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ABSTRACT
We present Regent, a high-productivity programming lan-
guage for high performance computing with logical regions.
Regent users compose programs with tasks (functions eligi-
ble for parallel execution) and logical regions (hierarchical
collections of structured objects). Regent programs appear
to execute sequentially, require no explicit synchronization,
and are trivially deadlock-free. Regent’s type system catches
many common classes of mistakes and guarantees that a pro-
gram with correct serial execution produces identical results
on parallel and distributed machines.

We present an optimizing compiler for Regent that trans-
lates Regent programs into efficient implementations for Le-
gion, an asynchronous task-based model. Regent employs
several novel compiler optimizations to minimize the dy-
namic overhead of the runtime system and enable efficient
operation. We evaluate Regent on three benchmark appli-
cations and demonstrate that Regent achieves performance
comparable to hand-tuned Legion.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Concurrent, distributed, and parallel languages; D.3.4
[Programming Languages]: Processors—Compilers, Op-
timization

Keywords
Regent; Legion; logical regions; task-based runtimes

1. INTRODUCTION
Modern supercomputers feature distributed memory ar-

chitectures with deep memory hierarchies. Currently, the
state of the art in programming this class of machines is
the MPI+X hybrid programming model. While MPI+X
codes achieve good performance, they do so at a cost to pro-
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grammer productivity and performance portability. Users
of MPI+X must explicitly manage data movement and syn-
chronization within and between nodes. Furthermore, they
must also explicitly overlap communication with computa-
tion for optimal performance, a task made difficult by the
need to interface with two disparate programming models.
In addition, the degree to which communication and com-
putation must be overlapped to achieve good performance
depends on machine-specific factors, resulting in poor per-
formance portability in aggressively hand-tuned codes.

An alternative that is receiving considerable attention is
writing programs for task-based runtimes. While there is
significant variation among the current approaches [9, 4, 6,
19, 27], the common element is a graph of tasks to be exe-
cuted, where the graph’s edges capture ordering dependen-
cies between tasks. The advantage of the task-based ap-
proach is that the computation is expressed at a higher level
than MPI+X, which allows for both more aggressive opti-
mization by the programming model’s implementation and
correspondingly less effort by programmers to express the
same optimizations by hand (as well as better portability).
A disadvantage of all the current task-based models is that
they are runtime systems (i.e., libraries) embedded in a host
language that does not understand the task-based model’s
higher-level semantics. Programmers must do additional
work to maintain important invariants across calls to the
runtime system, resulting in a programming interface that
is more complex and verbose than a true programming lan-
guage implementation could provide. Furthermore, impor-
tant optimizations that require static analysis to be feasible
are simply beyond the scope of dynamic runtime systems.

To address these challenges we present Regent, a high-
productivity programming language for high performance
computing. Regent features two key abstractions: tasks
and logical regions. Regent programs look like ordinary se-
quential programs with calls to tasks, which are functions
that the programmer has marked as eligible for parallel ex-
ecution. Regent guarantees that any parallel execution is
consistent with the sequential execution of a Regent pro-
gram. Internally, dependencies between tasks are inferred
automatically, freeing the user from the need to explicitly
synchronize or manage data movement around the machine.
Regent programs are also trivially deadlock-free and avoid
a number of classes of mistakes possible in lower level dis-
tributed programming.

Logical regions [9, 33, 10], or simply regions, are collec-
tions of structured objects. Regions have no fixed location



Figure 1: Partitioning in PENNANT: zones (top left), sides
(top right), and points (bottom).

in the memory hierarchy—for example, because they may
be striped across nodes—and no fixed layout in memory—
for example, because different tasks or processors may prefer
array-of-structs or struct-of-arrays layouts. Regions can be
recursively partitioned to match the hierarchical structure
of memory, and to facilitate parallel execution on subsets of
data. Regions can also be partitioned multiple times to ex-
press sophisticated communications patterns involving mul-
tiple views of the data, including ones with aliasing between
views.

