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Abstract

Markov Decision Processes arise as a natural model
for many renewable resources allocation problems.
In many such problems, high stakes decisions with
potentially catastrophic outcomes (such as the col-
lapse of an entire ecosystem) need to be taken by
carefully balancing social, economic, and ecologic
goals. We introduce a broad class of such MDP
models with a risk averse attitude of the decision
maker, in order to obtain policies that are more bal-
anced with respect to the welfare of future genera-
tions. We prove that they admit a closed form solu-
tion that can be efficiently computed.
We show an application of the proposed framework
to the Pacific Halibut marine fishery, obtaining new
and more cautious policies. Our results strengthen
findings of related policies from the literature by
providing new evidence that a policy based on pe-
riodic closures of the fishery should be employed,
in place of the one traditionally used that harvests a
constant proportion of the stock every year.

1 Introduction
In this paper, we consider a broad class of MDPs that can be
used as a model for the management of a renewable resource.
While the most common examples are probably living re-
sources, such as animal populations or forests, other typesof
resources such as time, energy, and financial resources can be
also considered[Ermonet al., 2010]. In fact, the problem of
managing the stock of a resource dynamically changing over
time is quite general and it arises in many different fields un-
der different names. In particular, in arenewableresource
allocation problem, the stock of a (valuable) resource is dy-
namicallygrowing over time. Such growth processes might
occur on a continuous or discrete time scale, they are subject
to nonlinear dynamics and they are affected by randomness.
When we also factor in social and economic aspects, these
multiple levels of complexity can easily lead to very chal-
lenging sequential decision making problems.

Most of the work[Clark, 1990; Conrad, 1999] in the liter-
ature on the management of such resources is based onrisk-
neutral formulations, where the goal is that of maximizing

the sum of (discounted) economic rewards over time. How-
ever, in many domains arising in the emerging field of Com-
putational Sustainability[Gomes, 2009], this approach can
be inadequate. In fact in many such problems, high stakes
decisions with potentially catastrophic outcomes (such asthe
collapse of an entire ecosystem) need to be taken by care-
fully balancing social, economic and ecologic goals. More
in general, a fundamental challenge ofsustainability science
[Clark, 2007] is how to take decisions that balance the wel-
fare of current and future generations and to devise policies
that provide guarantees on the welfare of future generations.
In this context,risk-neutralapproaches are usually not capa-
ble of providing such guarantees. For instance, in the case of
the management of an animal population, policies that are too
aggressive may cause the collapse of an entire population.

As a partial answer to these questions, we propose the in-
troduction of decision theoretic concepts into the optimiza-
tion frameworks, by leveraging the significant advancements
made by the AI community. In general, we can model and
solve MDPs with general utility functions[Liu and Koenig,
2006], so that we can capture the behavior of almost every
rational decision maker[Von Neumannet al., 2007] and cast
resource allocation problems into a much richer framework.
In particular, in the context of natural resources, it is criti-
cal to introducerisk-averseattitudes of the decision makers
by choosing suitable utility functions, as opposed to standard
risk-neutralapproaches. By enforcing risk-aversion, we ob-
tain policies that are more cautious and less prone to those
catastrophic outcomes that might endanger the welfare of fu-
ture generations.

With similar goals, Ermon et al.[Ermonet al., 2010] pro-
pose the use of aworst-case scenarioanalysis (which is anal-
ogous to a game against nature) in order to minimize the risk
of collapse in resource allocation problems. However, while a
risk-neutral approach might be too optimistic, the worst-case
scenario is often too pessimistic. To overcome these prob-
lems, we propose the use of an exponential utility function
of the formU(x) = exp(γx) that maps revenues to utili-
ties. Our approach is significantly more general, because by
choosing the right value ofγ we are able to capture a broad
range of risk-attitudes between the two extreme cases ofrisk-
neutral andworst-caseapproaches. In fact, when the popu-
lation becomes dangerously small, the revenue will drop and
the exponential scaling will significantly penalize the utility



