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Abstract. The high cost, limited capacity, and long recharge time of batteries
pose a number of obstacles for the widespread adoption of electric vehicles.
Multi-battery systems that combine a standard battery with supercapacitorsare
currently one of the most promising ways to increase battery lifespan andreduce
operating costs. However, their performance crucially depends on how they are
designed and operated.
In this paper, we formalize the problem of optimizing real-time energy manage-
ment of multi-battery systems as a stochastic planning problem, and we propose
a novel solution based on a combination of optimization, machine learning and
data-mining techniques. We evaluate the performance of our intelligent energy
management system on various large datasets of commuter trips crowdsourced in
the United States. We show that our policy significantly outperforms the leading
algorithms that were previously proposed as part of an open algorithmicchal-
lenge.

1 Introduction

Electric vehicles, partially or fully powered by batteries, are one of the most promising
directions towards a more sustainable transportation system. However, the high costs,
limited capacities, and long recharge times of batteries pose a number of obstacles for
their widespread adoption. Several researchers in the fieldof Computational Sustain-
ability [1] have addressed aspects of this problem. In particular, there is an active line
of research focusing on improving navigation systems with novel routing algorithms,
both by taking into account specific features of electric vehicles [2], and by considering
new aspects such as real-time information about road conditions and traffic lights [3].

In this paper, we focus on a complementary aspect of the problem that is optimizing
the energy efficiency of batteries in electric vehicles. There are two main sources of
inefficiencies in batteries. The first one is that due to internal resistance, battery energy
is partially wasted as heat when it is charged and discharged. The second one is that
due to Peukert’s Law, the actual delivered capacity of a battery depends on the rate at
which it is discharged. Furthermore, current battery technology imposes rather severe
limits on the number of charge/recharge cycles a battery canhandle, thus reducing their
lifespan and increasing operating costs.
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One promising direction towards addressing these issues are multi-battery systems,
such as the ones proposed in [4] and [5], which integrate a standard battery with one or
more supercapacitors, as depicted in Figure 1. Intuitively, the idea is that while the bat-
tery is good at holding the charge for long times, the supercapacitor is efficient for rapid
cycles of charge and discharge. Using the capacitor as an energy buffer, one can sig-
nificantly increase the battery’s lifespan by reducing its duty. In fact, although superca-
pacitors have low energy densities, they behave like an ideal battery that can efficiently
handle millions of full charge/discharge cycles. The performance of these systems is
heavily dependent on how they are managed. In this direction, there has been recent
work in the automated planning community on the optimal scheduling of multi-battery
systems [6, 7]. However, previous work assumes full knowledge of an underlying prob-
abilistic model describing the system, which is not available for electric vehicles. Since
it would be very difficult to construct such a model using a priori information, we take
a data driven approach to the problem. In particular, we leverage a large dataset of
commuter trips collected across the United States by Chargecar [8], a crowdsourcing
project open to the public, and we construct an efficient management scheme using a
sample-based optimization approach. Specifically, after defining a suitable set of fea-
tures, we learn an empirical Markov Decision Process (MDP) model from the available
data, and we compute a policy that optimizes the average performance. This policy is
represented as a large table of state-action pairs, and is only defined for states that were
previously observed in the dataset, while we wish to construct a more general manage-
ment scheme that applies to a wider range of scenarios. We therefore use this policy
as a training set, and we use supervised learning techniquesto learn a new policy that
compactly represents the information available and generalizes to situations previously
unseen in the training set. This policy is shown to outperform the leading algorithms
that were previously proposed as part of an open algorithmicchallenge.

2 Sampling-based Optimization

We consider a probabilistic planning problem formulated asa Markov Decision Process
(MDP). An MDP is a tuple(S,A, P, c) whereS is a set of states,A is a set of actions,
P is a set of transition probabilities andc : S × A × S 7→ R is an (immediate) cost
function. If an agent executes an actiona ∈ A while in a states ∈ S, then it incurs in
an immediate costc(s, a, s′) and it transitions to a new states′ ∈ S with probability
P (s′|s, a). We denote byA(s) ⊆ A the set of actions available while the agent is in
states. Further, there exists a finite set ofgoal statesG ⊆ S, where the agent stops to
execute actions, and no longer incurs in any cost.

