
Optimization With Parity Constraints:
From Binary Codes to Discrete Integration∗

Stefano Ermon, Carla P. Gomes

Department of Computer Science
Cornell University, Ithaca, NY, USA
{ermonste,gomes}@cs.cornell.edu

Ashish Sabharwal

IBM Watson Research Center
Yorktown Heights, NY, USA
ashish.sabharwal@us.ibm.com

Bart Selman

Dept. of Computer Science
Cornell University, Ithaca, USA

selman@cs.cornell.edu

Abstract

Many probabilistic inference tasks involve
summations over exponentially large sets.
Recently, it has been shown that these prob-
lems can be reduced to solving a polyno-
mial number of MAP inference queries for
a model augmented with randomly gener-
ated parity constraints. By exploiting a con-
nection with max-likelihood decoding of bi-
nary codes, we show that these optimizations
are computationally hard. Inspired by iter-
ative message passing decoding algorithms,
we propose an Integer Linear Programming
(ILP) formulation for the problem, enhanced
with new sparsification techniques to improve
decoding performance. By solving the ILP
through a sequence of LP relaxations, we get
both lower and upper bounds on the parti-
tion function, which hold with high probabil-
ity and are much tighter than those obtained
with variational methods.

1 INTRODUCTION

Discrete probabilistic graphical models [18, 31] are of-
ten defined up to a normalization factor involving a
summation over an exponentially large combinatorial
space. Computing these factors is an important prob-
lem, as they are needed, for instance, to evaluate the
probability of evidence, rank two alternative models,
and learn parameters from data. Unfortunately, com-
puting these discrete integrals exactly in very high
dimensional spaces quickly becomes intractable, and
approximation techniques are often needed. Among
them, sampling and variational methods are the most
popular approaches. Variational inference problems
are typically solved using message passing techniques,

∗ This work was supported by NSF Grant 0832782.

which are often guaranteed to converge to some lo-
cal minimum [30, 31], but without guarantees on the
quality of the solution found. Markov Chain Monte
Carlo [17, 21, 32] and Importance Sampling tech-
niques [10, 11, 13] are asymptotically correct, but the
number of samples required to obtain a statistically
reliable estimate can grow exponentially in the worst
case.

Recently, Ermon et al. [6] introduced a new technique
called WISH which comes with provable (probabilistic)
guarantees on the approximation error. Their method
combines combinatorial optimization techniques with
the use of universal hash functions to uniformly parti-
tion a large combinatorial space, originally introduced
by Valiant and Vazirani to study the Unique Satisfi-
ability problem and later exploited by Gomes et al.
[13, 14] for solution counting. Specifically, they show
that one can obtain the intractable normalization con-
stant (partition function) of a graphical model within
any desired degree of accuracy, by solving a polyno-
mial number of MAP queries for the original graphi-
cal model augmented with randomly generated parity
constraints as evidence. Although MAP inference is
NP-hard and thus also intractable, this is a significant
step forward as counting problems such as estimating
the partition function are #-P hard, a complexity class
believed to be significantly harder than NP.

In this work, we investigate the class of MAP infer-
ence queries with random parity constraints arising
from the WISH scheme. These optimization problems
turn out to be intimately connected with the funda-
mental problem of maximum likelihood decoding of a
binary code [3, 29]. We leverage this connection to
show that the inference queries generated by WISH
are NP-hard to solve and to approximate, even for
very simple graphical models. Although generally hard
in the worst case, message passing and related linear
programming techniques [7] are known to be very suc-
cessful in practice in decoding certain types of codes
such as low density parity check (LDPC) codes [8].

Inspired by the success of these methods, we formu-
late the MAP inference queries generated by WISH as
Integer Linear Programs (ILP). Unfortunately, such
queries are typically harder than traditional decoding
problems because they involve more complex proba-
bilistic models, and because universal hash functions
naturally give rise to very “dense” parity constraints.
To address this issue, we propose a technique to con-
struct equivalent but sparser (and empirically easier
to solve) parity constraints. Further, we introduce a
more general version of WISH that relies directly on
arbitrarily sparse parity constraints, thus giving rise
to easier to solve MAP queries but providing weaker,
one-sided guarantees on the approximation error for
the partition function.

Our ILP formulation with sparsification techniques
provides very good lower bounds on the partition func-
tion, while at the same time providing also upper
bounds based on solving a sequence of LP relaxations.
These upper bounds are much tighter than those ob-
tained by tree decomposition and convexity [30]. This
is a significant advance, because other state-of-the-art
sampling based algorithms [10, 11, 13, 32] can usually
provide probabilistic guarantees on lower bounds, but
are not able to reason at all about upper bounds.

2 PROBLEM STATEMENT

We consider a discrete probabilistic graphical
model [31] with n = |V | random variables {xi, i ∈ V }
where each random variable xi takes values in a
finite set Xi. We consider a factor graph repre-
sentation for a joint probability distribution over
elements x ∈ X = X1 × · · · × Xn (also referred to as
configurations)

p(x) =
1

Z

∏

α∈I

ψα({x}α) (1)

This is a compact representation for p(x), which is
defined as the product of non-negative factors ψα :
{x}α 7→ R

+, where I is an index set and {x}α ⊆ V
a subset of variables the factor ψα depends on. Z is
a normalization constant known as partition function
ensuring the probabilities sum up to one. Formally the
partition function Z is defined as

Z =
∑

x∈X

∏

α∈I

ψα({x}α) =
∑

x∈X

w(x) (2)

where for compactness we have introduced a weight
function w : X → R

+ that assigns to each configura-
tion x ∈ X its unnormalized probability, namely

w(x) =
∏

α∈I

ψα({x}α) (3)

Computing the partition function Z is a #-P com-
plete, intractable problem because it involves a sum
over an exponentially large number of configurations.
However, the partition function is a key property of a
graphical model, needed e.g. to actually evaluate the
probability of a configuration x under p. In this paper,
we will focus on approximate techniques to estimate
and bound this quantity. For simplicity, we consider
the case of binary variables where xi ∈ Xi = {0, 1}.
The general case can be encoded using a bit represen-
tation and binary variables.

