Some problems I have proposed

Warut Suksompong

1. **Asian Pacific Mathematics Olympiad 2017, Problem 1**

 We call a 5-tuple of integers *arrangeable* if its elements can be labeled a, b, c, d, e in some order so that $a - b + c - d + e = 29$. Determine all 2017-tuples of integers $n_1, n_2, \ldots, n_{2017}$ such that if we place them in a circle in clockwise order, then any 5-tuple of numbers in consecutive positions on the circle is arrangeable.

2. **Asian Pacific Mathematics Olympiad 2017, Problem 5**

 (with Pakawut Jiradilok)

 Let n be a positive integer. A pair of n-tuples (a_1, \ldots, a_n) and (b_1, \ldots, b_n) with integer entries is called an *exquisite pair* if

 $$|a_1b_1 + \cdots + a_nb_n| \leq 1.$$

 Determine the maximum number of distinct n-tuples with integer entries such that any two of them form an exquisite pair.

3. **International Mathematical Olympiad 2016 Shortlist, Problem N1**

 For any positive integer k, denote the sum of digits of k in its decimal representation by $S(k)$. Find all polynomials $P(x)$ with integer coefficients such that for any positive integer $n \geq 2016$, the integer $P(n)$ is positive and

 $$S(P(n)) = P(S(n)).$$

4. **Asian Pacific Mathematics Olympiad 2016, Problem 3**

 Let AB and AC be two distinct rays not lying on the same line, and let ω be a circle with center O that is tangent to ray AC at E and ray AB at F. Let R be a point on segment EF. The line through O parallel to EF intersects the line AB at P. Let N be the intersection of lines PR and AC, and let M be the intersection of line AB and the line through R parallel to AC. Prove that line MN is tangent to ω.

5. **Asian Pacific Mathematics Olympiad 2016, Problem 4**

 The country Dreamland consists of 2016 cities. The airline Starways wants to establish some one-way flights between pairs of cities in such a way that each city has exactly one flight out of it. Find the smallest positive integer k such that no
matter how Starways establishes its flights, the cities can always be partitioned into \(k \) groups so that from any city it is not possible to reach another city in the same group by using at most 28 flights.

6. **Asian Pacific Mathematics Olympiad 2015, Problem 1**

Let \(ABC \) be a triangle, and let \(D \) be a point on side \(BC \). A line through \(D \) intersects side \(AB \) at \(X \) and ray \(AC \) at \(Y \). The circumcircle of triangle \(BXD \) intersects the circumcircle \(\omega \) of triangle \(ABC \) again at point \(Z \neq B \). The lines \(ZD \) and \(ZY \) intersect \(\omega \) again at \(V \) and \(W \), respectively. Prove that \(AB = VW \).

7. **Asian Pacific Mathematics Olympiad 2015, Problem 4**

(with Pakawut Jiradilok)

Let \(n \) be a positive integer. Consider \(2n \) distinct lines on the plane, no two of which are parallel. Of the \(2n \) lines, \(n \) are colored blue, the other \(n \) are colored red. Let \(B \) be the set of all points on the plane that lie on at least one blue line, and \(R \) the set of all points on the plane that lie on at least one red line. Prove that there exists a circle that intersects \(B \) in exactly \(2n - 1 \) points, and also intersects \(R \) in exactly \(2n - 1 \) points.

8. **Asian Pacific Mathematics Olympiad 2015, Problem 5**

(with Pakawut Jiradilok)

Determine all sequences \(a_0, a_1, a_2, \ldots \) of positive integers with \(a_0 \geq 2015 \) such that for all integers \(n \geq 1 \):

(i) \(a_{n+2} \) is divisible by \(a_n \);

(ii) \(|s_{n+1} - (n + 1)a_n| = 1 \), where \(s_{n+1} = a_{n+1} - a_n + a_{n-1} - \cdots + (-1)^{n+1}a_0 \).

9. **Asian Pacific Mathematics Olympiad 2014, Problem 2**

Let \(S = \{1, 2, \ldots, 2014\} \). For each non-empty subset \(T \subseteq S \), one of its members is chosen as its representative. Find the number of ways to assign representatives to all non-empty subsets of \(S \) so that if a subset \(D \subseteq S \) is a disjoint union of non-empty subsets \(A, B, C \subseteq S \), then the representative of \(D \) is also the representative of at least one of \(A, B, C \).

10. **Asian Pacific Mathematics Olympiad 2014, Problem 3**

Find all positive integers \(n \) such that for any integer \(k \) there exists an integer \(a \) for which \(a^3 + a - k \) is divisible by \(n \).

11. **International Mathematical Olympiad 2013, Problem 4**

(with Potcharapol Suteparuk)

Let \(ABC \) be an acute-angled triangle with orthocenter \(H \), and let \(W \) be a point on the side \(BC \), lying strictly between \(B \) and \(C \). The points \(M \) and \(N \) are the feet of the altitudes from \(B \) and \(C \), respectively. Denote by \(\omega_1 \) the circumcircle of \(BWN \), and let \(X \) be the point on \(\omega_1 \) such that \(WX \) is a diameter of \(\omega_1 \). Analogously,
denote by ω_2 the circumcircle of CWM, and let Y be the point on ω_2 such that WY is a diameter of ω_2. Prove that X, Y and H are collinear.

12. United States of America Mathematical Olympiad 2013, Problem 3

Let n be a positive integer. There are $n\frac{(n+1)}{2}$ marks, each with a black side and a white side, arranged into an equilateral triangle, with the biggest row containing n marks. Initially, each mark has the black side up. An operation is to choose a line parallel to one of the sides of the triangle, and flipping all the marks on that line. A configuration is called admissible if it can be obtained from the initial configuration by performing a finite number of operations. For each admissible configuration C, let $f(C)$ denote the smallest number of operations required to obtain C from the initial configuration. Find the maximum value of $f(C)$, where C varies over all admissible configurations.

13. International Mathematical Olympiad 2012 Shortlist, Problem C1

Several positive integers are written in a row. Iteratively, Alice chooses two adjacent numbers x and y such that $x > y$ and x is to the left of y, and replaces the pair (x, y) by either $(y + 1, x)$ or $(x - 1, x)$. Prove that she can perform only finitely many such iterations.

14. International Mathematical Olympiad 2012 Shortlist, Problem N1

Call admissible a set A of integers that has the following property:

If $x, y \in A$ (possibly $x = y$) then $x^2 + kxy + y^2 \in A$ for every integer k.

Determine all pairs m, n of nonzero integers such that the only admissible set containing both m and n is the set of all integers.

15. United States of America Junior Mathematical Olympiad 2012, Problem 5

For distinct positive integers $a, b < 2012$, define $f(a, b)$ to be the number of integers k with $1 \leq k < 2012$ such that the remainder when ak divided by 2012 is greater than that of bk divided by 2012. Let S be the minimum value of $f(a, b)$, where a and b range over all pairs of distinct positive integers less than 2012. Determine S.

16. International Mathematical Olympiad 2011 Shortlist, Problem A2

Determine all sequences $(x_1, x_2, \ldots, x_{2011})$ of positive integers such that for every positive integer n there is an integer a with

$$x_1^n + 2x_2^n + \cdots + 2011x_{2011}^n = a^{n+1} + 1.$$