of such scenarios. While on one hand we lose the theoreti-
cal lower-bound guaranteed by the game against nature ap-
proach, on the other hand in any practical application there
is always another level of uncertainty affecting the estimated
support of the probability distributions involved (i.e. the set
of available moves in the game against nature framework).
Therefore, in reality, such theoretical lower-bounds are less
reliable than one might expect because of the uncertainty in
the model parameters. Moreover, exponential utility func-
tions are particularly suitable for sequential decision making
problems because they are the only class of utility functions
(together with linear ones) that satisfy the so-calleddelta
property, that allows for optimal policies that are not history-
dependent and hence are easy to describe and to implement
in real-world problems.

Previously, risk-sensitive policies for harvesting biological
populations were considered in[Horwood, 1996]. The author
extended some known optimality results to the risk-sensitive
case for some continuous-time models which were originally
introduced in[Clark, 1990]. However, except in the linear
dynamics and quadratic cost case, the obtained results were
heuristic or characterizations of thelocal optimality of the
policies (with necessary but not sufficient conditions based
on Pontryagin’s Maximum Principle). In contrast, our main
result (Theorem 2) proves that a general class of discrete-time
MDPs with exponential utility functions admits a closed form
optimal solution (i.e. with a given structure that allows for
a compact analytical representation) that can be easily im-
plemented by policy makers. These results are especially
interesting because there are only a few MDPs with known
closed form solutions. The proof is based on a generalized
notion of concavity known asK-concavity originally intro-
duced to study inventory control problems[Scarf, 1960]. In
order to prove Theorem 2, we first show some useful results
on the composition ofK-concave functions that generalize
some fundamental properties on the composition of standard
concave functions.

We demonstrate the practical applicability of the proposed
framework by studying the Pacific Halibut fishery manage-
ment problem. This domain of applications is particularly
important because marine fishery resources are one of the
most poorly managed and most endangered ones due to over-
exploitation[FAO, 2005]. Our results provide new evidence
that a new policy based on periodic closures of the fishery
should be employed, instead of the traditional policy that har-
vests a constant proportion of the stock every year.

2 Preliminaries
2.1 Risk-sensitive MDP formulation
We consider a class of Markov Decision Processes that arises
as a general model for many renewable resources allocation
problems. Examples of such real-world problems are the
management of natural resources such as animal species or
forests, as described in detail in[Clark, 1990; Conrad, 1999;
Ermon et al., 2010]. However, our model is more general
and our results apply to a broad class of so called generalized
inventory control problems[Scarf, 1960] that are extended
with the introduction of a stock-dependent internal growth

function. This framework is quite general and finds applica-
tions in many different fields. In fact, the stock variable can
represent resources such as time, energy, natural and finan-
cial resources, depending on the application domains. These
include natural resources management, supply chain manage-
ment, vaccine distribution and pollution control[Ermonet al.,
2010].

We consider a discrete-time continuous-space problem
where the state variablexn ∈ R represents the available stock
of the resource at time stepn. The stockxn is modeled as a
Markov Chain with non-linear dynamics evolving according
to the following difference equation

xn+1 = f(xn − hn, wn), (1)

wherehn is the control variable, representing the amount of
resource that is extracted or harvested at time stepn. The
internal growth processes are modeled using astock recruit-
ment functionf(x) that is, in general, density dependent, in
order to capture phenomena such as competition for limited
food and habitat in animal populations. We suppose that there
is a finite maximum stock size denoted bym. Uncertainty is
introduced into the model using the random variableswn, as-
sumed to bediscreteand independent. As an example, in a
fishery modelwn are used to model factors such as weather
conditions, climate change or the temperature of the water,all
uncontrollable factors that affect the growth rate of the stock.

