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Abstract

Markov Chains are a fundamental tool for the analysis of real
world phenomena and randomized algorithms. Given a graph
with some specified sink nodes and an initial probability dis-
tribution, we consider the problem of designing an absorb-
ing Markov Chain that minimizes the time required to reach
a sink node, by selecting transition probabilities subject to
some natural regularity constraints. By exploiting the Marko-
vian structure, we obtain closed form expressions for the ob-
jective function as well as its gradient, which can be thus
evaluated efficiently without any simulation of the underly-
ing process and fed to a gradient-based optimization package.
For the special case of designing reversible Markov Chains,
we show that global optimum can be efficiently computed by
exploiting convexity. We demonstrate how our method can
be used for the evaluation and design of local search methods
tailored for certain domains.

Introduction
Markovian processes are an important modeling tool for the
analysis of natural phenomena (for example, diffusion pro-
cesses and Brownian motion), human made systems (e.g.,
telecommunication infrastructure and games), and also algo-
rithms, most prominently methods for sampling from large
state spaces (Madras 2002), graph-based learning (Page
et al. 1999; Fouss et al. 2007; Wu et al. 2012) and lo-
cal search techniques for combinatorial search and opti-
mization (Aarts and Lenstra 2003; Hoos and Stützle 2004).
Understanding statistical properties of such stochastic pro-
cesses is of paramount importance, as they characterize the
resulting behavior and often reflect performance metrics.
For instance, mixing times are a key property of Markov
Chain Monte Carlo methods (Jerrum and Sinclair 1997;
Madras 2002), one of the most widely used tools to approx-
imate #P problems which arise, e.g., in many probabilistic
inference applications (Neal 1993). Since we can often in-
teract with and influence the behavior of such processes, a
natural question to consider is: How can we optimally de-
sign such a system?

Interestingly, the Markovian nature of these processes im-
poses a rich structure that can be exploited. For example,
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Boyd, Diaconis, and Xiao (2004) showed that, under cer-
tain conditions, the problem of designing a Markov Chain
on a graph such that it has the fastest mixing time is convex,
which allows it to be solved to optimality using standard op-
timization techniques.

Many real world processes, however, have a transient na-
ture: for example, a game will eventually end and a lo-
cal search algorithm (e.g., stochastic hill climbing) for a
combinatorial search problem will eventually find a solu-
tion and stop. In such scenarios, we are typically inter-
ested in the final outcome, and the time required for the
process to reach that outcome and terminate. In other
words, the metric of interest is the absorption time of the
chain, rather than its mixing time. Markov Chain theory
has been extensively used to study such properties of spe-
cific, pre-defined processes. For example, in the context
of local search, analytic results have been obtained for the
probability of success (Papadimitriou 1991; Schoning 1999;
2007) and expected runtime (Zhou, He, and Nie 2009) of
specific algorithms. However, to the best of our knowledge,
there has been no attempt to formalize the general problem
of designing in a principled way an optimal Markov Chain
for a given transient processes.

We fill this gap by formalizing the problem of design-
ing, given a state space, an initial probability distribution,
and natural regularity constraints, a Markov Chain that min-
imizes the expected absorption time. By exploiting the
Markovian structure, we obtain a closed form expression
for the objective function—the expected absorption time—
as well as its gradient, and can thus avoid the pitfalls of esti-
mating it using Monte Carlo sampling methods. This allows
us to use standard optimization methods from the literature
to find locally optimal solutions. When restricting the design
to the space of reversible Markov Chains, we prove that this
optimization problem is convex and therefore a globally op-
timum can be efficiently found.

As an application of our methodology, we use it to under-
stand the behavior of local search methods for certain do-
mains. While our study is limited by the exponential growth
of the underlying state space, we give an example of how
insights used from this process can be used to enhance per-
formance even on larger problems.