3 BACKGROUND

This paper extends previous work by Ermon et al. [6]
who introduced an algorithm called WISH to estimate
the partition function (2). WISH is a randomized ap-
proximation algorithm that gives a constant factor ap-
proximation of Z with high probability. It involves
solving a polynomial number of MAP inference queries
for the graphical model conditioned on randomly gen-
erated evidence based on universal hashing.

3.1 FAMILIES OF HASH FUNCTIONS

A key ingredient of the WISH algorithm is the concept
of pairwise independent hashing, originally intro-
duced by Carter and Wegman [5] and later recognized
as a tool that “should belong to the bag of tricks of
every computer scientist” [33]. There are several in-
depth expositions of the topic [cf. 12, 27, 28]. Here we
will also make use of a weaker notion of hashing, called
uniform hashing and defined as follows:

Definition 1. A family of functions H = {h :
{0, 1}n → {0, 1}m} is called uniform if for H ∈R H
it holds that ∀x ∈ {0, 1}n, the random variable H(x)
is uniformly distributed in {0, 1}m.

Here we use the notation H ∈R H to denote H being
chosen uniformly at random from H.

Definition 2. A family of functions H = {h :
{0, 1}n → {0, 1}m} is called pairwise independent

if it is uniform and for H ∈R H it holds that ∀x1, x2 ∈
{0, 1}n with x1 6= x2, the random variables H(x1) and
H(x2) are independent.

Many constructions of pairwise independent hash
functions are known. A simple and well-known one
was used by Ermon et al.:

Proposition 1 ([6]). Let A ∈ {0, 1}m×n, b ∈ {0, 1}m.
The family Hn,m = {hA,b(x) : {0, 1}n → {0, 1}m}
where hA,b(x) = Ax+ b mod 2 is a family of pairwise
independent hash functions.

Algorithm 1 WISH (w, n = log2 |X |, δ, α, {H
n,i})

T ←
⌈

ln(1/δ)
α lnn

⌉

for i = 0, · · · , n do

for t = 1, · · · , T do

Sample hash function hiA,b uniformly from Hn,i

wt
i ← maxσ w(σ) subject to h

i
A,b(σ) = 0

end for

Mi ← Median(w1
i , · · · , w

T
i)

end for

Return M0 +
∑n−1

i=0 Mi+12
i

3.2 THE WISH ALGORITHM FOR

DISCRETE INTEGRATION

The basic idea behind WISH is to (implicitly) ran-
domly partition the space of all possible configura-
tions by universally hashing configurations into 2m

buckets. This step is achieved using randomly gen-
erated parity constraints of the form Ax = b mod 2,
which may also be viewed as logical XOR opera-
tions acting on the binary variables of the problem:
Ai1x1 ⊕ Ai2x2 ⊕ · · · ⊕ Ainxn = bi. A combinatorial
optimization solver is then used to find a configura-
tion with the largest weight within a single bucket.
This corresponds to solving a MAP query, i.e., solving
an optimization problem subject to (randomly gen-
erated) parity constraints. By varying the number
of buckets and repeating the process a small number
of times, this strategy provably yields an estimate of
the intractable normalization factor (2) within any de-
sired degree of accuracy, with high probability and us-
ing only a polynomial number of MAP queries. For
completeness, we provide the pseudocode for WISH
as Algorithm 1, modified to have the hash families
Hn,i, i ∈ {0, 1, . . . , n}, as parameters whose variations
we will consider later1. We will write WISH({Hn,i})
when the values of the other parameters are implicit.

Although MAP inference itself is an NP-hard problem,
this strategy is still desirable considering that com-
puting Z is a #P-hard problem, a complexity class
believed to be even harder than NP. In practice, Er-
mon et al. [6] showed that the resulting MAP inference
can be solved reasonably well using a state-of-the-art
MAP inference engine called Toulbar [1], which was ex-
tended with custom propagators for parity constraints.

Theorem 1 ([6]). For any δ > 0, positive constant
α ≤ 0.0042, and the hash families Hn,i given by Propo-
sition 1, WISH({Hn,i}) makes Θ(n lnn ln 1/δ) MAP
queries and, with probability at least (1− δ), outputs a
16-approximation of Z =

∑

σ∈X w(σ).

1For i = 0, hi
A,b ≡ 0 and no constraint is added.

Further, even if the MAP instances in the inner loop of
Algorithm 1 are not solved to optimality, the output of
the algorithm using suboptimal MAP solutions is an
approximate lower bound for Z (specifically, no more
than 16Z) with probability at least (1− δ). If subop-
timal solutions are within a constant factor L of the
optimal, then the output is a 16L-approximation of Z
with probability at least (1−δ) [6]. Similarly, if one has
access to upper bounds to the values of the MAP in-
stances, the output of the algorithm using these upper
bounds is an approximate upper bound (specifically, at
least 1/16Z) for Z with probability at least (1− δ).

3.3 IMPROVING WISH: HASHING USING

TOEPLITZ MATRIX

The performance of Algorithm 1 can be improved by
constructing pairwise independent hash functions not
by choosing A ∈R {0, 1}i×n but rather letting A be
a random i × n Toeplitz matrix [24]. Specifically, the
first column and row of A are filled with uniform i.i.d.
Bernoulli variables in {0, 1}. The value of each entry
is then copied into the corresponding descending top-
left to bottom-right diagonal. This process requires
n + i − 1 random bits rather than ni = O(n2). Let
T (m,n) ⊆ {0, 1}m×n be the set of m × n Toeplitz
matrices with 0, 1 entries. Then:

Proposition 2 ([12, 27]). Let A ∈ T (m,n), b ∈
{0, 1}m. The family Hn,m

T = {hA,b(x) : {0, 1}n →
{0, 1}m} where hA,b(x) = Ax+ b mod 2 is a family of
pairwise independent hash functions.

