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Abstract. The high cost, limited capacity, and long recharge time of batteries
pose a number of obstacles for the widespread adoption of electricleghic
Multi-battery systems that combine a standard battery with supercapaaitors
currently one of the most promising ways to increase battery lifespareduode
operating costs. However, their performance crucially depends wrthey are
designed and operated.

In this paper, we formalize the problem of optimizing real-time energy gena
ment of multi-battery systems as a stochastic planning problem, and wesgro

a novel solution based on a combination of optimization, machine learnithg an
data-mining techniques. We evaluate the performance of our intelligengyen
management system on various large datasets of commuter trips orowed in

the United States. We show that our policy significantly outperforms the lgadin
algorithms that were previously proposed as part of an open algorittimaie
lenge.

1 Introduction

Electric vehicles, partially or fully powered by batteriese one of the most promising
directions towards a more sustainable transportatioresystiowever, the high costs,
limited capacities, and long recharge times of batterieg@onumber of obstacles for
their widespread adoption. Several researchers in thedfe@bmputational Sustain-
ability [1] have addressed aspects of this problem. In paldr, there is an active line
of research focusing on improving navigation systems witheh routing algorithms,
both by taking into account specific features of electridelels [2], and by considering
new aspects such as real-time information about road dondiand traffic lights [3].

In this paper, we focus on a complementary aspect of the gmotiat is optimizing
the energy efficiency of batteries in electric vehicles. réhare two main sources of
inefficiencies in batteries. The first one is that due to mdéresistance, battery energy
is partially wasted as heat when it is charged and dischaifjeel second one is that
due to Peukert’s Law, the actual delivered capacity of eebatiepends on the rate at
which it is discharged. Furthermore, current battery tetbgy imposes rather severe
limits on the number of charge/recharge cycles a batteryraadle, thus reducing their
lifespan and increasing operating costs.
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One promising direction towards addressing these isseawnalti-battery systems,
such as the ones proposed in [4] and [5], which integrateralatd battery with one or
more supercapacitors, as depicted in Figure 1. Intuitithlyidea is that while the bat-
tery is good at holding the charge for long times, the sugeexcitor is efficient for rapid
cycles of charge and discharge. Using the capacitor as agyeheffer, one can sig-
nificantly increase the battery’s lifespan by reducing itsydin fact, although superca-
pacitors have low energy densities, they behave like an gtery that can efficiently
handle millions of full charge/discharge cycles. The perfance of these systems is
heavily dependent on how they are managed. In this directicare has been recent
work in the automated planning community on the optimal dakirg of multi-battery
systems [6, 7]. However, previous work assumes full knogdeaof an underlying prob-
abilistic model describing the system, which is not avadddbr electric vehicles. Since
it would be very difficult to construct such a model using agrinformation, we take
a data driven approach to the problem. In particular, wertye a large dataset of
commuter trips collected across the United States by Chard8], a crowdsourcing
project open to the public, and we construct an efficient gameent scheme using a
sample-based optimization approach. Specifically, afinohg a suitable set of fea-
tures, we learn an empirical Markov Decision Process (MD&)@hfrom the available
data, and we compute a policy that optimizes the averagenpesice. This policy is
represented as a large table of state-action pairs, andyislefined for states that were
previously observed in the dataset, while we wish to constiumore general manage-
ment scheme that applies to a wider range of scenarios. Wefdie use this policy
as a training set, and we use supervised learning techniguearn a new policy that
compactly represents the information available and géimessto situations previously
unseen in the training set. This policy is shown to outpenftine leading algorithms
that were previously proposed as part of an open algoritichadienge.

2 Sampling-based Optimization

We consider a probabilistic planning problem formulated Markov Decision Process
(MDP). An MDP is a tuplg(S, A, P, ¢) whereS is a set of statesd is a set of actions,
P is a set of transition probabilities and: S x A x S — R is an (immediate) cost
function. If an agent executes an actiore A while in a states € S, then it incurs in
an immediate cost(s, a, s’) and it transitions to a new staté € S with probability
P(s'|s,a). We denote byA(s) C A the set of actions available while the agent is in
states. Further, there exists a finite setgdal states7 C S, where the agent stops to
execute actions, and no longer incurs in any cost.

In this paper, we consider a class of factored MDPs wisere X x Y so that any
states € S has two components = (z,y) with z € X andy € Y. We assume the
dynamics of the two components are independent, i.e. thsitian probabilities can
be factored as follows

P((a",y)(2,y), a) = Puo(a|2) Py (y'|y, a).

