-
resulting policies can be easily described and implemeinted  decreasing and(-concave offinf,c; 5(x), sup,c; 5(x)]
practice. then the compositiotp o 3 is K-concave ol

Since we are interested in fully observable closed loop opg) |f 3(-) is a continuousfs -concave function on the interval

timization approaches, where decisions are made in stage [0,m], then there exists scalags< S < s < m such that
and the manager is allowed to gather information about the =~ -~

system between stages, we introduce the concepblidy. * B(S) = B(q) forall ¢ € [0,m].

A policy is a sequence of rules used to select at each period ~ ® Eithers =m andg(S) — K < 3(m) or s < m and
a harvest level for each stock size that can possibly occur. B(S) — K = B(s) > B(q) forall g € [s,m).

In particular, anadmissible policyr = {u1,...,un} IS @ e () is a decreasing function o, m].

sequence of functions, each one mapping stocks sizes o Forallz <y <s, B(x) — K < B(y).

harvestsh, so that for alk: and for all: This is a dual version of the properties &BFconvex func-

0 < pi(z) <. (38) tions proved for example ifBertsekas, 1995, Section 4.2

In order to prove our main results, we use the following
novel theoretical results on the vector composition/of
concave functions, that significantly generalize the siathd
E™[exp(—yJn(2))] ;v >0 (4)  results on the composition of regular concave functions.

where thdottery s the total discounted net revenue Theorem 1. Let ¢ : R" — R be a concave function
non-decreasing in each of its arguments such thak” +

N
. n 21, K+x,) < K+d(xy,...,x,) foral zq,...,2,, K
TR(@) =Y o™ (R(wn) = Rlwn = hn) = Koo(hn)) and let g (), .). <y Bu(2) E)e a famil;} of function® — R
n=1 such thatg;(x) is K-concave and non-decreasing for=
wherez,, is subject to (1) andv,, = p,(z,), with initial 1,...,n. Thery(z) = ¢(B1(z), ..., Bn(z)) is K-concave.
conditionz; = z and

We consider the problem of finding aamissible policyr =
{i}iep, N that minimizes

Proof. We have

1 ifx>0,
do(z) = { 0 otherwise. v(@) + (1= M(z) =
v Ba(@) + (1= A v Bn(2)) <
and0 < « < 1 is the discount factor. The parametgis A\ o6 (@) 1 f (@) +( A\ )gb(ﬂl(zi \ fn(2)) <
calledrisk sensitivenesand the larges the more risk averse p(AB1(x) + (L = A)f1(2), ..., ABn(z) + (1 = A)Bn(2)) <
the decision maker is. Intuitively, this is because small-re  #(KA + Bi(Az + (1 = A)z), ..., KA+ Bo(Az + (1 — A)2)) <
izations of JT («) are heavily penalized by the exponentia- KX+ o(B(Az+(1—=XN)2),..., 8. Az + (1 = N)2)) =
tion. In the limity — oo, the smallest realization off; () K 1—
dominates the expectation in (4), as happens in the wosst-ca AtyQa+ (1= 2)z)
analysis situatiofErmonet al,, 2014. O
. . Lemma 2. The log-sum-exp functiop : R* — R de-
3 Properties of K-concave Functions fined as(z1,...,2,) — —log> e~ is a concave func-
To study the optimal policies for this risk-sensitive MDP tion non-decreasing in each of its arguments such that
model, we will make use of a property knownk&isconcavity. ¢(K + z1,...,K + z,) < K + é(z1,...,z,) for all

The standard definition dk -concavity is the following: T1,. .., Tn, K € R,



Proof. From[Boyd and Vandenberghe, 2J04e have that
f(x) =log(e™ +...+€")

is convex and non decreasing in each of its arguments, so

¢(217...

) = —log Y

only if x > s;. If z > s, the optimal escapementin Equa-
tion (7) is exactly the other threshols, by the properties
proved in Lemma 1-d. This policy is known in the Opera-
tions Research communifcarf, 1960 as a nonstationary
S — s policy, because the levels ands, depend on the time
indext.