Markov Chains and Absorption Times
A discrete Markov chain (Grinstead and Snell 1997) M is
a stochastic process defined on a finite set X of states. The
process (or the “chain”) starts in a state X0 chosen from an
initial probability distribution P0 ∈ [0, 1]|X |. If the chain
is currently in state xi ∈ X , in the next step it moves to
xj ∈ X with a transition probability dependent not on the
history of states visited previously but only on xi and xj
and denoted by pi→j . Hence the process is Markovian. The
transition probability matrix P ∈ [0, 1]|X |×|X| is defined by
Pi,j = pj→i = pji. P is stochastic, i.e.,

∑
i Pi,j = 1. For

k ≥ 0, we denote by Xk the state of the process at step k.
Xk is distributed according to P kP0.

Definition 1. A state s ∈ X is called absorbing if ps→s = 1,
i.e. once entered is never left. A state x ∈ X is called
transient if there is a non-zero probability of reaching an
absorbing state from x (not necessarily in one step). M is
called absorbing if it has at least one absorbing state and
all its non-absorbing states are transient.

Given an absorbing Markov Chain, let S ⊆ X be the set
of absorbing states or “solutions”. X is then the disjoint
union X = S tT , where T is the set of transient states. We
can write the transition matrix in canonical form1

P =

(
Q 0
R I|S|

)
(1)

by rearranging the order of the states so that the |S| solutions
appear last. Let xi, xj ∈ T . By the structure of P , Pr[Xk =
xj | X0 = xi] = Qk

j,i, where Qk
j,i denotes the i, j-th entry

of the k-th power matrix of Q. Hence, the expected number
of times the chain visits state xj during the first n steps given
that it starts in state xi is

∑n
k=0Q

k
j,i. Let E[tj | X0 = xi]

be the expected number of visits to state xj before the chain
is absorbed, given that the chain starts in state xi.

E[tj | X0 = xi] = lim
n→∞

n∑
k=0

Qk
j,i

This limit exists because the sequence is monotonically non-
decreasing, but it might not be finite. The expected number
of steps in state xj before the chain is absorbed, given an
initial probability distribution π0 ∈ [0, 1]|T |, is therefore

E[tj ] =
∑
xi∈T

E[tj | X0 = xi]π0(xi) =
∑
xi

∞∑
k=0

Qk
j,iπ0(xi)

The expected number of steps before the chain is absorbed
(i.e, the expected time spent in T ) is thus∑
xj∈T

E[tj ] =
∑

xi,xj∈T

∞∑
k=0

Qk
j,iP0(xi) = 1T

( ∞∑
k=0

Qk

)
π0

It is known that this infinite sum can be evaluated by ma-
trix inversion:

1Q is not necessarily irreducible, as there could be more than
one transient class.

Lemma 1 ((Grinstead and Snell 1997; Meyer 2000)). For
an absorbing Markov chain M defined by eqn. (1),

1. Qn → 0;
2. I −Q is invertible; and
3. N = (I −Q)−1 =

∑∞
k=0Q

k.

This allows us to evaluate the expected absorption time of
M , denoted E[tabsorb(M)], without having to actually sim-
ulate the process or compute an infinite number of power
matrices:

E[tabsorb(M)] = f(P,π0) = 1T (I −Q)−1π0 (2)

As a special case, let πu be the uniform distribution over T .
Then, f(P,πu) = 1

|T |1
T (I −Q)−11.

Note that we need not explicitly invert (I − Q). The ex-
pected absorption time can be calculated more efficiently
in practice as 1Tx where x is the solution of the system
of linear equations (I − Q)x = π0. Further, we obtain
a closed form expression for the gradient of the expected
absorption time ∇E[tabsorb(M)] from the identity ∂Y−1

∂x =

−Y−1 ∂Y
∂x Y

−1 (Petersen and Pedersen 2008). Even in this
case, explicit matrix inversion is not required.

Optimizing Absorption Time
Let I denote the set of all closed intervals within [0, 1].