Notice thatz’ does not depend on the actianwhich only affects the componept.
The two components of the state are however coupled by thediate cost function
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c((z,y),a, (z',y")), which can depend on bothandy. We assume thak, (-) and the
immediate cost function(-) are known butP,(-) is unknown. However, we are given
a set of K i.i.d. sample trajectorie$, - - -, Tx of thex component of the state space,
where

7’; = (J“E)) 3311’ e 7‘2:%"1'—1)
is sampled according t&,(2|z) andz?. _, € G, is a goal state. For example, in
our battery management application, each trajectory sporeds to one commuter trip.
Given this information, our objective is to find an admissipblicy that minimizes the
expected cost for this partially unknown MDP.

Givenz,z’ € X, let f(x,2") be the empirical transition probability fromto '
according to the available samples (the number of tiMdeppears immediately after
over the number of times appears). We can define DP equations based on the sampled
transition probabilities as follows

Vizg,y)= min | > 3" f(,a')Py(y'ly, ) (c((,y),a, (@) + V(')

acA(z,y) X yey

for all observed states € | J 7;. Solving the DP equations, we can compute the “opti-
mal posterior action*(s) = a*(x,y) forall z € 7; and for ally € Y, thatis the action
minimizing the total expected cost according to our maxirikelihood estimate of
the underlying MDP model. Notice that the “optimal postegotion” «*(s) converges
to the true optimal action for the MDP &8 — oo becausef(z,z') — P.(2'|z)
(assuming the initial states, are uniformly sampled).

Although the number of distinct statese | J7; € X can be very large, the sam-
plesTi,---, Tk do not necessarily cover the entire state spdEcéVe therefore wish
to obtain a compact representation of the poli¢y-), that hopefully will be able to
generalize to statese X such that ¢ | J 7;, i.e. states previously unseen in the set of
available samples. We therefore generate a labeled tgpginof state-action pairs

Uty @)r e Ty e v)

and we use supervised learning to learn a paticyS — A. Notice that the particular
structure of the problem, with independent dynamics andighlgr known transition
probabilities, allows us to artificially generaf| time more training examples than
what we originally started with. This aspect leads to sigaifit improvements in our
battery management application problem.

2.1 Related Work

Sampling-based solutions, where a finite number of sampégektories is used to op-
timize performance, are a popular technique in the fieldppf@imate dynamic pro-
gramming [9] and reinforcement learning [10], especiatly domplicated systems for
which a model is not known or only available through simalatiHowever, unlike Re-
inforcement Learning we are dealing with a non-interack@grning scenario, where
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we cannot choose how to interact with the system while sasrguie collected. Specif-
ically, the learning process occurs offline and in batchtharr since we have partial
knowledge about the MDP (e.g., the immediate cost functime)use a model-based
method [11] similar to theertainty equivalence methdd?2] where we estimate the
most likely transition probabilities for the unknown paftiee model. Unlike the dom-
inant approach that uses function approximations to reptethe value function (or
Q-values) [13-15] and selects the action based on the gpgity with respect to the
estimated values, we directly represent a policy mappiaigsto actions. Specifically,
we use supervised learning to train a policy using a datdsgiogterior optimal” ac-
tions computed according to the learned MDP model. The palienpactly represents
the available information and, in our application, emggiliig performs better than mod-
els fitted to the Q-values. Further, in this way we can diyeatialyze the structure of
policy being used, thus simplifying the deployment on a ekehi

Our approach is similar to a line of research in the planniogmunity [6, 16—
18], where researchers have tried to learn strategies e gdhnning problems in a
fixed domain by learning from particular solutions to tramiproblems sampled from
the same domain. Specifically, our work is most closely eeldb [6], where they use
a sample-based approach to learn a policy for a multipleehyasystem modeled as
an MDP. However, since we are dealing with electric vehielesneed to optimize
charge/discharge cycles while they focus on the dischapeca only. Consequently,
we use a quadratic objecting function, while they optimethe plan length. Further,
their work is based on synthetic data generated from a knoaaeinmwhile we face the
problem of learning a probabilistic model from real-worldwdsourced data, which
creates additional challenges such as feature selectiotheéfmore, in [6] they use as
training examples sequences of state-action pairs wheradtions are obtained opti-
mizing in hindsight for a single sample realization of thedamness, i.e. the training
set is generated using an optimal omniscient policy thaistbe future ahead of time.
Although the method is shown to perform well in practice,dedn’t provide any theo-
retical guarantee. As a counterexample, consider a simple Modeling a lottery with
an expected negative return, where the actions are eithenl@number or not to play
at all. Given any realization of the randomness, the optiomahiscient policy would
always suggest to bet (since it knows the future), but thar@btrisk-neutral strategy
is not to play the lottery, and therefore it cannot be learfnech such training exam-
ples. In contrast, we also use a form of hindsight optimargtbut we jointly consider
all the samples, using a sample-based approximation fazxpectation that provably
converges to the true optimal value as the number of sampbessg

In the remainder of the paper, we will describe how we apglydleneral approach
to the battery management application.