Our main result is that we can prove that a nonstationary

is a concave function non-decreasing in each of its argusnents _ s policy is optimal for the risk-sensitive MDP model we

Moreover

O(K +x1,..., K +x,) = K —log (Z@_)

4 Main Results
4.1 Optimal policy
A policy « is called an optimal N-period policy if

E™ [exp(—vJ% (z))] attains its infimum over all admissible

policies atr for all 2. We call
Sy (@) = inf BT exp(—yJ5 (2))]

the optimal expected utility functiorwherell represents the

set of all admissible policies. As shown [Marcuset al,,
1997, by making use of th®elta propertythe problem can

considered. In particular, if the marginal cost functipsat-
isfies
[0

T =G(m) —mg(m) < K (1;)

(meaning thaty does not decrease too rapidly) whereis
the integral ofg andm is the maximum stock size, then the
following theorem holds:

Theorem 2. For any setup cos > 0, risk sensitiveness
~ > 0 and length of the management horizdh if w,, are
independently distributed;(-, w) is nondecreasing and con-
cave for anyw, andg is non increasing and satisfies condition
(11), then the function®, (x) defined as in (9) are continu-
ous andK-concave for alln = 1,..., N. Therefore, there
exists a non-stationang — s policy that is optimal for the
risk-sensitive optimization problem. The correspondipg o
timal expected log-utility functions1/~1log S} (x) are con-

11)

be decomposed and solved by Dynamic Programming usinfnuous, nondecreasing arfd-concave foralh = 1,..., N.

Bellman-like equations:
S/ (x) = (6)

i —va(R(z)—R(z—h)—K8o(h)) gra B
orgr};,nglmE[e S5 (f(x = hywy))]

for all ¢ > 0, with boundary conditiort] (x) = 1. Equation
(6) can also be rewritten in terms of the escapemeantr — h
as

Six)= (7

Jnin e RETRETERETDRISI?, (f(z,wy))]

Given the presence of fixed cogt§ a harvest is undertaken

if and only if there exist® < z < x such that
e 1RO =REZORSIY (f(2,w,))] < B[S (f (2, wy))]
or equivalently if and only if
—ye(R(z) — R(z) — K) + log B[S/ (f (z,we))] < (8)
log B[S (f (z, wy))]
We introduce
1 a
Pl(z) = —R(x) - "o log B[S} (f (z,we))]  (9)
so from (8) we get that a harvest is undertaken at tithand
only if there existg) < z < z such that
P)(z) < P](z) - K. (10)

If we prove that P (z) is continuous and strictlyX -

Proof. From Equation (11) there existse R such that
(K+T1)a<k<K (12)

The proof is by induction on the length of the control hori-
zon N. The base cas& = 0 is trivial becauseS] (z) =

S (x) = 1 for all z, and therefore—log(S%(z)) = 0

is continuous, nondecreasing ahgl-concave. Now we as-
sume that—1log S;_,(z) is continuous, nondecreasing and
k~-concave, and we show th&? (z) is continuous ands-
concave, and that log S} (x) is continuous, nondecreasing
andk~-concave.

Using the composition result of Lemma 1, sinfe, w) is
nondecreasing and concave foraland by the inductive hy-
pothesis, we have that log S) _,(f(z,w)) is ky-concave.
From the definition of expectation we obtain

log E[S]_, (f (2, wn))] = log (Z elospis) o SZ-““””’)

so that using Theorem 1 and Lemma 2, we get that
—1ogE[S)_,(f(z,w,))] is ky-concave as well.

By Equation (9) using Lemma 1-b, sineg?(x) is concave
and by induction—log E[S;%, (f(z,w;))] is kya-concave,
PY(x) is k-concave and therefore alg§6-concave. By Equa-
tion (9) we get thatP (z) is continuous, because by the in-
ductive hypothesis'“, (x) and R(x) are continuous.
Since P (x) is K-concave, by Lemma 1-d there exists two
thresholdsS,, < s, associated wittP(z) with the proper-
ties of Lemma 1-d. From the Dynamic Programming Equa-
tion (7) and what we have shown on condition (10), we have

concave, then using Lemma 1-d we can characterize the oﬁhat

timal policy at time step. In fact by Lemma 1-d there exists
two thresholdsS; < s; such that condition (10) is met if and

0P (2)+R(x))
10 (P (S0)+R(z)~K)

if z <s,

if x> s, (13)

510 = {



NN PY(z)+ R(x if v <s,
—log 57 (x) = { you (7 7((Sn()4)rR(:v() E)K) :f x> s,
(14)

From Equation (13) we ges$](z) is continuous because
P,(z) and R(z) are continuous and by definitiaR (s,,) +
R(sn) = PY(Sn)+R(sn)— K. To show—log S) (x) is non-

decreasing, we consider several cases. First notice ticd si

harvesting below the zero profit leve) is not profitable and

reduces the marginal growth of the stock, it must be the ca

thats,, > S,, > xzq. Givenzy > 1 > s,, > xg We have:
—log 57 (x2) + log S (#1) = va(R(x2) — R(z1)) = 0,

becauseR is nondecreasing far > zq. Inthe casd < x; <
r9 < s, We obtain:

[Szal( f(x1,wn))]
E[Sp2; (f(z2,wn))]
) =

—log S (xz2) +log S) (1) = log

Then is must be the case thatog S} (z2) + log S’Y(xl 0
because if-log S7%, () is nondecreasmg thefi) , ()
must be non-increasing, so for each S7%, (f(z1,w)) >

G2y (f(w2,w)).