In this paper, we consider a class of factored MDPs whereS = X × Y so that any
states ∈ S has two componentss = (x, y) with x ∈ X andy ∈ Y . We assume the
dynamics of the two components are independent, i.e. the transition probabilities can
be factored as follows

P ((x′, y′)|(x, y), a) = Px(x
′|x)Py(y

′|y, a).

Notice thatx′ does not depend on the actiona, which only affects the componenty′.
The two components of the state are however coupled by the immediate cost function
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c((x, y), a, (x′, y′)), which can depend on bothx andy. We assume thatPy(·) and the
immediate cost functionc(·) are known butPx(·) is unknown. However, we are given
a set ofK i.i.d. sample trajectoriesT1, · · · , TK of thex component of the state space,
where

Ti = (xi
0, x

i
1, · · · , x

i
Ti−1)

is sampled according toPx(x
′|x) andxi

Ti−1 ∈ Gx is a goal state. For example, in
our battery management application, each trajectory corresponds to one commuter trip.
Given this information, our objective is to find an admissible policy that minimizes the
expected cost for this partially unknown MDP.

Givenx, x′ ∈ X, let f(x, x′) be the empirical transition probability fromx to x′

according to the available samples (the number of timesx′ appears immediately afterx
over the number of timesx appears). We can define DP equations based on the sampled
transition probabilities as follows

V (x, y) = min
a∈A(x,y)


 ∑

x′∈X

∑

y′∈Y

f(x, x′)Py(y
′|y, a) (c((x, y), a, (x′, y′)) + V (x′, y′))




for all observed statesx ∈
⋃

Ti. Solving the DP equations, we can compute the “opti-
mal posterior action”a∗(s) = a∗(x, y) for all x ∈ Ti and for ally ∈ Y , that is the action
minimizing the total expected cost according to our maximum-likelihood estimate of
the underlying MDP model. Notice that the “optimal posterior action”a∗(s) converges
to the true optimal action for the MDP asK → ∞ becausef(x, x′) → Px(x

′|x)
(assuming the initial statesxi

0 are uniformly sampled).
Although the number of distinct statesx ∈

⋃
Ti ⊆ X can be very large, the sam-

plesT1, · · · , TK do not necessarily cover the entire state spaceX. We therefore wish
to obtain a compact representation of the policya∗(·), that hopefully will be able to
generalize to statesx ∈ X such thatx /∈

⋃
Ti, i.e. states previously unseen in the set of

available samples. We therefore generate a labeled training set of state-action pairs

⋃

i

{((x, y), a∗(s)), x ∈ Ti, y ∈ Y }

and we use supervised learning to learn a policyπ : S → A. Notice that the particular
structure of the problem, with independent dynamics and partially known transition
probabilities, allows us to artificially generate|Y | time more training examples than
what we originally started with. This aspect leads to significant improvements in our
battery management application problem.

2.1 Related Work

Sampling-based solutions, where a finite number of sampled trajectories is used to op-
timize performance, are a popular technique in the fields of approximate dynamic pro-
gramming [9] and reinforcement learning [10], especially for complicated systems for
which a model is not known or only available through simulation. However, unlike Re-
inforcement Learning we are dealing with a non-interactivelearning scenario, where



4 Learning Policies For Battery Usage Optimization in Electric Vehicles

we cannot choose how to interact with the system while samples are collected. Specif-
ically, the learning process occurs offline and in batch. Further, since we have partial
knowledge about the MDP (e.g., the immediate cost function), we use a model-based
method [11] similar to thecertainty equivalence method[12] where we estimate the
most likely transition probabilities for the unknown part of the model. Unlike the dom-
inant approach that uses function approximations to represent the value function (or
Q-values) [13–15] and selects the action based on the greedypolicy with respect to the
estimated values, we directly represent a policy mapping states to actions. Specifically,
we use supervised learning to train a policy using a dataset of “posterior optimal” ac-
tions computed according to the learned MDP model. The policy compactly represents
the available information and, in our application, empirically performs better than mod-
els fitted to the Q-values. Further, in this way we can directly analyze the structure of
policy being used, thus simplifying the deployment on a vehicle.