3 Problem Description

There are two main sources of inefficiencies in batterieg. firgt one is that batteries
have an internal resistand@®,,;, and therefore they dissipate power as heakagi?
when charged or discharged with a currérfbecondly, the capacity of a battery is re-
lated to the rate at which it is discharged by Peukert's Lawnpadrticular, the faster a
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Fig. 1: Architecture of the battery system and sign conegntised (a positive number
indicates current flowing in the direction of the arrow).

battery is discharged with respect to the nominal rate (B§ynguout a higher current),
the smaller the actual delivered capacity is. The effeceddp on the chemical prop-
erties of the battery and is exponential in the size of theetur Therefore, substantial
savings can be obtained by reducing the current output fhenbattery used to achieve
a certain desired power.

One promising direction towards improving battery efficigmre multiple-battery
systems such as the ones proposed in [4] and [5], which mtiegr standard battery
with one or more supercapacitors, as depicted in Figuretditively, the idea is that
the battery is good at holding the charge for long times, evliile supercapacitor is
efficient for rapid cycles of charge and discharge. Usingstifgercapacitor as a buffer,
high peaks in the battery’s charge and discharge currenteeaeduced, thus reducing
the losses due to Peukert’'s Law and the internal resistiméact, supercapacitors are
not affected by Peukert’s Law and behave like an ideal batkrrthermore, this can
substantially increase the lifespan of batteries becafifgeaeduced number of full
charge-discharge cycles the battery must handle (supmsitays on the other hand can
handle millions of full charge/discharge cycles). Impnonts in battery efficiency
lead to reduced costs, increased range, and therefore mamtécpl electric vehicles.

While the savings obtained with multi-battery systems casutistantial, they heav-
ily depend on how the system is managed, i.e. on the strategy to charge and dis-
charge the capacitor. Managing such systems is non-ttddeause there is a mix of
vehicle acceleration and regenerative braking (when poaeibe stored in the battery
system) over time, and there is a constraint on the maximatigehthe capacitor can
hold. For instance, keeping the capacitor close to full capavould allow the system
to be ready for sudden accelerations, but it might not beratbecause there might
not be enough space left to hold regenerative braking enbrgglligent management
algorithms therefore need to analyze driving behavior agftiole conditions (speed,
acceleration, road conditions,..) in order to make infafmecisions on how to allocate
the power demand. Intuitively, the system needs to be algeetdict future high-current
events, preparing the supercapacitor to handle them asdeducing the energy losses
on the battery. The results can be quite impressive. In figuve show the battery out-
put over a 2 minutes window of a real world trip, when no cajoads used, when it
is managed with a naive buffer policy (charging the capaatdy from regenerative
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braking, and utilizing the capacitor whenever there is deinand energy available),
and when it is managed by our novel systBRDecTr ee. While the total power out-
put is the same in all 3 cases, when the system is managBBbesc Tr ee the output
tends to be more constant over time, thus reducing the eneagted due to battery
inefficiencies.
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Fig. 2: Battery power output over time. A smoother more camistike curve means
reduced losses due to battery inefficiencies.

4 Modeling

To formalize the battery management problem describetegasle consider a discrete
time problem where decisions need to be taken eyesgconds. A decision is a choice
for the variableYiy., ipm, iem) IN Figure 1, where,,. is the current flowing from the
battery to the capacitof;,,, andi.,, are the currents from the battery and capacitor
to the motor, respectively. These variables must satisfiaiteconstraints, namely the
capacitor cannot be overcharged or overdrawn and the ef@igynce must be pre-
served. As a performance metric, we considerithgcore proposed in [4] and used in
the Chargecar contest [8], where the objective is to mirgntie sum of the squared
battery output currenti,. + ibm)2 over time. Intuitively, reducing thé?-score means
reducing the energy wasted as heat and due to Peukert's lsawelhas increasing
battery lifespan [19].