To complete the description of the MDP, we introduce
a standard economic model used by[Clark, 1990; Conrad,
1999; Ermonet al., 2010] and others. We suppose that a
harvest of sizeh generates a revenue equal tohp, wherep
is a fixed constant selling price. We assume that there is a
marginal harvesting costg(x) per unit harvested when the
stock size isx and that each time a harvest is undertaken there
is a fixed set-up costK, independently of the size of the har-
vest. The net revenue (selling profits minus costs) associated
with a harvesth from an initial populationx is then given by

ph−

∫ x

x−h

g(y)dy −K , R(x)−R(x− h)−K, (2)

where

R(x) = px−

∫ x

0

g(y)dy.

The marginal harvesting costg(x) is assumed to be a decreas-
ing function ofx, so that harvesting becomes cheaper when
the stock is abundant. We definex0 to be the stock size such
thatg(x0) = p, that is thezero profit level. As a consequence
for all x > x0 we have that the functionR(x) defined in
Equation (2) is non decreasing and convex.

2.2 Risk-sensitive optimization

According to Utility Theory[Von Neumannet al., 2007], ev-
ery rational decision maker who accepts a small number of
axioms has a utility functionU that maps their real-valued
wealth levelsw into finite real-valued utilitiesU(w) so that
they always choose the course of action that maximizes their
expected utility.



In decision theory, the attitude towards risk of a decision
maker is represented by the utility functionU . Given a ran-
dom variablev (often called alottery), in general not all out-
comes ofv are equally significant: the decision maker ranks
them according to the utility functionU . In particular, a deci-
sion maker isrisk-averseif E[U(v)] ≤ U(E[v]) meaning that
he prefers the expected value of the lottery over the lottery
itself.

While MDPs with general utility functions can be solved
using the method proposed in[Liu and Koenig, 2006], the re-
sulting optimal policy is defined in an extended state-space
and is in general history-dependent. Of particular interest for
the case of sequential decision making is the case of exponen-
tial (and linear) utility functions, that as shown in[Howard
and Matheson, 1972] have a constant aversion to risk that pro-
vides the kind of separability required to implement dynamic
programming and lead to optimal policies that are not history
dependent. Instead of considering the traditional case of lin-
ear utility function (risk-neutral approach), in this paper we
consider the case of exponential utility functions, so thatthe
resulting policies can be easily described and implementedin
practice.

Since we are interested in fully observable closed loop op-
timization approaches, where decisions are made in stages
and the manager is allowed to gather information about the
system between stages, we introduce the concept ofpolicy.
A policy is a sequence of rules used to select at each period
a harvest level for each stock size that can possibly occur.
In particular, anadmissible policyπ = {µ1, . . . , µN} is a
sequence of functions, each one mapping stocks sizesx to
harvestsh, so that for allx and for alli

0 ≤ µi(x) ≤ x. (3)

We consider the problem of finding anadmissible policyπ =
{µi}i∈[1,N ] that minimizes

E
π[exp(−γJπ

N (x))] , γ > 0 (4)

where thelottery is the total discounted net revenue

Jπ
N (x) =

N
∑

n=1

αn(R(xn)−R(xn − hn)−Kδ0(hn))

wherexn is subject to (1) andhn = µn(xn), with initial
conditionx1 = x and

δ0(x) =

{

1 if x > 0,
0 otherwise.

and0 < α < 1 is the discount factor. The parameterγ is
calledrisk sensitiveness, and the largerγ the more risk averse
the decision maker is. Intuitively, this is because small real-
izations ofJπ

N (x) are heavily penalized by the exponentia-
tion. In the limit γ → ∞, the smallest realization ofJπ

N (x)
dominates the expectation in (4), as happens in the worst-case
analysis situation[Ermonet al., 2010].