Our approach is similar to a line of research in the planning community [6, 16–
18], where researchers have tried to learn strategies to solve planning problems in a
fixed domain by learning from particular solutions to training problems sampled from
the same domain. Specifically, our work is most closely related to [6], where they use
a sample-based approach to learn a policy for a multiple-battery system modeled as
an MDP. However, since we are dealing with electric vehicleswe need to optimize
charge/discharge cycles while they focus on the discharge aspect only. Consequently,
we use a quadratic objecting function, while they optimize for the plan length. Further,
their work is based on synthetic data generated from a known model, while we face the
problem of learning a probabilistic model from real-world crowdsourced data, which
creates additional challenges such as feature selection. Furthermore, in [6] they use as
training examples sequences of state-action pairs where the actions are obtained opti-
mizing in hindsight for a single sample realization of the randomness, i.e. the training
set is generated using an optimal omniscient policy that knows the future ahead of time.
Although the method is shown to perform well in practice, it doesn’t provide any theo-
retical guarantee. As a counterexample, consider a simple MDP modeling a lottery with
an expected negative return, where the actions are either bet on a number or not to play
at all. Given any realization of the randomness, the optimalomniscient policy would
always suggest to bet (since it knows the future), but the optimal risk-neutral strategy
is not to play the lottery, and therefore it cannot be learnedfrom such training exam-
ples. In contrast, we also use a form of hindsight optimization, but we jointly consider
all the samples, using a sample-based approximation for theexpectation that provably
converges to the true optimal value as the number of samples grows.

In the remainder of the paper, we will describe how we apply this general approach
to the battery management application.

3 Problem Description

There are two main sources of inefficiencies in batteries. The first one is that batteries
have an internal resistanceRint, and therefore they dissipate power as heat asRinti

2

when charged or discharged with a currenti. Secondly, the capacity of a battery is re-
lated to the rate at which it is discharged by Peukert’s Law. In particular, the faster a
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Fig. 1: Architecture of the battery system and sign convention used (a positive number
indicates current flowing in the direction of the arrow).

battery is discharged with respect to the nominal rate (by pulling out a higher current),
the smaller the actual delivered capacity is. The effect depends on the chemical prop-
erties of the battery and is exponential in the size of the current. Therefore, substantial
savings can be obtained by reducing the current output from the battery used to achieve
a certain desired power.

One promising direction towards improving battery efficiency are multiple-battery
systems such as the ones proposed in [4] and [5], which integrate a standard battery
with one or more supercapacitors, as depicted in Figure 1. Intuitively, the idea is that
the battery is good at holding the charge for long times, while the supercapacitor is
efficient for rapid cycles of charge and discharge. Using thesupercapacitor as a buffer,
high peaks in the battery’s charge and discharge currents can be reduced, thus reducing
the losses due to Peukert’s Law and the internal resistance.In fact, supercapacitors are
not affected by Peukert’s Law and behave like an ideal battery. Furthermore, this can
substantially increase the lifespan of batteries because of the reduced number of full
charge-discharge cycles the battery must handle (supercapacitors on the other hand can
handle millions of full charge/discharge cycles). Improvements in battery efficiency
lead to reduced costs, increased range, and therefore more practical electric vehicles.

While the savings obtained with multi-battery systems can besubstantial, they heav-
ily depend on how the system is managed, i.e. on the strategy used to charge and dis-
charge the capacitor. Managing such systems is non-trivialbecause there is a mix of
vehicle acceleration and regenerative braking (when powercan be stored in the battery
system) over time, and there is a constraint on the maximal charge the capacitor can
hold. For instance, keeping the capacitor close to full capacity would allow the system
to be ready for sudden accelerations, but it might not be optimal because there might
not be enough space left to hold regenerative braking energy. Intelligent management
algorithms therefore need to analyze driving behavior and vehicle conditions (speed,
acceleration, road conditions,..) in order to make informed decisions on how to allocate
the power demand. Intuitively, the system needs to be able topredict future high-current
events, preparing the supercapacitor to handle them and thus reducing the energy losses
on the battery. The results can be quite impressive. In figure2 we show the battery out-
put over a 2 minutes window of a real world trip, when no capacitor is used, when it
is managed with a naive buffer policy (charging the capacitor only from regenerative
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braking, and utilizing the capacitor whenever there is demand and energy available),
and when it is managed by our novel systemDPDecTree. While the total power out-
put is the same in all 3 cases, when the system is managed byDPDecTree the output
tends to be more constant over time, thus reducing the energywasted due to battery
inefficiencies.
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Fig. 2: Battery power output over time. A smoother more constant-like curve means
reduced losses due to battery inefficiencies.