We first consider a simplified setting where we assume to kin@future energy
demand of the motor (positive when energy is required foekeecations, negative when
energy is recovered from regenerative braking) ahead @f fithis translates into a de-
terministic planning problem because we assume there isone randomness involved.
By computing the optimal sequence of actions (since thelpnolis deterministic, we
don't need a policy), we obtain a lower bound on tRescore that is achievable in
real-world problems where the future demand is not known.
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4.1 A Quadratic Programming For mulation

Consider a single trip, wherE is the number of discrete time steps (of sizgin the
control horizon. Let”,,,.. be the maximum charge the capacitor can hold. As previ-
ously noted in [20], the problem can be formalized as a QuadPaogram. Specifically,
we wish to minimize

min Z (ipe(t) + tpm (t ))2
subject to
iem(t) + iom (t) = d(t), VE=0,---,T —1 Q)

t
Z _Zcm )<Cmaw/5t7 vt:0)7T_1 (2)

whered(t) is the motor demand at time stépThe first set of constraints (1) requires
that the demand(t) is met at every time step=0,---,7 — 1. The second set of con-

straints (2) ensures that the capacitor is never overctiamgeverdrawn (the capacitor

is assumed to be empty at the beginning of the trip, and nats® ¢harge over time).

Notice that the battery charge level over time is compledetiermined by the decision

variables, and does not affect tifescore.

Reducing the dimensionality We introduce a new set of variables
At) = ipe(t) —iem(t),t =0,---, T — 1

and using (1) we can rewrite the objective function as

!
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Further, the constraints (2) can be rewritten in termg\of) as

t

<Y A(k) < Conaa /1, ¥t =0, ~1 A3)

k=0

In this way we have simplified the problem fr@#' variables{ (ip.(t), ipm (t), iem (1)), t =
0,---,T — 1} to T variables{ A(¢),t =0,---,T — 1}.

The resulting Quadratic Programs can be solved to optiynading standard convex
optimization packages, but long trips can take a signifieamunt of time (see compar-
ison below). Since we will later consider the stochastisiaar of the planning problem,
we consider an alternative approximate solution technthaetakes into account the
sequential nature of the problem and generalizes to thbastic setting.
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4.2 A Dynamic Programming Solution

A faster but approximate solution can be obtained via DyeaPnogramming by dis-
cretizing the capacity levels of the supercapacitor withep §- and then recursively
solving the Bellman equation

J(t.C) = min {(d(t) F00/8,(C" — O + J(t+ 1, c’)}

fort =0,---,7 — 1, with boundary condition
J(T,C)=0vC

If the maximum capacity’,,.... is discretized withV steps, the complexity i©(N2T)
for a trip of lengthZ’. This method is faster than solving the previous Quadratigiam
directly, even though the solution is suboptimal becausd@ftliscretization. Further-
more, the DP solution does not just provide a sequence ofiaft actions, but an
actual policy that gives the action as a function of the atreapacity level (for a fixed
load profile).

Choosing the discretization step There is a tradeoff involved in the choice of the
discretization stepc of the capacity level. The smallég is, the better is our approxi-
mation to the original QP, but the running time also growsdyatically with1/d¢.

In order to choose the proper value&f, we solved a representative subset of 54
trips (see below for the dataset description) using the Qs the package CVX-
OPT [21]. We obtained a totaf-score of3.070 - 10® in about 11 minutes. Using our
DP solver withN = 90 steps, we obtained a score103 - 10® in 15 seconds; with
N = 45 steps we obtainesl 197 - 10% in about 3 seconds. This experiment empirically
shows that our DP based solver is about 2 orders of magniagierfthan solving the
quadratic program directly, and provides solutions thatcdose to optimal. These ex-
periments will guide the choice of the discretization stisp &or the original stochastic
setting where the demand is not known ahead of time.

Robustness Since we will later use supervised learning techniquesdmla policy
from a training set, we are interested in measuring how tou$e policy to imple-
mentation errors on the actions. The sensitivity plot iruFégs is obtained by artificially
adding i.i.d. Gaussian noise with varianceto the optimal action given by the optimal
omniscient policy. The plot is averaged over a subset o§ taipd shows that the per-
formance degrades smoothly as a function of the variandeeafplementation error.

Rolling horizon In order to compute the optimal omniscient policy, we neekinow
the entire future demangi(t),t = 0,---,7 — 1} ahead of time. Relaxing this as-
sumption, we now assume to know the future demand only fomalew of M/ steps.
We then use a rolling horizon policy, where at every stepe replan computing the
optimal sequence of actions for the neédt steps, taking the first one. In Figure 4 we
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Fig. 3: Performance with noise in the implementation of théroal policy. On the y-
axis is the percentage reduction in tRescore with respect to baseline (no capacitor).

show how the performance improves as the length of the gollorizon window)/ in-
creases. In particular, notice that if we were able to pid@dixactly) the future demand
for the next30 steps (corresponding to 30 seconds), on average we woeltblesthan
5% over the optimal omniscent policy (that knows the entireifatdemand ahead of
time). This experiment suggests than even a fairly limitezbpbilistic model that can
predict the future demand for a few seconds could providstankial energy savings,
and motivates our search for an MDP model.
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Fig. 4: Performance improvement as the length of the rotimgzon window increases.