Definition 2 (CONSTRAINED FASTEST ABSORBING
MARKOV CHAIN PROBLEM). Given a set X = S t T
of states with S ⊆ X as the absorbing states, intervals
{I}ij ∈ I|X |×|X|, equivalence classes given by D ⊆ T 4,
and an initial distribution π0 over T , design a Markov chain
M , as defined by a transition matrix P structured as in
eqn. (1), such that the expected absorption time ofM is min-
imized and P satisfies non-negativity, stochasticity, interval,
and equivalence constraints:

minimize 1T (I −Q)−1π0 (3)

subject to 0 ≤ P ≤ 1 , 1TP = 1T (4)
pij ∈ Iij ,∀i, j ∈ {1, . . . , |X |} (5)

pij = pi′j′ ,∀(ij, i′j′) ∈ D (6)

If constraints (5) and (6) are not imposed, the optimal so-
lution is to simply go from every transient state to an ab-
sorbing state in one step, i.e., setting Q = 0 and fixing
R arbitrarily so as to satisfy (4). This is, of course, not
very interesting. We thus work under the assumption that
is it not always possible to jump from any transient state al-
ways to an absorbing state, i.e., Q may not be 0. This is
the case in several Markov chains defined on graphs which
impose a neighborhood structure and pij must be 0 when-
ever i is not a neighbor of j, a restriction specified by con-
straint (5). For local search algorithms in discrete domains,
the neighborhood may be defined by the Hamming metric
over configurations. In wildlife conservation, nodes repre-
sent geographic locations which impose a natural neighbor-
hood structure. We will see examples of these later in the
paper.



Even when a neighborhood structure imposes pij = 0 for
all non-neighbors, the optimal solution is to define a deter-
ministic Q that corresponds to a network of shortest paths
from all transient states to absorbing states. In the case of
local search algorithms over combinatorial spaces, however,
the number of states is exponential and the Markov chain
must be represented implicitly in a succinct way, thereby
eliminating the possibility of simply using shortest paths.
We formalize this restriction as (6). Again, D itself must
have succinct representation to be useful. In our use case of
optimizing local search, this can be done by defining certain
“features” φ associated with pairs (xi, xj) of states such that
the feature space is much smaller than the state space and the
transition probabilities are completely characterized by the
features. We will discuss this in detail later.

Optimization algorithm
We propose to solve the optimization problem in Defini-
tion 2 using the L-BFGS-B algorithm proposed by Byrd et
al. (1995), which extends L-BFGS to handle box constraints
(5) on the variables. The algorithm is designed for large
scale optimization problems and it is based on the gradi-
ent projection method, with a limited memory BFGS matrix
used to approximate the Hessian of the objective function.
The gradient of the objective function is evaluated at each
step using the closed form derived earlier. This choice is
motivated by the fact that the optimization problem in Defi-
nition 2 is in general non-convex, as we will discuss shortly.
This also means that L-BFGS, although likely to produce
good solutions, will generally not provide any global opti-
mality guarantees.

Efficiently Designing Globally Optimal Chains
We explore conditions that guarantee an efficient design of
globally optimal Markov Chains. Let W be the set of transi-
tion matrices of absorbing Markov Chains with state space
X = S t T .

Proposition 1. The set W is convex.

Proof. Let P1, P2 ∈ W. Consider P = λP1 + (1 − λ)P2

for λ ∈ [0, 1]. Then P is stochastic. Further, from any state
i ∈ T , there must exist paths `1 and `2 of length at most
|T | in the two chains, respectively, to the sinks S and with
non-zero probabilities p1 and p2, resp., of being taken. The
probability of eventually reaching S from i under P is there-
fore at least max{p1λ|T |, p2(1 − λ)|T |}, which is strictly
positive. Hence, P is also absorbing, proving convexity of
W.

The objective function f(P,π0) in (2) is, however, in
general not convex over W. As an example, consider P1

such that its Q submatrix in decomposition (1) is Q1 =
[0, 1; 0, 0], and P2 such that Q2 = [0, 0; 1, 0]. Then,
f(P1,πu) = f(P2,πu) = 3/2, but f( 1

2P1 + 1
2P2,πu) =

4/2 > 3/2.
Interestingly, if we restrict the focus on the design of re-

versible (relative toQ) Markov Chains, convexity does hold,
as we show below. The complete Markov Chain, represented
by P , clearly cannot be reversible because of the sinks.