We describe an optimizing compiler for Regent that trans-
lates Regent programs into efficient implementations for Le-
gion, a dynamic, task-based asynchronous runtime system
with native support for tasks and logical regions [9]. Regent
simplifies the Legion programming model. Many details of
programming to the Legion runtime system can be managed
statically by the Regent compiler, resulting in Regent pro-
grams that are both written at a higher level and with fewer
lines of code than the corresponding Legion programs. Sev-
eral novel optimizations allow the Regent compiler to achieve
performance equivalent to hand-tuned codes written directly
to the Legion C++ API.

To motivate the Regent programming model, we present
excerpts from a Regent implementation of PENNANT [23],
a Lagrangian hydrodynamics code. Each of the following
sections discusses one of our contributions:

• Section 3 presents the Regent programming model and
provides a detailed comparison with Legion.

• Section 4 presents compiler optimizations that are im-
portant for achieving high performance in Regent pro-
grams.

• Section 5 discusses the implementation of the Regent
compiler.

• Section 6 evaluates the performance of three applica-
tions written in Regent.

Section 7 discusses related work, and Section 8 concludes.

2. MOTIVATING EXAMPLE
To motivate our presentation of Regent, we begin by in-

troducing the language through a series of excerpts from a

1 task adv pos full(points : region(point), dt : double) where
2 reads(points.{px0, pu0, pf, pmaswt}), writes(points.{px, pu})
3 do
4 var fuzz = 1e−99
5 var dth = 0.5 ∗ dt
6 for p in points do
7 var pap = (1.0 / max(p.pmaswt, fuzz))∗p.pf
8 var pu = p.pu0 + dt∗pap
9 p.pu = pu

10 p.px = p.px0 + dth∗(pu + p.pu0)
11 end
12 end

Listing 1: PENNANT kernel task in Regent.

1 task simulate(zones all : region(zone),
2 zones all p : partition(disjoint, zones all),
3 points all : region(point),
4 points all private : region(point),
5 points all private p : partition(disjoint, points all private),
6 conf : config)
7 where
8 reads(zones all, points all private),
9 writes(zones all, points all private)

10 do
11 var dt = conf.dtmax
12 var time = 0.0
13 var tstop = conf.tstop
14 while time < tstop do
15 dt = calc global dt(dt, dtmax, dthydro, time, tstop)
16 for i = 0, conf.npieces do
17 adv pos full(points all private p[i], dt)
18 end
19

20 −− ...
21

22 for i = 0, conf.npieces do
23 dthydro min= calc dt hydro(zones all p[i], dt, dtmax)
24 end
25 time += dt
26 end
27 end

Listing 2: PENNANT main task excerpt in Regent.

Regent implementation of the PENNANT mini-app. PEN-
NANT [23] implements Lagrangian hydrodynamics for a
subset of the functionality provided by FLAG [13], a pro-
duction code at Los Alamos National Laboratory (LANL).
PENNANT operates on 2D unstructured meshes, with data
structures representing the fundamental elements in 0, 1,
and 2 dimensions called points, edges and zones. To deal
with zones with an arbitrary number of edges, PENNANT
adds an intermediate data structure called a side, represent-
ing the triangular area between an edge and the center of
the zone (see Figure 1 top right).

Simulation in PENNANT proceeds in alternating phases,
reading values stored on zones and scattering to the points,
and gathering values on points and writing to the zones.
This structure is illustrated in an excerpt from the PEN-
NANT main loop in Listing 2, where two phases are visible:
the first phase advances points using forces previously com-
puted (lines 16-18), while the second phase computes dt for
the next timestep from the geometry of the updated mesh
(lines 22-24). The rest of the PENNANT timestep loop fol-
lows in a straightforward way from these examples, calling
each phase’s kernels in turn.

To allow Regent programs to express that tasks execute
on subsets of the data, regions can be partitioned into sub-
regions. Partitioning a region is a primitive operation in
Regent, and the resulting partition, which is the collection
of subregions of the parent region, is a first-class value. In



1 void adv pos full(const Task ∗task,
2 const std::vector<PhysicalRegion> &regions,
3 Context ctx, HighLevelRuntime ∗runtime)
4 {
5 PhysicalRegion points0 = regions[0];
6 Accessor<double, SOA> points px0 x(points0, PX0 X);
7 Accessor<double, SOA> points px0 y(points0, PX0 Y);
8 Accessor<double, SOA> points pu0 x(points0, PU0 X);
9 Accessor<double, SOA> points pu0 y(points0, PU0 Y);