4 Modeling

To formalize the battery management problem described earlier, we consider a discrete
time problem where decisions need to be taken everyδt seconds. A decision is a choice
for the variables(ibc, ibm, icm) in Figure 1, whereibc is the current flowing from the
battery to the capacitor,ibm and icm are the currents from the battery and capacitor
to the motor, respectively. These variables must satisfy certain constraints, namely the
capacitor cannot be overcharged or overdrawn and the energybalance must be pre-
served. As a performance metric, we consider thei2-score proposed in [4] and used in
the Chargecar contest [8], where the objective is to minimize the sum of the squared
battery output current(ibc + ibm)

2 over time. Intuitively, reducing thei2-score means
reducing the energy wasted as heat and due to Peukert’s Law, as well as increasing
battery lifespan [19].

We first consider a simplified setting where we assume to know the future energy
demand of the motor (positive when energy is required for accelerations, negative when
energy is recovered from regenerative braking) ahead of time. This translates into a de-
terministic planning problem because we assume there is no more randomness involved.
By computing the optimal sequence of actions (since the problem is deterministic, we
don’t need a policy), we obtain a lower bound on thei2-score that is achievable in
real-world problems where the future demand is not known.
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4.1 A Quadratic Programming Formulation

Consider a single trip, whereT is the number of discrete time steps (of sizeδt) in the
control horizon. LetCmax be the maximum charge the capacitor can hold. As previ-
ously noted in [20], the problem can be formalized as a Quadratic Program. Specifically,
we wish to minimize

min

T−1∑

t=0

(ibc(t) + ibm(t))
2

subject to

icm(t) + ibm(t) = d(t), ∀t = 0, · · · , T − 1 (1)

0 ≤
t∑

k=0

ibc(k)− icm(k) ≤ Cmax/δt, ∀t = 0, · · · , T − 1 (2)

whered(t) is the motor demand at time stept. The first set of constraints (1) requires
that the demandd(t) is met at every time stept = 0, · · · , T − 1. The second set of con-
straints (2) ensures that the capacitor is never overcharged or overdrawn (the capacitor
is assumed to be empty at the beginning of the trip, and not to lose charge over time).
Notice that the battery charge level over time is completelydetermined by the decision
variables, and does not affect thei2-score.

Reducing the dimensionality We introduce a new set of variables

∆(t) = ibc(t)− icm(t), t = 0, · · · , T − 1

and using (1) we can rewrite the objective function as

T−1∑

t=0

(ibc(t) + ibm(t))
2
=

T−1∑

t=0

(ibc(t) + d(t)− icm(t))
2
=

T−1∑

t=0

(∆(t) + d(t))2

Further, the constraints (2) can be rewritten in terms of∆(t) as

0 ≤
t∑

k=0

∆(k) ≤ Cmax/δt, ∀t = 0, · · · , T − 1 (3)

In this way we have simplified the problem from3T variables{(ibc(t), ibm(t), icm(t)), t =
0, · · · , T − 1} to T variables{∆(t), t = 0, · · · , T − 1}.

The resulting Quadratic Programs can be solved to optimality using standard convex
optimization packages, but long trips can take a significantamount of time (see compar-
ison below). Since we will later consider the stochastic version of the planning problem,
we consider an alternative approximate solution techniquethat takes into account the
sequential nature of the problem and generalizes to the stochastic setting.
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4.2 A Dynamic Programming Solution

A faster but approximate solution can be obtained via Dynamic Programming by dis-
cretizing the capacity levels of the supercapacitor with a step δC and then recursively
solving the Bellman equation

J(t, C) = min
0≤C′<N

{
(d(t) + δC/δt(C

′ − C))
2
+ J(t+ 1, C ′)

}

for t = 0, · · · , T − 1, with boundary condition

J(T,C) = 0 ∀ C

If the maximum capacityCmax is discretized withN steps, the complexity isO(N2T )
for a trip of lengthT . This method is faster than solving the previous Quadratic Program
directly, even though the solution is suboptimal because ofthe discretization. Further-
more, the DP solution does not just provide a sequence of “optimal” actions, but an
actual policy that gives the action as a function of the current capacity level (for a fixed
load profile).