WISH({Hn,m
T }) still provides the same theoretical

guarantees as Theorem 1 but has a more determinis-
tic and stable behavior as it requires only Θ(n2 log n)
random bits rather than Θ(n3 log n).

4 CONNECTIONS WITH CODING

THEORY

For a problem with n binary variables, WISH requires
solving Θ(n log n) optimization instances. If these
optimizations could be approximated (within a con-
stant factor of the true optimal value) in polynomial
time, this would give rise to a polynomial time algo-
rithm that gives, with high probability, a constant fac-
tor approximation for the original counting problem.
Note that this is a reasonable assumption, because
perhaps the most interesting #-P complete counting
problems are those whose corresponding decision prob-
lem are easy, e.g. counting weighted matchings in a
graph (computing the permanent). A natural ques-
tion arises: are there interesting counting problems
for which we can approximate maxσ w(σ) subject to
Aσ = b mod 2 in polynomial time?

To shed some light on this question, we show a connec-
tion with a decision problem arising in coding theory:

Definition 3 (MAXIMUM-LIKELIHOOD DECOD-
ING). Given a binary m × n matrix A, a vector
b ∈ {0, 1}m, and an integer w > 0, is there a vec-
tor z ∈ {0, 1}n of Hamming weight ≤ w, such that
Az = b mod 2?

As noted by Vardy [29], Berlekamp et al. [3] showed
that this problem is NP-complete with a reduction
from 3-DIMENSIONAL MATCHING. Further, Stern
[26] and Arora et al. [2] proved that even approxi-
mating within any constant factor the solution to this
problem is NP-hard.

These hardness results restrict the kind of problems we
can hope to solve in our setting, which is more general.
In fact, we can define a graphical model with single
variable factors ψi(xi) = exp(−xi) for xi ∈ {0, 1}. Let
S = {x ∈ {0, 1}n : Ax = b mod 2}. Then

max
x∈S

w(x) = max
x∈S

n
∏

i=1

ψi(xi) = exp

(

max
x∈S

n
∑

i=1

logψi(xi)

)

= exp

(

max
x∈S
−H(x)

)

= exp

(

−min
x∈S

H(x)

)

where H(x) is the Hamming weight of x. Thus,
MAXIMUM-LIKELIHOOD DECODING of a binary
code is a special case of MAP inference subject to par-
ity constraints, but on a simple (disconnected) fac-
tor graph with factors acting only on single variable
nodes. Intuitively, in the context of coding theory,
there is a variable for each transmitted bit, and fac-
tors capture the probability of a transmission error on
each bit. Thus there are no interactions between the
variables, except for the ones introduced by the par-
ity constraints Ax = b mod 2, while in our context
we allow for more complex probabilistic dependencies
between variables specified as in Eq. (1). We therefore
have the following theorem:

Theorem 2. Given a binary m×n matrix A, a vector
b ∈ {0, 1}m, and w(x) as in Equation (3), the following
optimization problem

max
x∈{0,1}n

logw(x) subject to Ax = b mod 2

is NP-hard to solve and to approximate within any con-
stant factor.

Connections with coding theory is even deeper, and
is not just an artifact of the particular hash function
construction used. In fact, there is an intimate con-
nection and a correspondence between universal hash
functions and (binary) codes, where one can construct
hash functions from binary codes and vice versa [27].

4.1 MESSAGE PASSING DECODING

Iterative Message Passing (MP) methods are among
the most widely used decoding techniques. Although
the decoding problem is computationally intractable,
they usually have very good performance in prac-
tice [7, 19]. Since we can represent parity constraints
as additional factors in our original factor graph
model, MP techniques can also be heuristically applied
to solve the more general MAP inference queries with
parity constraints generated by WISH. Specifically, al-
though a parity constraint over k variables would re-
quire a conditional probability table (CPT) of size 2k

to be specified, efficient Dynamic-Programming-based
updates for parity constraints are known, see e.g. [19].
These updates have complexity which is linear in k,
and thus, by representing parity constraints implicitly,
we can directly use these techniques.

5 INTEGER PROGRAMMING

FORMULATION

The NP-hard combinatorial optimization problem
maxσ w(σ) subject to Aσ = b mod 2 can be formu-
lated as an Integer Program [4]. This is a promis-
ing approach because Integer Linear Programs and re-
lated Linear programming (LP) relaxations have been
shown to be a very effective at decoding binary codes
by Feldman et al. [7]. Further, the empirically suc-
cessful iterative message-passing decoding algorithms
are closely related to LP relaxations of certain Integer
Programs, either because they are directly trying to
solve an LP or its dual like the MPLP and TRWBP
[9, 25, 30], or attempting to approximately solve a vari-
ational problem over the same polytope like Loopy Be-
lief Propagation [31].

5.1 MAP INFERENCE AS AN ILP

For simplicity, we consider the case of bi-
nary factors (pairwise interactions between
variables), where equation (3) simplifies to
w(x) =

∏

i∈V ψi(xi)
∏

(i,j)∈E ψij(xi, xj) for some
edge set E. Rewriting in terms of the logarithms, the
unconstrained MAP inference problem can be stated
as maxx∈{0,1}n

∑

i∈V θi(xi) +
∑

(i,j)∈E θij(xi, xj)
which can be written as an Integer Linear Program
using binary indicator variables {µi, i ∈ V } and
{µij(xi, xj), (i, j) ∈ E, xi ∈ {0, 1}, xj ∈ {0, 1}} as
follows [31]:

max
µi,µij(xi,xj)

∑

i∈V

θi(1)µi + θi(0)(1− µi) +

∑

(i,j)∈E

∑

xi,xj

θij(xi, xj)µi,j(xi, xj)

subject to

∀i ∈ V, (i, j) ∈ E,
∑

xj∈{0,1}

µi,j(0, xj) = 1− µi

∀i ∈ V, (i, j) ∈ E,
∑

xj∈{0,1}

µi,j(1, xj) = µi

∀i ∈ V, (i, j) ∈ E,
∑

xi∈{0,1}

µi,j(xi, 0) = 1− µj

∀i ∈ V, (i, j) ∈ E,
∑

xi∈{0,1}

µi,j(xi, 1) = µj

5.2 PARITY CONSTRAINTS

There are several possible encodings for the parity con-
straints Aσ = b mod 2, defining the so called parity

polytope over σ ∈ R
n. We summarize them next.