5 Probabilistic Planning

An MDP model In general, we cannot know in advance what will be the futwee d
mand (load profile), but we can assume the existence of amrlyimdestochastic model,
from which the trips and driving behaviors we observe aregadifrom. Specifically,
we consider astate spacesS = F x [0, Cp,q2], WhereF is afeature spaceThe idea



10 Learning Policies For Battery Usage Optimization in Electric Vehicles

is to use a set of featurds= (f!,..., fX) € F and a capacity level < ¢ < Caz
to represent the state of the electric vehicle at any gives.tiThe features we use are
driver ID (and type of vehicle), GPS latitude and longitudeection, speed, accelera-
tion, altitude, instantaneous demafhgbast average demand, time of the day. According
to the problem definition, for any state= (f,c) € S, there exists a set of admissible
actionsA(s) = {A, —c < A < Chaq — ¢}, i.€. the admissible changes of the capacitor
level that satisfy the constraints of the problem.

Our underlying assumption is that there exist a probalglisiodel describing the
evolution of the stat® (s;1|so, - -, s, Ao, - -+, A¢) as a function of the previous his-
tory and the sequence of actiahy, - - - , A, taken. Further, we assume that

P (st41]s0, 586, Doy, Ap) =
P(ft+1|f0a'"aft)P(Ct+1|CtaAt) (4)

that is the evolution of; is independent of; and the actiong\; taken (equivalently,
we assume the driving behavior and road conditions do natrtépn the capacitor
charge levels). On the other hand, according to the problesaribtionc;; depends
deterministicallyon the past, specifically1 = ¢;+A;. Inthisway,P(ci41|ct, A¢) =
lifandonlyife, 1 = ¢ + Ay

In this MDP framework, a energy management system is a fumcetiapping his-
tories to a feasible action, i.e. a history-dependent iigagiolicy [22]. Upon defining
an immediate cost(4,s,s’) = (d + A)? for transitioning from state to states’
when taking actiom\ (equal to the squared current output from the battery), dmap
energy management system can be defined as one minimizitgtahexpected cost.

A sample-based approach Since the probabilistic modeP (f;11|fo,---,f;) is un-
known, we use a sample-based approach where we leverage aétaset of commuter
trips crowdsourced in the United States and available eti@hin order to learn it from
the data. Specifically, we assume that each trip in the datas®sponds to one particu-
lar realization of the underlying stochastic process,a&sampled trajectory of lengfh

in the feature spacg. In particular, we project the trip data on the feature spacgen-

erating a trajectoryf; = (fo, f1,-- -, fr,_1) where for each time stefp € F. Then, for
any sequence of actiofisg\y, - - -, Ar,_1) and initial capacity levet,, we can generate
the corresponding trajectories in tltate space((fo, co), (f1,¢1), -+, (fr—1,cr—1))

according to (4).
Let7y,- - -, Tk be the sample trajectories available. For any state(f, c) € S we
define the multiset

K
N(f) = U{ft+1|ft € Ti,|Ife —fllc <€} CF

i=1

that whene = 0 corresponds to the set of feature vectors that we have axseocur-

ring immediately aftef in the sample trajectories. In practice, since our featpees

is continuous we choose> 0 to discretize the space, so that two feature vectors are
considered to be the same if they are close enough (e.g., avtiemer comes to an in-
tersection with approximately the same speed, acceleradto.). We use k-d trees [23]
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to speed up the computation &f(f) for all observed feature vectofse |J7;, and

in our experiments is set to one thousandth of the average distance betweeaaons
utive feature vectors in the available trajectories. Sinhjl we can define a multiset of
possible successors in the state space as

S(s)=8(f, )= |J {(h,¢)h e N(£)}

c’=0

Posterior optimal actions We can then define sample-based Dynamic Programming
equations as follows

V(s) = min ZV )+ (A, s, )
A€ A(s) ses(s)

and solve for the “posterior optimal action”

A*(s) = V(s") +c(A
(s) argAIGnA(S ,EZS: c(A, s, 8)

This approach has the nice theoretical property that thepkabased approximation
converges to the true DP equations (for the discretized MiDfk limit of infinite sam-
ples. Similarly,A*(s) converges to the optimal action as more samples are calldote
contrast, separately optimizing for the single realizadias in [6] (which corresponds
to choosingV (f;) = f;. 1) doesn’t necessarily converge to the true optimal action as
K — oo, although it has been shown to work well in practice.