Choosing the discretization step There is a tradeoff involved in the choice of the
discretization stepδC of the capacity level. The smallerδC is, the better is our approxi-
mation to the original QP, but the running time also grows quadratically with1/δC .

In order to choose the proper value ofδC , we solved a representative subset of 54
trips (see below for the dataset description) using the QP solver in the package CVX-
OPT [21]. We obtained a totali2-score of3.070 · 108 in about 11 minutes. Using our
DP solver withN = 90 steps, we obtained a score of3.103 · 108 in 15 seconds; with
N = 45 steps we obtained3.197 · 108 in about 3 seconds. This experiment empirically
shows that our DP based solver is about 2 orders of magnitude faster than solving the
quadratic program directly, and provides solutions that are close to optimal. These ex-
periments will guide the choice of the discretization step also for the original stochastic
setting where the demand is not known ahead of time.

Robustness Since we will later use supervised learning techniques to learn a policy
from a training set, we are interested in measuring how robust is the policy to imple-
mentation errors on the actions. The sensitivity plot in Figure 3 is obtained by artificially
adding i.i.d. Gaussian noise with varianceσ2 to the optimal action given by the optimal
omniscient policy. The plot is averaged over a subset of trips and shows that the per-
formance degrades smoothly as a function of the variance of the implementation error.

Rolling horizon In order to compute the optimal omniscient policy, we need toknow
the entire future demand{d(t), t = 0, · · · , T − 1} ahead of time. Relaxing this as-
sumption, we now assume to know the future demand only for a window ofM steps.
We then use a rolling horizon policy, where at every stept we replan computing the
optimal sequence of actions for the nextM steps, taking the first one. In Figure 4 we
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Fig. 3: Performance with noise in the implementation of the optimal policy. On the y-
axis is the percentage reduction in thei2-score with respect to baseline (no capacitor).

show how the performance improves as the length of the rolling horizon windowM in-
creases. In particular, notice that if we were able to predict (exactly) the future demand
for the next30 steps (corresponding to 30 seconds), on average we would lose less than
5% over the optimal omniscent policy (that knows the entire future demand ahead of
time). This experiment suggests than even a fairly limited probabilistic model that can
predict the future demand for a few seconds could provide substantial energy savings,
and motivates our search for an MDP model.
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Fig. 4: Performance improvement as the length of the rollinghorizon window increases.

5 Probabilistic Planning

An MDP model In general, we cannot know in advance what will be the future de-
mand (load profile), but we can assume the existence of an underlying stochastic model,
from which the trips and driving behaviors we observe are sampled from. Specifically,
we consider astate spaceS = F × [0, Cmax], whereF is a feature space. The idea
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is to use a set of featuresf = (f1, . . . , fK) ∈ F and a capacity level0 ≤ c ≤ Cmax

to represent the state of the electric vehicle at any given time. The features we use are
driver ID (and type of vehicle), GPS latitude and longitude,direction, speed, accelera-
tion, altitude, instantaneous demandd, past average demand, time of the day. According
to the problem definition, for any states = (f , c) ∈ S, there exists a set of admissible
actionsA(s) = {∆,−c ≤ ∆ ≤ Cmax−c}, i.e. the admissible changes of the capacitor
level that satisfy the constraints of the problem.

Our underlying assumption is that there exist a probabilistic model describing the
evolution of the stateP (st+1|s0, · · · , st, ∆0, · · · , ∆t) as a function of the previous his-
tory and the sequence of action∆0, · · · , ∆k taken. Further, we assume that

P (st+1|s0, · · · , st, ∆0, · · · , ∆t) =

P (ft+1|f0, · · · , ft)P (ct+1|ct, ∆t) (4)

that is the evolution offt is independent ofct and the actions∆t taken (equivalently,
we assume the driving behavior and road conditions do not depend on the capacitor
charge levels). On the other hand, according to the problem descriptionct+1 depends
deterministicallyon the past, specificallyct+1 = ct+∆t. In this way,P (ct+1|ct, ∆t) =
1 if and only if ct+1 = ct +∆t.