Let J be the set of parity constraints (one entry per
row of A). Let N (j) be the set of variables the j-
th parity constraint depends on, namely the indexes
of the non-zero columns of the j-th row of A2. We’ll
refer to |N (j)| as the length of the j-th XOR.

5.2.1 Exponential polytope representation

The simplest encoding is due to Jeroslow [16]. It re-
quires that for all j ∈ J , S ⊆ N (j), and |S| odd, the
following should hold

∑

i∈S

µi +
∑

i∈(N (j)\S)

(1− µi) ≤ |N (j)| − 1

Clearly, this requires a number of constraints that is
exponential in the length of the XOR.

Another representation exponential in the length of
the parity constraint is due to Feldman et al. [7]. For
each S in the set Ej = {S ⊆ N (j) : |S| even} there
is an extra binary variable wj,S ∈ {0, 1}. It requires
∀j ∈ J ,

∑

S∈Ej
wj,S = 1 and ∀j ∈ J , ∀i ∈ N (j), µi =

∑

S∈Ej :i∈S wj,S .

5.2.2 Compact polytope representation

Yannakakis [34] introduced the following compact rep-
resentation which requires only O(n3) variables and
constraints, where n is the number of variables. For
each constraint j, define Tj = {0, 2, · · · , 2⌊|N (j)|/2⌋}
as the set of even numbers between 0 and |N (j)|.

• for all j ∈ J and for all k ∈ Tj we have a binary
variable αj,k ∈ {0, 1}

• for all j ∈ J and for all k ∈ Tj and for all i ∈
N (j) we have a binary variable zi,j,k ∈ {0, 1},
0 ≤ zi,j,k ≤ αj,k

2To represent the desired parity of the j-th constraint
imposed by bj we use a dummy variable d = 1, and include
d in N (j) whenever bj = 1.

Then the following constraints are enforced:

∀i ∈ V, j ∈ N (i), µi =
∑

k∈Tj

zi,j,k

∀j ∈ J ,
∑

k∈Tj

αj,k = 1

∀j ∈ J , ∀k ∈ Tj ,
∑

i∈N (j)

zi,j,k = kαj,k

For any set of parity constraints, these 3 encodings
are equivalent, in the sense that the subset of {µi}
satisfying the constraints is the same [7]. Thus, the
corresponding MAP inference problems are also equiv-
alent, as the objective function, by expressing each µi,j

in terms of the {µi} variables, can be re-written as a
(possibly non-linear) function of only {µi}.

5.3 SOLVING INTEGER PROGRAMS

Solving ILPs typically relies on solving a sequence of
Linear Programming (LP) relaxations obtained by re-
laxing the integrality constraints. The solution to the
relaxation provides an upper bound to the original in-
teger maximization problem. Since LP can be solved
in polynomial time, using Theorem 1 and following
remarks we have a polynomial time method to ob-
tain approximate upper bounds on the partition func-
tion which hold with high probability, although with-
out tightness guarantees. Notice that upper bounds of
this form could also be obtained using message pass-
ing techniques such as MPLP or TRWBP [9, 25, 30],
which can also provide upper bounds to the values of
the MAP inference queries in the inner loop of WISH.

IP solvers such as IBM ILOG CPLEX Optimization
Studio [15] solve a sequence of LP relaxations based
on branching on the problem’s variables and possibly
adding cutting planes, iteratively improving the upper
bound and keeping track of the best integer solution
found, until lower and upper bounds match. Thus, one
advantage of using an IP solver over standard Mes-
sage Passing techniques is that the upper and lower
bounds improve over time, and it is guaranteed to
eventually provide an optimal solution for the original
integer problem. In Figure 1 we plot the upper bound
reported by CPLEX as a function of runtime for a
random 10 × 10 Ising model with mixed interactions.
It’s clear that there is quickly a dramatic improvement
over the value of the basic LP relaxation, which is the
value reported by CPLEX around time zero, and that
the upper bound keeps improving although at a slower
rate. We note that other techniques such as by Son-
tag et al. [25] could also be used to iteratively tighten
the LP relaxation, and might lead to better scaling
behavior on certain classes of very large problems [35].

0 0.5 1 1.5 2
x 10

4

115

120

125

130

135

140

Time (s)

U
pp

er
 b

ou
nd

UB − 25 constraints
UB − 50 constraints
UB − 75 constraints

Figure 1: Upper bound as a function of runtime.

5.4 INDUCING SPARSITY

As we have shown, solving MAP inference queries sub-
ject to parity constraints is hard in general. However,
adding parity constraints can sometimes makes the op-
timization easier. For example, when A is the iden-
tity matrix, enforcing Aσ = b mod 2 corresponds to
fixing the values of all variables and leads to a triv-
ial optimization problem. Empirically, sparse con-
straints, such as the ones used in low density parity
check (LDPC) codes from Gallager [8], tend to be
much easier to solve. Unfortunately, constructions in
both Propositions 1 and 2 to create pairwise indepen-
dent hash functions require parity constraints that are
of average length n/2, i.e., the corresponding matrix
A is not sparse.