Regressing the optimal policy Using the available sample trajectorigs, - - -, Tx,
we generate a labeled training detf (state,optimal action) pairs by solving the cor-
responding sample-based DP equations using value iter@taice that the “empiri-
cal” MDP can have loops, so we cannot solve it in one passyifigaly, we compute
A*(f, c) for everyf € T; and for every capacity levele [0, C),..]. We then use super-
vised learning to learn the relationship between a state(f,c) = (f!,..., fX,c) €
S and the corresponding optimal actiah Notice that the particular structure of the
problem allows us to artificially generabé times more data points than what we orig-
inally started with. Experimentally, we have seen this taaberucial improvement in
order for the supervised learning algorithm to correctlgenstand the role of the ca-
pacity levelc. In particular, we found that generating a dataset justguie optimal
sequence of actiors® for each trajectoryfy, fi, - - -, f7_1) is not sufficient to achieve
good performance.

The quadratic nature of the cost function gives us furtheigints on the perfor-
mance of the supervised learning method used. In partjdhlarmean-squared error
(MSE) is an important error metric in this case, because grse triangular inequality

l(a” +d) — (@a+d)|ls = [[a" —allzs > [[a+d||z - [[a” + d]|2

! The training dataset will be made available online.
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wherea* = (A, ---, A%_,) is the optimal sequence of actiosis the sequence of
actions given by regression, add= (d(0),---,d(T — 1)) is the demand vector. This
gives

[a+dl2 < [la* —al]z + [[a” +d|l2

so that||a* — a||, bounds the difference in terms &f-score between the optimal se-
guence of actions* anda.

6 Evaluation: the Chargecar Competition

As previously mentioned, we evaluate our method on the plybdivailable dataset
provided by Chargecar [8], a crowdsourcing project operheogublic with the goal
of making electric vehicles more practical and affordalleng with the dataset, the
Chargecar project provides a simulator to evaluate theopeence of power manage-
ment policies on the trips contained in the dataset. Furtheg, they set up an open
algorithmic challenge where the goal of the contest is tagegolicies that optimize
the energy performance of electric vehicles, as measurtztims of thei?-score. All
the parameters of the model are set as in the competitiorarticplar, the supercapac-
itor and the battery provide 50 Watt-hour and 50000 Wattrhmspectively. Among
many other factors, the energy efficiency of multi-battetyesmes depends crucially on
these parameters. Understanding their interplay with serargy management poli-
cies is one of the goals of the competition, because it wolldgvaus to design better,
more efficient electric vehicles.

Dataset The dataset [8] contains a total of 1984 trips (with an averdaggth of15
minutes), subdivided into 6 separate datasets accordittigtdriver ID. Each one of
these dataset is further separated into two subsets: @nggaamd judging set. There
are 168 trips in the judging set, accounting for about 8% efttital. Using the trips
contained in the training set, we generate a dataset oddlfstate, optimal action) ex-
ample pairs with the method explained in the previous seclibe maximum capacity
level is discretized intaV = 45 discrete steps, and the time stepjs= 1s, such that
the resulting training dataset contains 75827205 exam$lase the complete training
dataset generated with the previously described apprsado big to fit into memory,
we divide it according to the driver ID, generating sepatatiming sets for each driver.
When these datasets are still too big, we divide them agaiordicg to the capacity
level feature (selecting entries corresponding to one oermmwvs of the DP tables). We
then learn separate models for each one of these smalleetitas shown in figure 5
2

Supervised learning We used non-parametric exploratory models as there is bitl
no prior knowledge and possibly highly non-linear intei@ts. In particular, we use

2 A separate default model is trained for previously unseen driver IDs
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bagged decision trees, with the REPTree algorithm as inmgaéea in the Weka pack-
age [24] as the base learner. REPTree is a fast regresseotetmmer that uses infor-
mation gain as the splitting criterion and reduced-erronprg (with backfitting). Fol-
lowing standard practice, the parameters were set by Sef@sisvalidation, selecting
the model with the best MSE score. We call the resulting pdieDecTr ee. Using
decision trees, we can represent and evaluate the policyeetfly in order to compute
the optimal action. In contrast, it can be impractical to poie an action solving an op-
timization problem based on a estimated future demandpiseda a real-world setting
it might not be feasible to solve such problems with a higkjfiency on a car.