However, the part relative to Q can still be. For example,
Simulated Annealing at fixed temperature forms a reversible
chain over the transient states.
Theorem 1. Let π > 0 and Sπ ⊆ W be the set of stochas-
tic matrices defining absorbing Markov chains with a finite
state space X = S t T such that πiqji = πjqij , for all
transient states i, j ∈ T . Then Sπ is convex, f(P,π) =

1T (I −Q)
−1

π is convex over Sπ , and the optimization
problem in Definition 2 can be solved efficiently under the
additional constraint P ∈ Sπ .

Proof. Letting Π = diag(π), the assumption in the theo-
rem can be compactly written as ΠQT = QΠ which im-
plies that A , Π−1/2QΠ1/2 is symmetric. Further, Ak =
Π1/2QkΠ−1/2, and so

(I −Q)−1 =

∞∑
k=0

Qk = Π1/2(

∞∑
k=0

Ak)Π−1/2

= Π1/2(I −A)−1Π−1/2

Using the fact that π = Π1, we have

f(P,π) = 1T Π1/2(I −A)−1Π−1/2π

= 1T Π1/2(I −A)−1Π1/21

= h(Π1/21, (I −A))

where h(x, Y ) = xTY −1x is convex over the domain
Rn × Sn

++ (the set of symmetric positive definite matri-
ces) (Boyd and Vandenberghe 2004). Note that A has the
same eigenvalues as Q because these matrices are similar.
Since the Markov Chain defined byP is absorbing, its eigen-
value with the largest modulus has modulus (i.e., spectral
radius) ρ(Q) < 1. Thus, we also have ρ(A) < 1, implying
that the eigenvalues of (I − A) are positive, which in turn
implies that (I−A) is positive definite. Using the convexity
of h and observing that (I − A) is an affine transformation
of P proves the result.

Since W is convex and πiqji = πjqij is a linear con-
straint, Sπ ⊆ W is also convex. Since constraints (4) and
(5) are also linear, the optimization problem in Definition 2
is convex and can be solved efficiently under the additional
constraint P ∈ Sπ .

In particular, when π = πu, reversibility simply means
that the transition matrix P is symmetric (relative to Q).
Hence, globally optimal symmetric Markov chains can also
be designed efficiently.

Enhancing Local Search Methods
A Stochastic Local Search method for a discrete decision or
optimization problem may be viewed as a “recipe” for map-
ping a problem instance to a transition probability matrix
P , which defines a finite state Markov Chain over the entire
search space (e.g., one state for each possible assignment to
the variables), and then simulating the chain until it reaches
a solution.2 The resulting algorithm can therefore be seen as

2Time-varying processes, such as Simulated Annealing with a
changing temperature or “restarts” in local search methods, may
also be modeled this way with an appropriately extended P .



simulating an absorbing Markov Chain, where the absorbing
states are the solutions. Its expected runtime is thus simply
the expected absorption time of this chain.

Since the search space is typically exponentially large, the
transition probability matrix is often defined only implic-
itly. Pairs of source-destination states are mapped to fea-
tures of interest, such as a fitness function (e.g., number of
constraints violated by each configuration) in the case of a
stochastic hill climbing algorithm. The transition probabil-
ity for that state pair is then defined as a succinctly repre-
sented function of these features. E.g., the algorithm may
always accept downhill moves and accept uphill moves with
a certain probability.

While the feature engineering part is often problem spe-
cific and designed by domain experts, how these features
are combined in the algorithm to produce transition proba-
bilities opens up a rich and interesting space for the analysis
and improvement of such algorithms. Given a stochastic lo-
cal search algorithm with a set of features it uses, does it
combine the information from these features in a way that
optimizes its expected runtime? If not, can we improve upon
it? We next explore how our technique can address these
questions. Although our method is clearly limited by the ex-
ponential growth of the state space for combinatorial search
problems, we will show that insights obtained on small prob-
lems can be applied to larger scale problems as well.