A set of parity constraints specified through matrices
A, b defines a set of solutions S = {x ∈ {0, 1}n : Ax =
b}, which is the translated nullspace of the matrix A.
The nullspace is a vector space, defined with opera-
tions over the finite field F(2), i.e. modular arithmetic.
Exploiting basic linear algebraic properties, it can be
shown that applying elementary row operations to
[A|b] does not change the solution set S and thus the
optimization problem. On the other hand, the parity
polytope we described earlier is not a function of the
solution set S but depends explicitly on the form of the
matrices A and b. This fact was also noted by Feld-
man et al. [7], who showed that a new matrix [A′|b′]
constructed from [A|b] by adding new rows that are
linear combinations of the rows of [A|b] can lead to a
tighter LP relaxation, although Ax = b and A′x = b′

define the same solution set S (because the constraints
added are all implied).

In this paper we propose to exploit these facts and
rewrite the constraints in a form that is equivalent, i.e.,
defines the same set of solutions, but is easier to solve.
Specifically, given a a set of parity constraints specified
through matrices A, b we look for matrices A′, b′ that

define the same set of solutions, namely {x ∈ {0, 1}n :
Ax = b} = {x ∈ {0, 1}n : A′x = b′} but are much
sparser, namely ||[A′|b′]||1 ≪ ||[A|b]||1. Unfortunately,
even finding a sparse linear combination of the rows
is computationally intractable, as it can be seen as an
instance of MAXIMUM-LIKELIHOOD DECODING,
where the code is given in terms of the generators (the
rows of A) rather than the check matrix. We therefore
propose to use two approaches:

• Perform Gauss-Jordan elimination on [A|b] to
convert [A|b] to reduced row echelon form;

• Try all combinations of up to k rows r1, · · · , rk of
[A|b], and if their sum r1⊕· · ·⊕rk is sparser than
any of the ri, substitute ri with r1 ⊕ · · · ⊕ rk.

Both techniques are based on elementary row oper-

ations and therefore are guaranteed to maintain the
solution set S and to improve sparsity.

In Figure 2 we show the median upper and lower
bounds found by CPLEX for several randomly gener-
ated constraints on a random 10× 10 Ising grid model
with mixed interactions. Starting with a matrix A
generated using the Toeplitz matrix construction in
Proposition 2, we run CPLEX for 10 minutes with and
without sparsification, reporting the best upper and
lower bounds found. We see that without any prepro-
cessing (NoPre) CPLEX fails at finding any integer so-
lution when there are more than 15 parity constraints.
Performing Gauss-Jordan elimination (Diag) signifi-
cantly improves both the upper bound and the lower
bound. The effect is particularly significant for a large
number of constraints, when the reduced row echelon
form of A is close to the identity matrix. Adding the
additional greedy substitution step (DiagGreedy, look-
ing at all combinations of up to k = 4 rows) slightly
improves the quality of the upper bound, but the lower
bound significantly degrades. Therefore, for the rest of
the paper we will use only Gauss-Jordan elimination
preprocessing.

6 LOWER BOUNDS: SHORT XORS

As mentioned in Section 3.2, one practical way to ob-
tain lower bounds from the WISH algorithm is to use
suboptimal solutions of the underlying MAP inference
problems. Here we explore a different way, namely, us-
ing sparse or short parity constraints (XORs), which
are often easier for constraint solvers to reason about.
This results in a family of hash functions that is uni-
form but not pairwise independent, leading to a weaker
but practically valuable version of Theorem 1.

0 20 40 60 80 100
−50

0

50

100

150

200

Number of parity constraints

M
A

P
 v

al
ue

s
up

pe
r

an
d

lo
w

er
 b

ou
nd

s

NoPreLB
NoPreUB
DiagLB
DiagUB
DiagGreedyLB
DiagGreedyUB

Figure 2: Upper and lower bounds with and without
sparsification.

6.1 WISH WITH UNIFORM HASHING

Fix any subset Am×n ⊆ {0, 1}m×n of m× n matrices.
We will later create short XORs by choosing Am×n

such that every row of every matrix in this set has
only k ≪ n/2 non-zero entries.

Proposition 3. Let A ∈ Am×n and b ∈ {0, 1}m. The
family Hn,m = {hA,b(x) : {0, 1}n → {0, 1}m} where
hA,b(x) = Ax+ b mod 2 is a family of uniform hash
functions.

Proof. Let x ∈ {0, 1}n, A ∈R Am×n, b ∈R {0, 1}m,
and ai denote the i-th row of A. Then, for all i:

Pr[aix⊕ bi = 0] =
∑

v∈{0,1}n

Pr[ai = v] Pr[vx⊕ bi = 0]

=
∑

v∈{0,1}n

Pr[ai = v] Pr[bi = vx mod 2]

=
∑

v∈{0,1}n

Pr[ai = v]
1

2
=

1

2

Hence, Pr[Ax+b = 0 mod 2] =
∏

i Pr[aix+bi = 0 mod
2] = 1

2m for any x, proving uniformity.

With such a family of hash functions, Theorem 1 as
such does not hold, but the following weaker, one-
directional version still does:

Theorem 3. For any δ > 0, positive constant α ≤
0.0042, and families Hn,i of uniform (but not neces-
sarily pairwise independent) hash functions, with prob-
ability at least (1− δ), WISH({Hn,i}) outputs an esti-
mate no larger than 16Z = 16

∑

σ∈X w(σ).

In other words, even without pairwise independence,
the output divided by 16 is a lower bound with high
probability. To prove this result, we employ a proof
strategy similar to the one used by Ermon et al. [6].

For completeness, we start by stating some definitions
we borrow from that work:

Definition 4 ([6]). Fix an ordering σi, 1 ≤ i ≤ 2n,
of the configurations in X such that for 1 ≤ j <
2n, w(σj) ≥ w(σj+1). For i ∈ {0, 1, · · · , n}, de-

fine bi , w(σ2i). Define a special bin B , {σ1}
and, for i ∈ {0, 1, · · · , n − 1}, define bin Bi ,

{σ2i+1, σ2i+2, · · · , σ2i+1}.