DRIVER ID
— ~
oY D,

/ \
/ cAPAClTY \ ------------------ / cAPAc'TY \
~ 1= ~ [
o~ Z o~ P
N © & @
[ [
> z ~ 4
/ \ / \

BAGGED | BAGGED BAGGED | BAGGED
DECISION DECISION DECISION DECISION
TREES TREES TREES TREES

o l l l
(BATTERY OUTPUT ) BATTERY OUTPUT BATTERY OUTPUT BATTERY OUTPUT
: ) y y y

Fig. 5: An overview of our intelligent energy managementeys

Evaluation We evaluate the performance@PDecTr ee on the separate judging set
of trips using the simulator. If the action suggestedd®pecTr ee would overcharge
the capacitor, we charge it to full capacity; if it overdrawme discharge it completely.
However, this situation is rare aridPDecTr ee gives feasible action89.8% of the
time when evaluated on the judging set. We compare our sal@gainst MPL, the
current winning algorithm in the competition at the momeinthis paper submission,
and to a simple buffer policy. The MPL policy is based on adataple of thresholds
for the battery output,. + 45, chosen according to driver ID, speed, demand and
GPS coordinates. The naive buffer policy charges the cagamily from regenerative
braking (i.e, when the demand is negative) and when there isnargy demand, it
utilizes the capacitor first. We also provide #iescore when the supercapacitor is not
used (or is not available) as a baseline.

As can be seen from table DPDecTr ee leads to significant energy savings with
respect to the simple buffer policy. Although is it often fiom the upper bound repre-
sented by the optimal Omniscient policy (except onrtikedataset where they differ
only by 5%), the good performance DPDecTr ee suggests that it is very effective at
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Table 1: Results on driver specific judging datasétscores are in0® -
AZs.

Dataset DPDecTr ee MPL Naive Buffer Baseline Omniscient

alik 4.233 4.435 7.533 8.424 3.196
arnold 4.090 3.946 8.402 8.894 3.332
mike 3.245 3.290 4.874 5.128 3.083
thor 1.648 1.787 3.931 4.596 1.413
illah 0.333 0.353 0.751 0.856 0.211
gary 2.000 2.146 5.187 5.857 1.261
Total: 15.549 15.957 30.678 33.755 12.496

predicting future energy demands, and that the policy Efrom the training exam-
ples generalizes to new, previously unseen scenarioshdfudPDecTr ee improves
over MPL in 5 out of 6 datasets (each one corresponding tofarelift driver). We
believe the problem with tharnold dataset is the presence of different driving behav-
iors in the same dataset that the learning algorithm waslvletta separate using the
available covariates.

In the bottom row of Table 1 we provide the resulting scorastlie entire judg-
ing dataset. On averagBPDecTr ee leads to a 2.5% improvement on tifescore
with respect to MPL. According to a one-sided paired t-ttst, difference is statisti-
cally significant (with P-value 0.0058). The result is sfgmtive also according to a
Wilcoxon signed-rank test (with P-value 0.00028) [25]. Vehihere is still a signifi-
cant 20% gap with respect to the optimal omniscent policig itot clear how much
can still be achieved in the real online setting where thar&uidemand is not known
ahead of time. These results suggest that there is a grestt@btfor including rout-
ing information (e.g., from a car navigation system) inte gnoblem, since they would
bring the policies closer to the omniscient case. Howendhis paper we assume that
routing information is not available, as in the competititirwould also be very inter-
esting to explore the possibility of improving the policy lBarning from new data as
it becomes available during the policy evaluation phasssibty with an incremental
learning approach.

7 Conclusions

In this paper we have presented an effective solution torthiel@m of managing multi-
battery systems in electric vehicles. Our novel intelligemergy management system
is evaluated on a large dataset of commuter trips crowdedurcthe United States.
Our approach is completely data-driven and can be expezietprove as more data is
being collected and becomes available.
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Our method combines several existing approaches to solkabéem that we model
as an MDP with unknown transition probabilities. We use adarbased approach,
where samples are not generated from an analytic modelordrsimulator but given
as part of a dataset. By observing the empirical transitrobabilities of a discretized
problem, we solve sample-based dynamic programming emsatising value iteration.
Thanks to the special structure of the problem and its indipat dynamics assumption,
we can generate more artificial data points from the samplexjbloiting the informa-
tion contained in the dynamic programming tables. The agitimosterior actions given
the observed samples are then combined to form a policy éootiginal problem. In
order to do this, we use supervised machine learning teabnritp build a regression
model that gives the action as a function of the state of tiséegy. The obtained pol-
icy is evaluated on a separate set of real world trips, whaseshown to generalize to
situations that were previously unseen in the training Get. novel system is shown
to outperform the leading algorithms that were previousbppsed as part of an open
algorithmic challenge.