3 Properties ofK-concave Functions
To study the optimal policies for this risk-sensitive MDP
model, we will make use of a property known asK-concavity.
The standard definition ofK-concavity is the following:

Definition 1. A functionβ(·) isK-concave on an intervalI
if for all x, y, x < y, and for allb > 0 such thaty + b ∈ I

β(x)− β(y)− (x− y)
β(y + b)− β(y)

b
≤ K. (5)

Equivalently,β(·) is K-concave if for allx < z ∈ I and
λ ∈ [0, 1]

λβ(x) + (1− λ)β(z) ≤ Kλ+ β(λx+ (1− λ)z)

The fundamental result onK-concavity is the following
Lemma:

Lemma 1. The following properties hold:

a) A concave function is0-concave and henceK-concave for
all K ≥ 0 .

b) If β1(q) andβ2(q) areK1-concave andK2-concave, re-
spectively, for constantsK1 ≥ 0 and K2 ≥ 0, then
aβ1(q) + bβ2(q) is (aK1 + bK2)-concave for any scalars
a > 0 andb > 0.

c) If β(·) is nondecreasing and concave onI andψ is non-
decreasing andK-concave on[infx∈I β(x), supx∈I β(x)]
then the compositionψ ◦ β isK-concave onI

d) If β(·) is a continuous,K-concave function on the interval
[0,m], then there exists scalars0 ≤ S ≤ s ≤ m such that

• β(S) ≥ β(q) for all q ∈ [0,m].
• Eithers = m andβ(S)−K ≤ β(m) or s < m and
β(S)−K = β(s) ≥ β(q) for all q ∈ [s,m).

• β(·) is a decreasing function on[s,m].
• For all x ≤ y ≤ s, β(x)−K ≤ β(y).

This is a dual version of the properties ofK-convex func-
tions proved for example in[Bertsekas, 1995, Section 4.2].

In order to prove our main results, we use the following
novel theoretical results on the vector composition ofK-
concave functions, that significantly generalize the standard
results on the composition of regular concave functions.

Theorem 1. Let φ : R
n → R be a concave function

non-decreasing in each of its arguments such thatφ(K +
x1, . . . ,K+xn) ≤ K+φ(x1, . . . , xn) for all x1, . . . , xn,K
and letβ1(x), . . . , βn(x) be a family of functionsR → R

such thatβi(x) is K-concave and non-decreasing fori =
1, . . . , n. Thenγ(x) = φ(β1(x), . . . , βn(x)) isK-concave.

Proof. We have

γ(x) + (1− λ)γ(z) =

φ(β1(x), . . . , βn(x)) + (1− λ)φ(β1(z), . . . , βn(z)) ≤

φ(λβ1(x) + (1− λ)β1(z), . . . , λβn(x) + (1− λ)βn(z)) ≤

φ(Kλ+ β1(λx+ (1− λ)z), . . . ,Kλ+ βn(λx+ (1− λ)z)) ≤

Kλ+ φ(β1(λx+ (1− λ)z), . . . , βn(λx+ (1− λ)z)) =

Kλ+ γ(λx+ (1− λ)z)

Lemma 2. The log-sum-exp functionφ : R
n → R de-

fined asφ(z1, . . . , zn) = − log
∑

e−zi is a concave func-
tion non-decreasing in each of its arguments such that
φ(K + x1, . . . ,K + xn) ≤ K + φ(x1, . . . , xn) for all
x1, . . . , xn,K ∈ R.



Proof. From[Boyd and Vandenberghe, 2004] we have that

f(x) = log(ex1 + . . .+ exn)

is convex and non decreasing in each of its arguments, so

φ(z1, . . . , zn) = − log
∑

e−zi

is a concave function non-decreasing in each of its arguments.
Moreover

φ(K + x1, . . . ,K + xn) = K − log
(

∑

e−zi
)