Next we prove a new bound onMi that holds regard-
less of pairwise independence:

Lemma 1. Suppose hiA,b is chosen from a family Hn,i

of universal (but not necessarily pairwise independent)
hash functions. Let Mi = Median(w1

i , · · · , w
T
i) be de-

fined as in Algorithm 1 and bi as in Definition 4.
Then, for all c ≥ 2, there exists an α∗(c) > 0 such
that for 0 < α ≤ α∗(c),

Pr
[

Mi ≤ bmax{i−c,0}

]

≥ 1− exp(−αT)

Proof. The statement trivially holds when i − c ≤ 0.
Otherwise, let us define the set of the 2j heaviest con-
figurations as in Definition 4, Xj = {σ1, σ2, · · · , σ2j}.

Define the following random variable Sj(h
i
A,b) ,

∑

σ∈Xj
1{Aσ=b mod 2} which gives the number of ele-

ments of Xj satisfying the random parity constraints
Aσ = b mod 2. The randomness is over the choice of
A and b when hiA,b is sampled from Hn,i. Since Hn,i

is a family of uniform hash functions, by definition for
any σ the random variable 1{Aσ=b mod 2} is Bernoulli
distributed with probability 1/2i. Then it follows that

E[Sj(h
i
A,b)] =

∑

σ∈Xj
1/2i =

|Xj |
2i = 2j−i.

The random variable wi is defined as wi = maxσ w(σ)
subject to Aσ = b mod 2. Then we have:

Pr[wi ≤ bj] = Pr[wi ≤ w(σ2j)] ≥ Pr[Sj(h
i
A,b) < 1]

which is the probability that no configuration from Xj

satisfies i randomly chosen parity constraints. Notice
that Sj(h

i
A,b) is non-negative, hence from Markov’s In-

equality, Pr[Sj(h
i
A,b) ≥ 1] ≤ E[Sj(h

i
A,b)] = 2j−i. Thus

for j = i− c and c ≥ 2, we have:

Pr[wi ≤ bi−c] ≥ Pr[Si−c(h
i
A,b) < 1] ≥ 1− 2−c ≥ 3/4

Finally, since w1
i , · · · , w

T
i are i.i.d. realizations of wi,

we can apply Chernoff’s Inequality to the correspond-
ing indicator variables It = I(wt

i ≤ bi−c) each with
mean ≥ 3/4 and obtain:

Pr [Mi ≤ bi−c] = Pr

[

∑

t

It ≥ T/2

]

≥ 1− exp(−α∗(c)T)

where α∗(2) = 2(3/4− 1/2)2 = 1/8.

With this new lemma, we have all we need to prove
Theorem 3. The proof is similar to the one of Theorem
1 and is not included for space reasons.

0 20 40 60 80 100
−50

0

50

100

150

200

250

300

Number of parity constraints

E
st

im
at

ed
 M

A
P

 v
al

ue

BeliefPropagation
MaxProduct
MPLP
Toulbar−1min
CPLEX−1min

(a) Attractive 10× 10. Length 4 Xors

0 20 40 60 80 100
−50

0

50

100

150

200

250

Number of parity constraints

E
st

im
at

ed
 M

A
P

 v
al

ue

BeliefPropagation
MaxProduct
MPLP
Toulbar−1min
CPLEX−1min

(b) Mixed 10× 10. Length 4 Xors

Figure 3: Optimization with short parity constraints.

6.2 EVALUATION OF SHORT XORS

As briefly alluded to earlier, we will use short XORs
in order to make MAP inference more efficient in prac-
tice. Specifically, we will choose A uniformly from
Am×n

k ⊆ {0, 1}m×n, which is the set of matrices such
that every row has only k non-zero entries, where k
will typically be much smaller than n/2. In general,
smaller values of k lead to faster execution of WISH
but at the cost of weaker lower bounds.

Figure 3 compares several approaches to solve the
MAP inference problems constrained by random par-
ity constraints for a 10× 10 Ising grid model with at-
tractive and mixed interactions (external field f = 1.0
and weight w = 3.0; see below for a formal description
of the probabilistic model used). We compare three
message passing approaches, namely Belief Propaga-
tion (BP), Max-Product (MP), and MPLP [9], and two
combinatorial optimization solvers, namely Toulbar [1]
and CPLEX 12.3 [15], both with a 1 minute time limit.
We show the median value of the solution found over
50 realizations, for each number of parity constraints
added. We run the Message Passing methods until
they find a feasible solution satisfying the parity con-
straints or up to 10000 iterations. If no feasible solu-
tion is found, we round the final beliefs to an integer

solution and project it on the feasible set by solving
the linear equations with Gaussian Elimination, thus
changing the value of some of the variables. For this
problem, using “long” parity constraints of length 50,
Message Passing methods can only find feasible solu-
tions for up to 10 constraints (consistent with CPLEX
performance in Figure 2). In contrast, as shown in
Figure 3, using short XORs of length 4 (typical values
encountered e.g. for low density parity check codes),
Message Passing methods can find feasible solutions
for up to about 40−50 constraints, at which point there
is a significant performance drop caused by the need
for a projection step. We see that for the attractive
case, Message Passing methods are competitive with
combinatorial optimization approaches but only for a
moderate number of constraints. In the more chal-
lenging mixed interactions case, CPLEX and Toulbar
appear to be clearly superior. We think the the unsat-
isfactory performance of message passing techniques
(compared e.g. to when used for LDPC decoding) is
caused by the more complicated probabilistic depen-
dencies imposed by the Ising model, which is much
more intricate than a typical transmission error model.