Formally, let X I be the set of all configurations (i.e.,
variable assignments) for an instance I of a combinatorial
search problem P (e.g, SATisfiability testing (Biere 2009)).
Let S|XI | ⊂ R|XI |×|XI | denote the set of all stochastic ma-
trices of order |X I |. Every local search method provides a
function g : P → S|XI | which is a “recipe” to associate with
each instance I of P a transition probability matrix g(I).

Typically, the i, j entry of g(I) depends only on a small
set of features of the corresponding states (configurations)
xi, xj . Such features could be the number of constraints they
violate (called energy) and their Hamming distance. Let φ :
X I × X I → F be a function mapping configuration-pairs
to a feature vector. We consider a class of stochastic local
search methods whose transition probability matrix P has
entries pij = h(φ(xi, xj)) that depend only on some well-
defined set of features. For example, consider a Metropolis
algorithm for a Boltzmann distribution, i.e. a fixed “temper-
ature” Simulated Annealing algorithm (SA) (Kirkpatrick,
Gelatt Jr., and Vecchi 1983), for a Constraint Satisfaction
problem (CSP) (Russell et al. 2010). Here, the only fea-
tures considered are the Hamming distance dH(xi, xj) and
the difference in the number of violated constraintsEi−Ej ,
and transition probabilities are:

pij =
1

n
min

{
1, exp

(
Ei − Ej

T

)}
1dH(xi,xj)=1 (7)

where T is a formal parameter called “temperature”. A
greedy algorithm might include as a feature the lowest en-
ergy among the configurations in some neighborhood of xi,
and would set the transition probability to zero unless the
destination configuration has minimal energy in the neigh-
borhood. For structured problems like SAT, features typi-

cally also include information based on the constraint struc-
ture (e.g., the so-called makecount and breakcount of each
variable (Selman, Kautz, and Cohen 1993)).

These features can be thought of as defining equivalence
classes among all possible transitions, because transitions
with the same features will be given the same transition
probabilities. This is the key property that allows local
search algorithms to specify in a succint way an exponen-
tially large number of transition probabilities. More for-
mally, there exists an equivalence classes given by D ⊆ X I4
such that pij = pi′j′ ,∀(ij, i′j′) ∈ D. Notice this limitation
imposed by the succint representation is given by (6) in the
CONSTRAINED FASTEST ABSORBING MARKOV CHAIN
PROBLEM definition.

Parameterized Local Search: Given this insight, it is nat-
ural to consider a more general class of parameterized local
search methods g′ : Θ × P → S|XI | where g′ is a func-
tion mapping parameters θ ∈ Θ and instances to transition
probability matrices. Each parameter can be thought of as
a possible way of combining the information contained in
the features. For example, if we use as features the energies
Ei, Ej of the source and destination states, we could define
a very general version of SA where

pij =
1

n
θEi,Ej

1dH(xi,xj)=1 (8)

i.e., there is one parameter for each possible energy transi-
tion (Ei, Ej), not restricted to have the specific form given
in (7).

Given this flexibility and a defined set of features, it is
natural to seek a parameter θ ∈ Θ that optimizes the al-
gorithm’s performance, measured as the expected time re-
quired to find a solution (assuming the instance has a so-
lution), which is the expected absorption time, as defined
in (2), of the Markov Chain defined by g′(θ, I). This prob-
lem in turn can be casted as a CONSTRAINED FASTEST AB-
SORBING MARKOV CHAIN PROBLEM, where constraint (6)
enforces the restriction on the transition probabilities given
by the equivalence classes associated with the features con-
sidered by a certain algorithm. In other words, this guar-
antees that the resulting Markov Chain can be specified in
a succint way. Constraint (5) is used to directly enforce
the limitations imposed by underlying metric, i.e. the local
search algorithm is only allowed local moves in a neighbor-
hood of a certain size (in our experiments, a Hamming ball
of radius 1). Specifically, we can use the L-BFGS-B based
optimization algorithm described earlier to find the parame-
ter θ that optimizes the absorption time, subject to the addi-
tional constraints we imposed.