4 Main Results
4.1 Optimal policy
A policy π is called an optimal N -period policy if
E
π[exp(−γJπ

N (x))] attains its infimum over all admissible
policies atπ for all x. We call

Sγ
N (x) = inf

π∈Π
E
π[exp(−γJπ

N (x))]

theoptimal expected utility function, whereΠ represents the
set of all admissible policies. As shown in[Marcuset al.,
1997], by making use of theDelta propertythe problem can
be decomposed and solved by Dynamic Programming using
Bellman-like equations:

Sγ
t (x) = (6)

min
0≤h≤x

E[e−γα(R(x)−R(x−h)−Kδ0(h))Sγα
t−1(f(x− h,wt))]

for all t > 0, with boundary conditionSγ
0 (x) = 1. Equation

(6) can also be rewritten in terms of the escapementz = x−h
as

Sγ
t (x) = (7)

min
0≤z≤x

e−γα(R(x)−R(z)−Kδ0(x−z))
E[Sγα

t−1(f(z, wt))]

Given the presence of fixed costsK, a harvest is undertaken
if and only if there exists0 ≤ z ≤ x such that

e−γα(R(x)−R(z)−K)
E[Sγα

t−1(f(z, wt))] < E[Sγα
t−1(f(x,wt))]

or equivalently if and only if

−γα(R(x)−R(z)−K) + logE[Sγα
t−1(f(z, wt))] < (8)

logE[Sγα
t−1(f(x,wt))]

We introduce

P γ
t (x) = −R(x)−

1

γα
logE[Sγα

t−1(f(x,wt))] (9)

so from (8) we get that a harvest is undertaken at timet if and
only if there exists0 ≤ z ≤ x such that

P γ
t (x) < P γ

t (z)−K. (10)

If we prove thatP γ
t (x) is continuous and strictlyK-

concave, then using Lemma 1-d we can characterize the op-
timal policy at time stept. In fact by Lemma 1-d there exists
two thresholdsSt ≤ st such that condition (10) is met if and

only if x > st. If x > st, the optimal escapementz in Equa-
tion (7) is exactly the other thresholdSt by the properties
proved in Lemma 1-d. This policy is known in the Opera-
tions Research community[Scarf, 1960] as a nonstationary
S − s policy, because the levelsSt andst depend on the time
indext.

Our main result is that we can prove that a nonstationary
S − s policy is optimal for the risk-sensitive MDP model we
considered. In particular, if the marginal cost functiong sat-
isfies

τ = G(m)−mg(m) < K

(

1− α

α

)

(11)

(meaning thatg does not decrease too rapidly) whereG is
the integral ofg andm is the maximum stock size, then the
following theorem holds:

Theorem 2. For any setup costK > 0, risk sensitiveness
γ > 0 and length of the management horizonN , if wn are
independently distributed,f(·, w) is nondecreasing and con-
cave for anyw, andg is non increasing and satisfies condition
(11), then the functionsP γ

n (x) defined as in (9) are continu-
ous andK-concave for alln = 1, . . . , N . Therefore, there
exists a non-stationaryS − s policy that is optimal for the
risk-sensitive optimization problem. The corresponding op-
timal expected log-utility functions−1/γ logSγ

n(x) are con-
tinuous, nondecreasing andK-concave for alln = 1, . . . , N .

Proof. From Equation (11) there existsk ∈ R such that

(K + τ)α < k < K (12)

The proof is by induction on the length of the control hori-
zonN . The base caseN = 0 is trivial becauseSγ

0 (x) =
Sγ
N (x) = 1 for all x, and therefore− log(Sγ

N (x)) = 0
is continuous, nondecreasing andkγ-concave. Now we as-
sume that− logSγ

n−1(x) is continuous, nondecreasing and
kγ-concave, and we show thatP γ

n (x) is continuous andK-
concave, and that− logSγ

n(x) is continuous, nondecreasing
andkγ-concave.
Using the composition result of Lemma 1, sincef(·, w) is
nondecreasing and concave for allw and by the inductive hy-
pothesis, we have that− logSγ

n−1(f(x,w)) is kγ-concave.
From the definition of expectation we obtain

logE[Sγ
n−1(f(x,wn))] = log

(

∑

i

elog p(wi
n)+logSγ

n−1
(f(x,wi

n))