7 EXPERIMENTS

We evaluate the performance of WISH augmented
with Toeplitz-matrix based hash functions (from
Proposition 2) and CPLEX 12.3 [15] to solve the ILP
formulation of the MAP queries. All the optimization
instances are solved in parallel on a compute cluster,
with a timeout of 10 minutes on Intel Xeon 5670 3GHz
machines.We use Gauss-Jordan elimination prepro-
cessing to improve the quality of the LP relaxations.
We use the Jaroslow encoding for parity constraints
j ∈ J such that |N(j)| ≤ 10, and the Yannakakis en-
coding otherwise. We evaluate the lower bound and
upper bounds for the partition functions of M × M
grid Ising models for M ∈ {10, 15}, with random in-
teractions (positive and negative) and external field
f ∈ {0.1, 1.0}. Specifically, there are M2 binary vari-
ables, with single node potentials ψi(xi) = exp(fixi)
and pairwise interactions ψij(xi, xj) = exp(wijxixj),
where wij ∈R [−w,w] and fi ∈R [−f, f].

We compare with Loopy BP [23] which estimates Z,
Tree Reweighted BP [30] which gives a provable upper
bound, and the Mean Field approach [31] which gives
a provable lower bound. We use the implementations
in the LibDAI library [22] and compare with ground
truth obtained using the Junction Tree method [20].

Figure 4 shows the error in the resulting estimates, to-
gether with the upper and lower bounds obtained with
WISH augmented with Toeplitz-matrix hashing and
CPLEX. We immediately see that our lower bounds

1 2 3 4 5
−50

0

50

100

Coupling Strength

Lo
g

pa
rt

iti
on

 fu
nc

tio
n

es
tim

at
io

n
er

ro
r

CPLEX−UB
CPLEX−LB
Belief Propagation
TRW−BP
MeanField

(a) Mixed 10× 10. Field 0.1.

1 2 3 4 5
−40

−20

0

20

40

60

80

Coupling Strength

Lo
g

pa
rt

iti
on

 fu
nc

tio
n

es
tim

at
io

n
er

ro
r

CPLEX−UB
CPLEX−LB
Belief Propagation
TRW−BP
MeanField

(b) Mixed 10× 10. Field 1.0.

2 3 4 5 6 7 8
−200

−100

0

100

200

300

400

Coupling Strength

Lo
g

pa
rt

iti
on

 fu
nc

tio
n

es
tim

at
io

n
er

ro
r

CPLEX−UB
CPLEX−LB
Belief Propagation
TRW−BP
MeanField

(c) Mixed 15× 15. Field 0.1.

2 3 4 5 6 7 8
−300

−200

−100

0

100

200

300

400

Coupling Strength
Lo

g
pa

rt
iti

on
 fu

nc
tio

n
es

tim
at

io
n

er
ro

r

CPLEX−UB
CPLEX−LB
Belief Propagation
TRW−BP
MeanField

(d) Mixed 15× 15. Field 1.0.

Figure 4: Results on spin glasses grids.

are highly accurate (error close to 0), which means
that the lower bounds provided by CPLEX for the
ILPs must be close to optimality. Similarly good
lower bounds can also be obtained using the original
WISH algorithm [6], and also using SampleSearch [11].
However, neither SampleSearch nor the original WISH
(without LP relaxations) provide upper bound guaran-
tees, only the TRWBP approach does. Specifically, the
original WISH algorithm with Toulbar [1] provides an
upper bound only upon proving optimality for all op-
timization instances in the inner loop. In contrast, the
ILP formulation provides us with anytime and gradu-
ally improving upper bounds based on LP relaxations
(cf. Figure 1), often well before it can actually solve
the problems to optimality (which might not be pos-
sible on larger instances) or, in principle, even before
it can find a feasible solution. Figure 4 shows that our
upper bounds are significantly tighter than the ones
obtained using TRWBP in the hard weights region.
Further, our ILP approach is guaranteed to eventu-
ally give an accurate answer, within a constant factor,
given enough time. In contrast, message passing tech-
niques are usually quite fast (if they converge) but do
not provide better results with more runtime.

8 CONCLUSIONS

We explored several extensions of the recent WISH [6]
algorithm for computing discrete integrals. First, we
used a better, more deterministic and thus more sta-
ble construction for pairwise independent hash func-
tions. Using a connection with max-likelihood decod-
ing of binary codes, we showed that the MAP infer-
ence queries generated by WISH are in general not
polynomial time solvable or even approximable. On
the positive side, this led to the use of an ILP formu-
lation for the problem, inspired by iterative message
passing decoding. To increase the practicality of the
ILP approach, we sparsified parity constraints while
preserving their desirable properties. Further, we ex-
tended WISH to directly utilize uniform but not nec-
essarily pairwise independent hash functions, leading
to computationally easier optimization problems while
still providing probabilistic lower bound guarantees.
Finally, we showed that by solving a sequence of LP
relaxations we can obtain not only very accurate lower
bounds but also upper bounds that are much tighter
than the ones provided by TRWBP, which is based on
tree decomposition and convexity.

References

[1] D. Allouche, S. de Givry, and T. Schiex. Toulbar2, an
open source exact cost function network solver. Tech-
nical report, INRIA, 2010.

[2] S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The
hardness of approximate optima in lattices, codes, and
systems of linear equations. In Foundations of Com-
puter Science, 1993. Proceedings., 34th Annual Sym-
posium on, pp. 724–733. IEEE, 1993.

[3] E. Berlekamp, R. McEliece, and H. Van Tilborg. On
the inherent intractability of certain coding problems.
Information Theory, IEEE Transactions on, 24(3):
384–386, 1978.

[4] D. Bertsimas and J. N. Tsitsiklis. Introduction to
linear optimization. Athena Scientific Belmont, MA,
1997.

[5] J. L. Carter and M. N. Wegman. Universal classes
of hash functions. Journal of computer and system
sciences, 18(2):143–154, 1979.