Optimizing Local Search Performance
We consider a local search scheme for a binary CSP de-
fined over n variables and with m constraints. The state
space X = {0, 1}n corresponds to the 2n possible configu-
rations or variable-value assignments, and solutions S ⊆ X
are configurations that satisfy all the constraints. We define



the energy Ei of a configuration i as the number of con-
straints of the CSP violated by i. For this study, we fo-
cus on a parameterized local search scheme based on en-
ergy as the only feature (and only allowing moves of up
to Hamming distance 1). Specifically, we have a parame-
ter θ ∈ [0, 1]m×m. The transition probabilities are given by
(8) for i 6= j, and pii = 1 −

∑
j′ pij′ . This corresponds

to a sampling scheme where from state i (with energy Ei)
we select uniformly at random a neighbor j′ at Hamming
distance 1, and accept the transition to j′ with probabil-
ity θEi,Ej′ . This corresponds to a fixed temperature SA if
θEi,Ej

is set to exp ((Ei − Ej)/T ). Our formulation, how-
ever, allows for much more flexibility. We explore whether
the expected runtime of the algorithm can be improved by
altering the way energy feature is utilized when comput-
ing transition probabilities. Specifically, given a CSP in-
stance we use the L-BFGS-B based optimization algorithm
described earlier to solve the corresponding CONSTRAINED
FASTEST ABSORBING MARKOV CHAIN PROBLEM, i.e. to
look for the optimal parameter θ ∈ [0, 1]m×m that optimizes
the expected absorption time, subject to the additional con-
straints we imposed.

Random k-SAT Ensemble: To evaluate the above ap-
proach, we generated 250 satisfiable instances from the
random k-SAT ensemble (Selman, Mitchell, and Levesque
1996) for k = 3, 4. For each individual instance, we opti-
mized the expected runtime (2) for a uniform initial distribu-
tion πu as a function of the parameter θ ∈ [0, 1]m×m.When
we compare with the expected absorption time achieved by
setting optimally the only parameter T in the transition prob-
abilities defined as in (7), we get improvements ranging from
18% to 49% for 3-SAT instances, and ranging from 18% to
81% for the harder 4-SAT instances (optimizing over MC
with 27 to 213 states). A scatter plot for the runtime improve-
ment for several instances is reported in Figure 2 (left). We
see that the additional flexibility allowed by having a dif-
ferent acceptance probability per energy-pair allows us to
greatly outperform SA. Notice that this comparison is fair
because the two schemes use the same set of features, Ham-
ming distance limitations, and neighbor selection scheme.
The improvement can thus be attributed entirely to a more
effective way of exploring the search space.

As a second experiment, we used our method to optimize
the parameter θ for the expected absorption time jointly for
an ensemble of random k-SAT problems, seeking a single
parameter that performs well on average across the entire
family of instances. In this case, we found that the average
performance of the best parameter θ∗ is essentially identical
to that one of a SA scheme tuned with the best tempera-
ture parameter T . For instance, on 3-SAT problems with 10
variables and 42 clauses we get 106.4 vs 107.9 of the best
SA. On 5-SAT with 10 variables and 212 clauses, we get
305.2 vs 307.6 of SA. An optimal parameter θ∗ represented
as heat-map is shown in the left panel of Figure 1. Notice
that it is quite similar to SA, and differences mostly occur
for transitions that do not frequently happen in the data, and
thus don’t affect the result much. These results suggest that

the strategy employed by SA is actually good (when the tem-
perature is tuned well), at least for these small problems, and
for the average ensemble one can’t actually improve much
if the only feature we have is the energy (clearly, with more
features one can do much better than SA for random k-SAT).
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Figure 2: Runtime improvements. Top: random instances.
Bottom: hard energy landscape instances.