In this MDP framework, a energy management system is a function mapping his-
tories to a feasible action, i.e. a history-dependent feasible policy [22]. Upon defining
an immediate costc(∆, s, s′) = (d + ∆)2 for transitioning from states to states′

when taking action∆ (equal to the squared current output from the battery), an optimal
energy management system can be defined as one minimizing thetotal expected cost.

A sample-based approach Since the probabilistic modelP (ft+1|f0, · · · , ft) is un-
known, we use a sample-based approach where we leverage a large dataset of commuter
trips crowdsourced in the United States and available online [8] in order to learn it from
the data. Specifically, we assume that each trip in the dataset corresponds to one particu-
lar realization of the underlying stochastic process, e.g.a sampled trajectory of lengthTi

in the feature spaceF . In particular, we project the trip data on the feature spaceF , gen-
erating a trajectoryTi = (f0, f1, · · · , fTi−1) where for each time stepft ∈ F . Then, for
any sequence of actions(∆0, · · · , ∆Ti−1) and initial capacity levelc0, we can generate
the corresponding trajectories in thestatespace((f0, c0), (f1, c1), · · · , (fT−1, cT−1))
according to (4).

Let T1, · · · , TK be the sample trajectories available. For any states = (f , c) ∈ S we
define the multiset

N (f) =

K⋃

i=1

{ft+1|ft ∈ Ti, ||ft − f ||∞ < ǫ} ⊆ F

that whenǫ = 0 corresponds to the set of feature vectors that we have observed occur-
ring immediately afterf in the sample trajectories. In practice, since our feature space
is continuous we chooseǫ > 0 to discretize the space, so that two feature vectors are
considered to be the same if they are close enough (e.g., whena driver comes to an in-
tersection with approximately the same speed, acceleration, etc.). We use k-d trees [23]
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to speed up the computation ofN (f) for all observed feature vectorsf ∈
⋃
Ti, and

in our experimentsǫ is set to one thousandth of the average distance between consec-
utive feature vectors in the available trajectories. Similarly, we can define a multiset of
possible successors in the state space as

S(s) = S(f , c) =
Cmax⋃

c′=0

{(h, c′)|h ∈ N (f)}

Posterior optimal actions We can then define sample-based Dynamic Programming
equations as follows

V (s) = min
∆∈A(s)


 1

|S(s)|

∑

s′∈S(s)

V (s′) + c(∆, s, s′)




and solve for the “posterior optimal action”

∆∗(s) = arg min
∆∈A(s)


 1

|S(s)|

∑

s′∈S(s)

V (s′) + c(∆, s, s′)




This approach has the nice theoretical property that the sample-based approximation
converges to the true DP equations (for the discretized MDP)in the limit of infinite sam-
ples. Similarly,∆∗(s) converges to the optimal action as more samples are collected. In
contrast, separately optimizing for the single realizations as in [6] (which corresponds
to choosingN (ft) = ft+1) doesn’t necessarily converge to the true optimal action as
K → ∞, although it has been shown to work well in practice.

Regressing the optimal policy Using the available sample trajectoriesT1, · · · , TK ,
we generate a labeled training set1 of (state,optimal action) pairs by solving the cor-
responding sample-based DP equations using value iteration (notice that the “empiri-
cal” MDP can have loops, so we cannot solve it in one pass). Specifically, we compute
∆∗(f , c) for everyf ∈ Ti and for every capacity levelc ∈ [0, Cmax]. We then use super-
vised learning to learn the relationship between a states = (f , c) = (f1, . . . , fK , c) ∈
S and the corresponding optimal action∆. Notice that the particular structure of the
problem allows us to artificially generateN times more data points than what we orig-
inally started with. Experimentally, we have seen this to bea crucial improvement in
order for the supervised learning algorithm to correctly understand the role of the ca-
pacity levelc. In particular, we found that generating a dataset just using the optimal
sequence of actionsa∗ for each trajectory(f0, f1, · · · , fT−1) is not sufficient to achieve
good performance.