[6] S. Ermon, C. Gomes, A. Sabharwal, and B. Selman.
Taming the curse of dimensionality: Discrete integra-
tion by hashing and optimization. In ICML (To ap-
pear), 2013.

[7] J. Feldman, M. J. Wainwright, and D. R. Karger. Us-
ing linear programming to decode binary linear codes.
Information Theory, IEEE Transactions on, 51(3):
954–972, 2005.

[8] R. Gallager. Low-density parity-check codes. Informa-
tion Theory, IRE Transactions on, 8(1):21–28, 1962.

[9] A. Globerson and T. Jaakkola. Fixing max-product:
Convergent message passing algorithms for map lp-
relaxations. Advances in Neural Information Process-
ing Systems, 21(1.6), 2007.

[10] V. Gogate and R. Dechter. SampleSearch: A scheme
that searches for consistent samples. In Proc. 10th
International Conference on Artificial Intelligence and
Statistics (AISTATS), 2007.

[11] V. Gogate and R. Dechter. SampleSearch: Impor-
tance sampling in presence of determinism. Artificial
Intelligence, 175(2):694–729, 2011.

[12] O. Goldreich. Randomized methods in computation.
Lecture Notes, 2011.

[13] C. Gomes, A. Sabharwal, and B. Selman. Model
counting: A new strategy for obtaining good bounds.
In AAAI, pp. 54–61, 2006.

[14] C. Gomes, A. Sabharwal, and B. Selman. Near-
uniform sampling of combinatorial spaces using XOR
constraints. Advances In Neural Information Process-
ing Systems, 19:481–488, 2006.

[15] IBM ILOG. IBM ILOG CPLEX Optimization Studio
12.3, 2011.

[16] R. Jeroslow. On defining sets of vertices of the hyper-
cube by linear inequalities. Discrete Mathematics, 11
(2):119–124, 1975.

[17] M. Jerrum and A. Sinclair. The Markov chain Monte
Carlo method: an approach to approximate counting
and integration. Approximation algorithms for NP-
hard problems, pp. 482–520, 1997.

[18] D. Koller and N. Friedman. Probabilistic graphical
models: principles and techniques. MIT press, 2009.

[19] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Fac-
tor graphs and the sum-product algorithm. Informa-
tion Theory, IEEE Transactions on, 47(2):498–519,
2001.

[20] S. L. Lauritzen and D. J. Spiegelhalter. Local compu-
tations with probabilities on graphical structures and
their application to expert systems. Journal of the
Royal Statistical Society. Series B (Methodological),
pp. 157–224, 1988.

[21] N. Madras. Lectures on Monte Carlo Methods. Amer-
ican Mathematical Society, 2002. ISBN 0821829785.

[22] J. Mooij. libDAI: A free and open source c++ library
for discrete approximate inference in graphical mod-
els. JMLR, 11:2169–2173, 2010.

[23] K. Murphy, Y. Weiss, and M. Jordan. Loopy belief
propagation for approximate inference: An empirical
study. In UAI, 1999.

[24] K. B. Petersen and M. S. Pedersen. The matrix cook-
book. Technical University of Denmark, pp. 7–15,
2008.

[25] D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and
Y. Weiss. Tightening LP relaxations for MAP using
message passing. In UAI, 2008.

[26] J. Stern. Approximating the number of error locations
within a constant ratio is np-complete. In Proceed-
ings of the 10th International Symposium on Applied
Algebra, Algebraic Algorithms and Error-Correcting
Codes, pp. 325–331. Springer-Verlag, 1993.

[27] D. R. Stinson. On the connections between universal
hashing, combinatorial designs and error-correcting
codes. Congressus Numerantium, pp. 7–28, 1996.

[28] S. Vadhan. Pseudorandomness. Foundations and
Trends in Theoretical Computer Science, 2011.

[29] A. Vardy. Algorithmic complexity in coding theory
and the minimum distance problem. In STOC, 1997.

[30] M. Wainwright. Tree-reweighted belief propagation al-
gorithms and approximate ML estimation via pseudo-
moment matching. In AISTATS, 2003.

[31] M. Wainwright and M. Jordan. Graphical models, ex-
ponential families, and variational inference. Founda-
tions and Trends in Machine Learning, 1(1-2):1–305,
2008.

[32] W. Wei and B. Selman. A new approach to model
counting. In Theory and Applications of Satisfiability
Testing (SAT), pp. 324–339, 2005.

[33] A. Wigderson. Lectures on the fusion method and
derandomization. Technical report, Technical Report
SOCS-95.2, School of Computer Science, McGill Uni-
versity, 1995.

[34] M. Yannakakis. Expressing combinatorial optimiza-
tion problems by linear programs. Journal of Com-
puter and System Sciences, 43(3):441–466, 1991.

[35] C. Yanover, T. Meltzer, and Y. Weiss. Linear pro-
gramming relaxations and belief propagation–an em-
pirical study. The Journal of Machine Learning Re-
search, 7:1887–1907, 2006.

	INTRODUCTION
	PROBLEM STATEMENT
	BACKGROUND
	FAMILIES OF HASH FUNCTIONS
	THE WISH ALGORITHM FOR DISCRETE INTEGRATION
	IMPROVING WISH: HASHING USING TOEPLITZ MATRIX

	CONNECTIONS WITH CODING THEORY
	MESSAGE PASSING DECODING

	INTEGER PROGRAMMING FORMULATION
	MAP INFERENCE AS AN ILP
	PARITY CONSTRAINTS
	Exponential polytope representation
	Compact polytope representation

	SOLVING INTEGER PROGRAMS
	INDUCING SPARSITY

	LOWER BOUNDS: SHORT XORS
	WISH WITH UNIFORM HASHING
	EVALUATION OF SHORT XORS

	EXPERIMENTS
	CONCLUSIONS