In order to show that- log S} (z) is ky-concave, by Equa-
tion (12) it is sufficient to show that log S (x) is (K +
T)ay-concave using definition (5). When < = < y, Equa-
tion (5) holds becausB(-) is T-concave. When < y < s,,
—log S)(xz) = ya(P)(x) + R(x)) and therefore using by
Lemma 1-b Equation (5) holds becauBg(x) is K-concave
andR(-) is 7-concave. Finally, when < s, < y Equation
(5) can be written as
—log S (y+b) +log Sy (y)

log 57 (y)/Sh(z) = (z — y) b

It is jointly managed by the governments of U.S. and Canada
through the International Pacific Halibut Commission (IBHC
to provide rational management and avoid overfishing. In or-
der to do that, every year the IPHC decides tibtal allow-
able catch(TAC), represented in our model by the decision
variableh,,.

5.1 Management problem formulation

Sve consider the biological model presentedEnmonet al.,

2014 to study Area 3A of the Pacific Halibut fishery, one of
the 10 major regulatory areas in which waters are divided.
Their model is based 088 years of data from 1975 to 2007,
extracted from IPHC reports, and provides a very good fit
with the historical stock sizes. We briefly summarize their
model.

In the context of a fishery management, the state variable
x, represents the total biomass and the growth of the resource
is due to reproduction. To model these growth processes, we
consider a stochastic version of the Beverton-Holt model:
f(sn,wy,) = fo%n

1— _"0%n
( 1+ sp,/M’

Tp+1 = m)sn + wy, (15)

wheres,, = z,, — h,, is the escapement of fishing in year
According to Equation (15), the stock size at the beginning
of the next breeding season is given by the sum of two terms:
the fraction of the population that survives natural madtal
and the new recruitment. To account for variable factors and
uncertainty (such as weather conditions or the temperafure
the water) that affect the growth rate, we introduce stochas
ticity into the system in the form of seasonal shoeksthat
influence the new recruitment part. We will (a priori) assume
thatw,, are independent identically distributediform ran-

R(y +b) — R(y)
Yo(P () = P(Sn) + K + R(#) = R@y) = (@ =) = ——") < dom variable with a finite suppoft, = [1 — 0.11, 1 + 0.06].
o (K+ R(z) - B(y) — (& — 1) R(y +bl)] - R(y)) The values of the parameters of Equation (15) fitted to the
< ya(K +71) <k Parameter| Value
because’) (z) < PJ(S,) andR(:) is -concave. O q 9.07979 107
b 2.55465
Theorem 2 completely characterizes the structure of the p 4,300, 000% / (10° pounds)
optimal policy, but it does not provide an analytical sajati K 5,000, 000$
for the values of5,,, s,,. These values can be computed nu- ¢ 200, 000$ / 1000 skate soaks
merically by discretizing the continuous domains and swjvi a 1/(1 +0.05)
the resulting MDP by Dynamic Programming. Our knowl- m 015
edge on the structure of the optimal policy guarantees the M 196.3923 '106 ounds
consistencyof the method, that is a (uniform) convergence N ’ 0 54336?
of the discretized solution to the true one as the discretiza 0 :

tion step goes to zero. Moreover, the a priori knowledge on
the structure of the optimal policy reduces the computation
complexity of the algorithm used to compute the numerical
values of theS — s thresholds characterizing the policy. In
fact the policy for a given time stefs completely character-
ized by the corresponding threshald(that can be computed
for example by bisection) and by the optimal escapensent
associated with any state> s;.

Table 1: Parameter values for area 3A.

Halibut population in Area 3A are taken frof&rmonet al,,
2014 and reported in Table 1.

For the resource economics aspects of the model, we as-
sume that there are two categories of costs involvidded
costs(such as vessel repairs costs, license and insurance fees)
andvariable costgsuch as fuel and wages). While the first
. . . . component is independent of the size of the harvest, the sec-
5 The Pacific Halibut Marine Fishery ond one depends on the effort involved. The sum of all the
The North American Pacific halibut fishery is one of the mostfixed costs will be denoted witkk’, and these costs will be
important fisheries of the western coast of North Americaincurred every year in which a harvest is undertaken.