The quadratic nature of the cost function gives us further insights on the perfor-
mance of the supervised learning method used. In particular, the mean-squared error
(MSE) is an important error metric in this case, because by reverse triangular inequality

||(a∗ + d)− (â+ d)||2 = ||a∗ − â||2 ≥ ||â+ d||2 − ||a∗ + d||2

1 The training dataset will be made available online.
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wherea∗ = (∆∗
0, · · · , ∆

∗
T−1) is the optimal sequence of actions,â is the sequence of

actions given by regression, andd = (d(0), · · · , d(T − 1)) is the demand vector. This
gives

||â+ d||2 ≤ ||a∗ − â||2 + ||a∗ + d||2

so that||a∗ − â||2 bounds the difference in terms ofi2-score between the optimal se-
quence of actionsa∗ andâ.

6 Evaluation: the Chargecar Competition

As previously mentioned, we evaluate our method on the publicly available dataset
provided by Chargecar [8], a crowdsourcing project open to the public with the goal
of making electric vehicles more practical and affordable.Along with the dataset, the
Chargecar project provides a simulator to evaluate the performance of power manage-
ment policies on the trips contained in the dataset. Furthermore, they set up an open
algorithmic challenge where the goal of the contest is to design policies that optimize
the energy performance of electric vehicles, as measured interms of thei2-score. All
the parameters of the model are set as in the competition. In particular, the supercapac-
itor and the battery provide 50 Watt-hour and 50000 Watt-hour, respectively. Among
many other factors, the energy efficiency of multi-battery schemes depends crucially on
these parameters. Understanding their interplay with smart energy management poli-
cies is one of the goals of the competition, because it would allow us to design better,
more efficient electric vehicles.

Dataset The dataset [8] contains a total of 1984 trips (with an average length of15
minutes), subdivided into 6 separate datasets according tothe driver ID. Each one of
these dataset is further separated into two subsets: a training and judging set. There
are 168 trips in the judging set, accounting for about 8% of the total. Using the trips
contained in the training set, we generate a dataset of labeled (state, optimal action) ex-
ample pairs with the method explained in the previous section. The maximum capacity
level is discretized intoN = 45 discrete steps, and the time step isδt = 1s, such that
the resulting training dataset contains 75827205 examples. Since the complete training
dataset generated with the previously described approach is too big to fit into memory,
we divide it according to the driver ID, generating separatetraining sets for each driver.
When these datasets are still too big, we divide them again according to the capacity
level feature (selecting entries corresponding to one or more rows of the DP tables). We
then learn separate models for each one of these smaller datasets, as shown in figure 5
2.

Supervised learning We used non-parametric exploratory models as there is little or
no prior knowledge and possibly highly non-linear interactions. In particular, we use

2 A separate default model is trained for previously unseen driver IDs.
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bagged decision trees, with the REPTree algorithm as implemented in the Weka pack-
age [24] as the base learner. REPTree is a fast regression tree learner that uses infor-
mation gain as the splitting criterion and reduced-error pruning (with backfitting). Fol-
lowing standard practice, the parameters were set by 5-foldcrossvalidation, selecting
the model with the best MSE score. We call the resulting policy DPDecTree. Using
decision trees, we can represent and evaluate the policy efficiently in order to compute
the optimal action. In contrast, it can be impractical to compute an action solving an op-
timization problem based on a estimated future demand, because in a real-world setting
it might not be feasible to solve such problems with a high frequency on a car.D R I V E R I DC A P A C I T Y C A P A C I T YI D 1 I D NL E V E L 1 L E V E L M L E V E L 1 L E V E L M

B A T T E R Y O U T P U TB A T T E R Y O U T P U T B A T T E R Y O U T P U T B A T T E R Y O U T P U T B A T T E R Y O U T P U TB A G G E DD E C I S I O NT R E E S B A G G E DD E C I S I O NT R E E S B A G G E DD E C I S I O NT R E E S B A G G E DD E C I S I O NT R E E S
Fig. 5: An overview of our intelligent energy management system.