8 Acknowledgements

This work was supported by NSF Expeditions in Computing Go&32782.

References

1. C. Gomes. Computational Sustainability Computational Methods fortaiSable Environ-
ment,Economy, and Societyhe Bridge, National Academy of Engineerig§(4), 2009.

2. M. Sachenbacher, M. Leucker, A. Artmeier, and J. Haselmayffici&ht energy-optimal
routing for electric vehicles. ITwenty-Fifth AAAI Conference on Artificial Intelligence
2011.

3. J. Apple, P. Chang, A. Clauson, H. Dixon, H. Fakhoury, M. Gingbd. Keenan,
A. Leighton, K. Scavezze, and B. Smith. Green driver: Ai in a micsmeo In Twenty-Fifth
AAAI Conference on Artificial Intelligenc2011.

4. Paul Dille, Matt Duescher, lllah Nourbakhsh, Gregg Podnar, esduh Schapiro. Evaluat-
ing the urban electric vehicle. I@arnegie Mellon Technical Repoiebruary 2010.

5. R. Kotz, S. Miller, M. Bartschi, B. Schnyder, P. Dietrich, FNuUBhi, A. Tsukada,
GG Scherer, P. Rodatz, O. Garcia, et al. Supercapacitors forgmvedr demand in fuel-
cell-driven cars. IrECS Electro-Chemical Society, 52nd Meeting,, San FrancRo1.

6. M. Fox, D. Long, and D. Magazzeni. Automatic construction of efficimultiple battery
usage policies. IProc. Int. Conf. on Aut. Planning and Scheduling (ICAPR)11.

7. M. Jongerden, B. Haverkort, H. Bohnenkamp, and J.P. Katdenimizing system lifetime
by battery scheduling. IDependable Systems And Networks, 2009. DSN'09. IEEE/IFIP
International Conference qipages 63—-72. IEEE, 2009.

. CreateLab. The chargecar project, January 2812 p: / / www. char gecar . or g.
9. W.B. Powell. Approximate Dynamic Programming: Solving the curses of dimensionality

volume 703. Wiley-Blackwell, 2007.

10. R.S. Sutton and A.G. BartdReinforcement learning: An introductipmolume 28. Cam-
bridge Univ Press, 1998.

11. L.P. Kaelbling, M.L. Littman, and A.W. Moore. Reinforcement feag: A survey.Journal
of Artificial Intelligence Research:237—285, 1996.

(o]



16

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Learning Policies For Battery Usage Optimization in Electric Vehicles

P. R. Kumar and Pravin Varaiy&tochastic systems: estimation, identification and adaptive

control. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1986.

D.P. Bertsekas and J.N. Tsitsiklis. Neuro-dynamic programnii&g6.

J.N. Tsitsiklis and B. Van Roy. An analysis of temporal-differeneerig with function
approximation Automatic Control, IEEE Transactions o#2(5):674-690, 1997.

G.J. Gordon. Stable function approximation in dynamic programmim@/lachine learn-
ing: proceedings of the Twelfth International Conference on Machinerieg, Tahoe City,
California, July 9-12, 1995page 261. Morgan Kaufmann, 1995.

R. Khardon. Learning to take actiodachine Learning35(1):57-90, 1999.

R. Khardon. Learning action strategies for planning domaiwstificial Intelligence
113(1):125-148, 1999.

S.W. Yoon, A. Fern, and R. Givan. Using learned policies in hgchsgarch planning. In
Proceedings of the 20th IJCA2007.

S.B. Peterson, J. Apt, and JF Whitacre. Lithium-ion battery celladiegion resulting from
realistic vehicle and vehicle-to-grid utilizationJournal of Power Sources 95(8):2385—
2392, 2010.

Daniel Wong. Energy management optimization in electric vehicleg nsadel predictive
control. Unpublished technical repar2011.

J. Dahl and L. Vandenberghe. Cvxopt: A python package foveooptimization. IrProc.
Eur. Conf. Op. Rex2006.

M.L. Puterman. Markov decision processes: Discrete stochastic dynamic programming

John Wiley & Sons, Inc., 1994.

Jon Louis Bentley. Multidimensional binary search trees used &wcagive searching.
Commun. ACM18(9):509-517, September 1975.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, ahdWitten. The weka data
mining software: an updat&CM SIGKDD Explorations Newslettet1(1):10-18, 2009.

F. Wilcoxon. Individual comparisons by ranking methoBsmetrics Bulletin 1(6):80—83,
1945.