The model for variable costs will capture the fact that har-

of v) to something close to risk-neutral optimization (small

vesting is cheaper when the stock size is abundant. In partizalue of~).

ular, we assume that a harvest of slzthat brings the stock
size fromz to 2 — h results in variable costs given by

Lo
c —
o—h QY°
for someq andb. The functionc/(qz?) is precisely the
marginal harvesting cost functiop(x) introduced earlier.

dy

Furthermore, we assume that there is a fixed constant selling
pricep independent of the size of the harvest and we assume

a fixed discount factosx = 1/(1 + 0.05). The values of the
parameters are estimated[Brmonet al, 2014 and are re-

ported in Table 1.

5.2 Optimal risk-sensitive policy

We compute the optimal risk-sensitive policy by solvingIBel

man Equations (7) using a Dynamic Programming approac
for a discretized problem. In order to solve the problem, WE;
need to discretize both the state space and the control.spa%

In the experiments presented in this section we used a di
cretization step\ = 0.25 x 10% pounds. Moreover, we also
discretize the suppott, of the random variables involved,

thus obtaining a completely discrete MDP that we can solve

We computed the optimal risk-sensitive policy (R-S) for
the Pacific Halibut fishery in Area 3A for several valuesyof
and for a management length = 33 years. As predicted by
Theorem 2, the optimal policy is &f — s type. In particular,
given a fixedrisk-sensitiveness, an optimal policy is char-
acterized by tuple$,,, s,, forn = 1,...,33; at yearn, the
optimal policy prescribes to harvest the stock dowrbtoif
and only if the current stock is larger thap. This type of
management policy involvggeriodic closure®f the fishery,

where for several consecutive years no action is taken $o tha

the population can recover. In particular, after it has deen
vested down t&, it is optimal to wait for the stock to become
larger thans before opening the fishery again.

Periodic closures of the fishery are also prescribed by th

worst-case scenario policy considereflEnmonet al., 2014,
but the thresholds to be used are different, and in the ca

of a risk-sensitive policy they are dependent on the risk
sensitiveness used. However, this approach is very different
from the Constant Proportional Policy (CPP) that has bee

traditionally used to manage the Halibut fishery, that hsitzve

a fixed fraction of the current stock level every year in order

Policy Average (107$) | Worst case (079)
R-Sy=0.1 113.662 90.175
R-Sv=0.5 113.581 90.244
R-S~v=2.0 113.475 90.401
Worst case 112.940 90.514

Historical 96.491 70.686
Average CPP 90.709 65.185

Table 2: Policy Comparison

6 Conclusions and future work

In this paper, we consider a general class of MDPs used to
odel renewable resources allocation problems and we prove
e optimality of S — s policies in a risk-sensitive optimiza-

on framework. Our proof is based on a generalization of

%ncavity known ad<-concavity. As part of our proof, we

Ssﬁgnificantly generalize some fundamental results on the co

position of traditional concave functions.

Our framework generalizes previous approaches such as
the worst-case analysis, since it provides more balanced ap
proaches toward risk. In particular, it allows a range df ris
behaviors, from a worst-case approach (for layyjto a risk-
neutral approach (for smaf)), as well as a broad spectrum of
intermediate cases.

We apply our results to the Pacific Halibut fishery man-
agement problem, and find new evidence that a cyclic policy
involving periodic closures of the fishery should be emptbye
instead of the traditional constant escapement policies.

We are currently working towards an extension of #tie
concavity concept to multidimensional spaces, in order to
generalize our results on the optimality of S-s policies to
multidimensional settings. This would allow us to capture
interesting scenarios involving for example the intexatdi
etween multiple species. Another interesting research di

Sr‘gction is to examine whether the (multidimensionéal}

concavity concept arises in other traditional continudages
space or hybrid MDPs (e.qg. in robotic applications) from the

Al literature[Sutton and Barto, 1998or can be used to effi-

ciently compute approximate threshold-based policiesgs |
structured scenarios.

to maintain the population at at level perceived to be optima

(also known as aonstant escapement polit@lark, 199Q)

As we show in Table 25 — s policies are superior to his-
torical harvests and CPP policy in terms of total discounte
revenue (the experiment is initialized with an initial #®ize
1 = Xig975 = 90.989 million pounds), both assuming a
worst-case realization of the randomness and assuuriirg
form samples fron1,,. While the worst-case policy is indeed
(by definition!) optimal for a worst-case realization, thekr
sensitive approach is far more versatile. In fact by chapsin

a suitable value ofy, we can take a more balanced attitude
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