Evaluation We evaluate the performance ofDPDecTree on the separate judging set
of trips using the simulator. If the action suggested byDPDecTree would overcharge
the capacitor, we charge it to full capacity; if it overdraws, we discharge it completely.
However, this situation is rare andDPDecTree gives feasible actions99.8% of the
time when evaluated on the judging set. We compare our solution against MPL, the
current winning algorithm in the competition at the moment of this paper submission,
and to a simple buffer policy. The MPL policy is based on a large table of thresholds
for the battery outputibc + ibm, chosen according to driver ID, speed, demand and
GPS coordinates. The naive buffer policy charges the capacitor only from regenerative
braking (i.e, when the demand is negative) and when there is an energy demand, it
utilizes the capacitor first. We also provide thei2-score when the supercapacitor is not
used (or is not available) as a baseline.

As can be seen from table 1,DPDecTree leads to significant energy savings with
respect to the simple buffer policy. Although is it often farfrom the upper bound repre-
sented by the optimal Omniscient policy (except on themikedataset where they differ
only by 5%), the good performance ofDPDecTree suggests that it is very effective at
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Table 1: Results on driver specific judging datasets.i2-scores are in108 ·
A2s.

Dataset DPDecTree MPL Naive Buffer Baseline Omniscient

alik 4.233 4.435 7.533 8.424 3.196

arnold 4.090 3.946 8.402 8.894 3.332

mike 3.245 3.290 4.874 5.128 3.083

thor 1.648 1.787 3.931 4.596 1.413

illah 0.333 0.353 0.751 0.856 0.211

gary 2.000 2.146 5.187 5.857 1.261

Total: 15.549 15.957 30.678 33.755 12.496

predicting future energy demands, and that the policy learned from the training exam-
ples generalizes to new, previously unseen scenarios. Further,DPDecTree improves
over MPL in 5 out of 6 datasets (each one corresponding to a different driver). We
believe the problem with thearnold dataset is the presence of different driving behav-
iors in the same dataset that the learning algorithm was not able to separate using the
available covariates.

In the bottom row of Table 1 we provide the resulting scores for the entire judg-
ing dataset. On average,DPDecTree leads to a 2.5% improvement on thei2-score
with respect to MPL. According to a one-sided paired t-test,the difference is statisti-
cally significant (with P-value 0.0058). The result is significative also according to a
Wilcoxon signed-rank test (with P-value 0.00028) [25]. While there is still a signifi-
cant 20% gap with respect to the optimal omniscent policy, itis not clear how much
can still be achieved in the real online setting where the future demand is not known
ahead of time. These results suggest that there is a great potential for including rout-
ing information (e.g., from a car navigation system) into the problem, since they would
bring the policies closer to the omniscient case. However, in this paper we assume that
routing information is not available, as in the competition. It would also be very inter-
esting to explore the possibility of improving the policy bylearning from new data as
it becomes available during the policy evaluation phase, possibly with an incremental
learning approach.

7 Conclusions

In this paper we have presented an effective solution to the problem of managing multi-
battery systems in electric vehicles. Our novel intelligent energy management system
is evaluated on a large dataset of commuter trips crowdsourced in the United States.
Our approach is completely data-driven and can be expected to improve as more data is
being collected and becomes available.
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Our method combines several existing approaches to solve a problem that we model
as an MDP with unknown transition probabilities. We use a sample-based approach,
where samples are not generated from an analytic model or from a simulator but given
as part of a dataset. By observing the empirical transition probabilities of a discretized
problem, we solve sample-based dynamic programming equations using value iteration.
Thanks to the special structure of the problem and its indipendent dynamics assumption,
we can generate more artificial data points from the samples by exploiting the informa-
tion contained in the dynamic programming tables. The optimal posterior actions given
the observed samples are then combined to form a policy for the original problem. In
order to do this, we use supervised machine learning techniques to build a regression
model that gives the action as a function of the state of the system. The obtained pol-
icy is evaluated on a separate set of real world trips, where it is shown to generalize to
situations that were previously unseen in the training set.Our novel system is shown
to outperform the leading algorithms that were previously proposed as part of an open
algorithmic challenge.
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