)

so that using Theorem 1 and Lemma 2, we get that
− logE[Sγ

n−1(f(x,wn))] is kγ-concave as well.
By Equation (9) using Lemma 1-b, since−R(x) is concave

and by induction− logE[Sγα
t−1(f(x,wt))] is kγα-concave,

P γ
n (x) is k-concave and therefore alsoK-concave. By Equa-

tion (9) we get thatP γ
n (x) is continuous, because by the in-

ductive hypothesisSγα
n−1(x) andR(x) are continuous.

SinceP γ
n (x) is K-concave, by Lemma 1-d there exists two

thresholdsSn ≤ sn associated withP γ
n (x) with the proper-

ties of Lemma 1-d. From the Dynamic Programming Equa-
tion (7) and what we have shown on condition (10), we have
that

Sγ
n(x) =

{

e−γα(Pγ
n (x)+R(x)) if x ≤ sn

e−γα(Pγ
n (Sn)+R(x)−K) if x > sn

(13)



− logSγ
n(x) =

{

γα(P γ
n (x) +R(x)) if x ≤ sn

γα(P γ
n (Sn) +R(x)−K) if x > sn

(14)
From Equation (13) we getSγ

n(x) is continuous because
Pn(x) andR(x) are continuous and by definitionP γ

n (sn) +
R(sn) = P γ

n (Sn)+R(sn)−K. To show− logSγ
n(x) is non-

decreasing, we consider several cases. First notice that since
harvesting below the zero profit levelx0 is not profitable and
reduces the marginal growth of the stock, it must be the case
thatsn ≥ Sn ≥ x0. Givenx2 > x1 > sn ≥ x0 we have:

− logSγ
n(x2) + logSγ

n(x1) = γα(R(x2)−R(x1)) ≥ 0,

becauseR is nondecreasing forx ≥ x0. In the case0 ≤ x1 <
x2 ≤ sn we obtain:

− logSγ
n(x2) + logSγ

n(x1) = log
E[Sγα

n−1(f(x1, wn))]

E[Sγα
n−1(f(x2, wn))]

.

Then is must be the case that− logSγ
n(x2)+ logSγ

n(x1) ≥ 0
because if− logSγα

n−1(x) is nondecreasing , thenSγα
n−1(x)

must be non-increasing, so for eachω, Sγα
n−1(f(x1, ω)) ≥

Sγα
n−1(f(x2, ω)).
In order to show that− logSγ

n(x) is kγ-concave, by Equa-
tion (12) it is sufficient to show that− logSγ

n(x) is (K +
τ)αγ-concave using definition (5). Whensn < x < y, Equa-
tion (5) holds becauseR(·) is τ -concave. Whenx < y ≤ sn,
− logSγ

n(x) = γα(P γ
n (x) + R(x)) and therefore using by

Lemma 1-b Equation (5) holds becauseP γ
n (x) isK-concave

andR(·) is τ -concave. Finally, whenx ≤ sn < y Equation
(5) can be written as

log S
γ

n(y)/S
γ

n(x) − (x − y)
− log Sγ

n(y + b) + log Sγ
n(y)

b
=

γα(P
γ

n (x) − P
γ

n (Sn) + K + R(x) − R(y) − (x − y)
R(y + b) − R(y)

b
) ≤

γα

(

K + R(x) − R(y) − (x − y)
R(y + b) − R(y)

b

)

≤ γα(K + τ) ≤ γk.

becauseP γ
n (x) ≤ P γ

n (Sn) andR(·) is τ -concave.