Hard energy landscapes: We next consider an ensemble
defining a challenging energy landscape. These are SAT
problems over binary variables x1, y1, · · · , yb, r1, · · · , rp
with constraints

(x1 ⇒ y1) ∧ (x1 ⇒ y2) ∧ · · · ∧ (x1 ⇒ yb)∧
(¬x1 ⇒ ¬y1) ∧ (¬x1 ⇒ ¬y2) ∧ · · · ∧ (¬x1 ⇒ ¬yb))

∧(x1 ∨ r1) ∧ · · · ∧ (x1 ∨ rp) ∧ (¬x1 ∨ z1) ∧ (¬x1 ∨ ¬z1)

The effect of the first line of constraints is to create an
“energy barrier” between (x1, y1, · · · , yb) = (0 . . . 0) and
(x1, y1, · · · , yb) = (1 · · · 1). In order to go from one to
the other by flipping one variable at a time, one has to
violate at least b/2 constraints. The last line creates a
large “energy plateau” corresponding to assignments with
x1 = 1 that are close to solutions because they satisfy all



Figure 1: Acceptance probabilities for transitions from energy E1 to E2 for optimized local search vs. Simulated Annealing.
Black indicates energy-pair was not used. Left: 5-SAT with 10 variables, trained on 10000 instances. Right: hard energy
landscape instance with p = 10, b = 6.

the (x1 ∨ r1) ∧ · · · ∧ (x1 ∨ rp) constraints (but all solutions
have x1 = 0).Intuitively, this instance is difficult for SA be-
cause in order to reach one of the solutions, SA needs to set
x1 = 0. Setting x1 = 0 is likely to violate several of the first
b clauses, making the uphill move unlikely to be accepted.

For this experiment, we optimized θ ∈ [0, 1]m×m for an
instance with b = 6, p = 8. The optimal parameter θ∗ is
shown in the right panel of Figure 1 as a heatmap, and com-
pared with the corresponding acceptance probabilities com-
puted according to Eq. (7) for the optimal parameter T . Note
that the two schemes look extremely different. E.g., accord-
ing to θ∗ we are accepting uphill moves with a much higher
probability. We then run the chain on other instances gener-
ated with different values of p, which controls the size of the
plateau. When we encounter a previously unseen parameter
in (8) (black in the heatmap), we set it to a random value
from [0, 1].

As shown in Figure 2 (bottom), there is a dramatic im-
provement in performance when using the algorithm defined
by θ∗ as opposed to SA, whose time complexity, measured
here as the number of steps in the Markov Chain, increases
exponentially with p. While the former often takes only of
the order of 1,000 steps irrespective of the plateau dimen-
sion (the line labeled “Optimzied” stays barely above the
horizontal axis), SA quickly increases to over 100,000 steps
as p is increased to 15.

Generalization to Larger Instances: Perhaps most inter-
estingly, the parameters learned from smaller instances gen-
eralize well to larger ones. For example, using the parame-
ters learned for the rather small instance with b = 6, p = 8,
instances with a much larger plateau dimension such as
b = 6, p = 45 are solved easily in 22,898 steps. The learned
parameters also generalize in terms of the barrier size b, up

to b = 40, p = 8 with an expected runtime of 28,571 steps,
and also to instances with both a larger barrier size and a
larger plateau size (e.g., p = 20, b = 20 is solved on aver-
age in 7931 steps). These results demonstrate that the opti-
mized parameters can generalize to new, previously unseen
instances of a larger size, which are all well out of reach of
SA.

Conclusion
We introduced and formalized the problem of designing a
Markov Chain that minimizes the expected absorption time.
Our method allows efficiently finding locally optimal solu-
tions thanks to a closed form expression for the objective
function as well as its gradient, which can thus be evalu-
ated without simulation. The design of an optimal reversible
chain turns out to be a convex optimization problem and thus
solvable optimally for reasonably sized state spaces. As an
application, we used our method to optimize transition prob-
abilities in local search algorithms.
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