Theorem 2 completely characterizes the structure of the
optimal policy, but it does not provide an analytical solution
for the values ofSn, sn. These values can be computed nu-
merically by discretizing the continuous domains and solving
the resulting MDP by Dynamic Programming. Our knowl-
edge on the structure of the optimal policy guarantees the
consistencyof the method, that is a (uniform) convergence
of the discretized solution to the true one as the discretiza-
tion step goes to zero. Moreover, the a priori knowledge on
the structure of the optimal policy reduces the computational
complexity of the algorithm used to compute the numerical
values of theS − s thresholds characterizing the policy. In
fact the policy for a given time stept is completely character-
ized by the corresponding thresholdst (that can be computed
for example by bisection) and by the optimal escapementSt

associated with any statex > st.

5 The Pacific Halibut Marine Fishery
The North American Pacific halibut fishery is one of the most
important fisheries of the western coast of North America.

It is jointly managed by the governments of U.S. and Canada
through the International Pacific Halibut Commission (IPHC)
to provide rational management and avoid overfishing. In or-
der to do that, every year the IPHC decides thetotal allow-
able catch(TAC), represented in our model by the decision
variablehn.

5.1 Management problem formulation

We consider the biological model presented in[Ermonet al.,
2010] to study Area 3A of the Pacific Halibut fishery, one of
the 10 major regulatory areas in which waters are divided.
Their model is based on33 years of data from 1975 to 2007,
extracted from IPHC reports, and provides a very good fit
with the historical stock sizes. We briefly summarize their
model.

In the context of a fishery management, the state variable
xn represents the total biomass and the growth of the resource
is due to reproduction. To model these growth processes, we
consider a stochastic version of the Beverton-Holt model:

xn+1 = f(sn, wn) = (1−m)sn + wn
r0sn

1 + sn/M
, (15)

wheresn = xn − hn is the escapement of fishing in yearn.
According to Equation (15), the stock size at the beginning
of the next breeding season is given by the sum of two terms:
the fraction of the population that survives natural mortality
and the new recruitment. To account for variable factors and
uncertainty (such as weather conditions or the temperatureof
the water) that affect the growth rate, we introduce stochas-
ticity into the system in the form of seasonal shockswn that
influence the new recruitment part. We will (a priori) assume
thatwn are independent identically distributeduniform ran-
dom variable with a finite supportIw = [1− 0.11, 1 + 0.06].
The values of the parameters of Equation (15) fitted to the

Parameter Value
q 9.07979 10−7

b 2.55465
p 4, 300, 000$ / (106 pounds)
K 5, 000, 000$
c 200, 000$ / 1000 skate soaks
α 1/(1 + 0.05)

m 0.15
M 196.3923 106 pounds
r0 0.543365

Table 1: Parameter values for area 3A.

Halibut population in Area 3A are taken from[Ermonet al.,
2010] and reported in Table 1.

For the resource economics aspects of the model, we as-
sume that there are two categories of costs involved:fixed
costs(such as vessel repairs costs, license and insurance fees)
andvariable costs(such as fuel and wages). While the first
component is independent of the size of the harvest, the sec-
ond one depends on the effort involved. The sum of all the
fixed costs will be denoted withK, and these costs will be
incurred every year in which a harvest is undertaken.



The model for variable costs will capture the fact that har-
vesting is cheaper when the stock size is abundant. In partic-
ular, we assume that a harvest of sizeh that brings the stock
size fromx to x− h results in variable costs given by

c

∫ x

x−h

1

qyb
dy

for someq and b. The functionc/(qxb) is precisely the
marginal harvesting cost functiong(x) introduced earlier.
Furthermore, we assume that there is a fixed constant selling
pricep independent of the size of the harvest and we assume
a fixed discount factorα = 1/(1 + 0.05). The values of the
parameters are estimated in[Ermonet al., 2010] and are re-
ported in Table 1.

5.2 Optimal risk-sensitive policy
We compute the optimal risk-sensitive policy by solving Bell-
man Equations (7) using a Dynamic Programming approach
for a discretized problem. In order to solve the problem, we
need to discretize both the state space and the control space.
In the experiments presented in this section we used a dis-
cretization step∆ = 0.25 × 106 pounds. Moreover, we also
discretize the supportIw of the random variables involved,
thus obtaining a completely discrete MDP that we can solve.

We computed the optimal risk-sensitive policy (R-S) for
the Pacific Halibut fishery in Area 3A for several values ofγ
and for a management lengthN = 33 years. As predicted by
Theorem 2, the optimal policy is ofS − s type. In particular,
given a fixedrisk-sensitivenessγ, an optimal policy is char-
acterized by tuplesSn, sn for n = 1, . . . , 33; at yearn, the
optimal policy prescribes to harvest the stock down toSn if
and only if the current stock is larger thansn. This type of
management policy involvesperiodic closuresof the fishery,
where for several consecutive years no action is taken so that
the population can recover. In particular, after it has beenhar-
vested down toS, it is optimal to wait for the stock to become
larger thans before opening the fishery again.

Periodic closures of the fishery are also prescribed by the
worst-case scenario policy considered in[Ermonet al., 2010],
but the thresholds to be used are different, and in the case
of a risk-sensitive policy they are dependent on the risk-
sensitivenessγ used. However, this approach is very different
from the Constant Proportional Policy (CPP) that has been
traditionally used to manage the Halibut fishery, that harvests
a fixed fraction of the current stock level every year in order
to maintain the population at at level perceived to be optimal
(also known as aconstant escapement policy[Clark, 1990])

As we show in Table 2,S − s policies are superior to his-
torical harvests and CPP policy in terms of total discounted
revenue (the experiment is initialized with an initial stock size
x1 = X1975 = 90.989 million pounds), both assuming a
worst-case realization of the randomness and assuminguni-
formsamples fromIw. While the worst-case policy is indeed
(by definition!) optimal for a worst-case realization, the risk
sensitive approach is far more versatile. In fact by choosing
a suitable value ofγ, we can take a more balanced attitude
toward risk, giving us a much broader spectrum of possible
alternatives, that range from close to worst-case (large values

of γ) to something close to risk-neutral optimization (small
value ofγ).

Policy Average (107$) Worst case (107$)
R-Sγ = 0.1 113.662 90.175
R-Sγ = 0.5 113.581 90.244
R-Sγ = 2.0 113.475 90.401
Worst case 112.940 90.514
Historical 96.491 70.686

Average CPP 90.709 65.185

Table 2: Policy Comparison

6 Conclusions and future work
In this paper, we consider a general class of MDPs used to
model renewable resources allocation problems and we prove
the optimality ofS − s policies in a risk-sensitive optimiza-
tion framework. Our proof is based on a generalization of
concavity known asK-concavity. As part of our proof, we
significantly generalize some fundamental results on the com-
position of traditional concave functions.

Our framework generalizes previous approaches such as
the worst-case analysis, since it provides more balanced ap-
proaches toward risk. In particular, it allows a range of risk
behaviors, from a worst-case approach (for largeγ) to a risk-
neutral approach (for smallγ), as well as a broad spectrum of
intermediate cases.

We apply our results to the Pacific Halibut fishery man-
agement problem, and find new evidence that a cyclic policy
involving periodic closures of the fishery should be employed
instead of the traditional constant escapement policies.

We are currently working towards an extension of theK-
concavity concept to multidimensional spaces, in order to
generalize our results on the optimality of S-s policies to
multidimensional settings. This would allow us to capture
interesting scenarios involving for example the interactions
between multiple species. Another interesting research di-
rection is to examine whether the (multidimensional)K-
concavity concept arises in other traditional continuous state
space or hybrid MDPs (e.g. in robotic applications) from the
AI literature[Sutton and Barto, 1998], or can be used to effi-
ciently compute approximate threshold-based policies to less
structured scenarios.
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