10 Accessor<double, SOA> points pf x(points0, PF X);
11 Accessor<double, SOA> points pf y(points0, PF Y);
12 Accessor<double, SOA> points pmaswt(points0, PMASWT);
13 PhysicalRegion points1 = regions[1];
14 Accessor<double, SOA> points px x(points1, PX X);
15 Accessor<double, SOA> points px y(points1, PX Y);
16 Accessor<double, SOA> points pu x(points1, PU X);
17 Accessor<double, SOA> points pu y(points1, PU Y);
18 Future f0 = task−>futures[0];
19 double dt = f0.get result<double>();
20 double fuzz = 1e−99;
21 double dth = 0.5 ∗ dt;
22 IndexIterator it(points0.get logical region().get index space());
23 while (it.has next()) {
24 size t count;
25 ptr t start = it.next span(count);
26 ptr t end(start.value + count);
27 for (ptr t p = start; p < end; p++) {
28 double frac = (1.0 / max(points pmaswt.read(p), fuzz));
29 double pap x = frac ∗ points pf x.read(p);
30 double pap y = frac ∗ points pf y.read(p);
31 double pu x = points pu0 x.read(p) + dt ∗ pap x;
32 double pu y = points pu0 y.read(p) + dt ∗ pap y;
33 points pu x.write(p, pu x);
34 points pu y.write(p, pu y);
35 points px x.write(p, points px0 x.read(p) +
36 dth∗(pu x + points pu0 x.read(p)));
37 points px y.write(p, points px0 y.read(p) +
38 dth∗(pu y + points pu0 y.read(p)));
39 }
40 }
41 }

Listing 3: PENNANT kernel task in Legion C++ API.

1 runtime−>unmap region(ctx, pr points all private);
2 Domain domain = Domain::from rect<1>(
3 Rect<1>(Point<1>(0), Point<1>(conf.npieces − 1)));
4 IndexLauncher launcher(ADV POS FULL, domain,
5 TaskArgument(), ArgumentMap());
6 launcher.add region requirement(
7 RegionRequirement(points all private p, 0 /∗ projection ∗/,
8 READ ONLY, EXCLUSIVE, points all private));
9 launcher.add field(0, PX0 X);

10 launcher.add field(0, PX0 Y);
11 launcher.add field(0, PU0 X);
12 launcher.add field(0, PU0 Y);
13 launcher.add field(0, PF X);
14 launcher.add field(0, PF Y);
15 launcher.add field(0, PMASWT);
16 launcher.add region requirement(
17 RegionRequirement(points all private p, 0 /∗ projection ∗/,
18 READ WRITE, EXCLUSIVE, points all private));
19 launcher.add field(1, PX X);
20 launcher.add field(1, PX Y);
21 launcher.add field(1, PU X);
22 launcher.add field(1, PU Y);
23 launcher.add future(dt);
24 runtime−>execute index space(ctx, launcher);

Listing 4: PENNANT task launch in Legion C++ API.

PENNANT, partitions are created during program initial-
ization (not shown) and passed as arguments to the main
simulation task. Two such partitions are shown in Listing 2
on lines 2 and 5.

Partitioning a region assigns one or more colors (small in-
tegers) to the region’s elements; there is one subregion per
color containing all the elements with that color. Zones are

an example of a disjoint partition where none of the subre-
gions overlap. For performance, it is advantageous for the
colored subregions to be compact, though the application
will run correctly with any coloring. Figure 1 shows one
possible coloring of zones.

Partitions of sides and points are computed from the par-
tition of zones using the topology of the mesh. Sides sim-
ply take on the color of their corresponding zone. Points
are partitioned in a more sophisticated way, to account for
aliasing at the boundaries of the subregions of zones. Points
are colored by every zone they are adjacent to, leaving each
point with one or more colors. Points are first partitioned
according to the number of colors assigned; points with only
one color are placed in a subregion of private points while
points with multiple colors are put into a subregion of ghost
points. Each subregion is then further partitioned accord-
ing to the colors of the points, as shown in Figure 1. This
partitioning scheme allows Regent to limit data movement
when reducing the forces applied by the zones on the points.
Because the private points are known to be disjoint from all
ghost points, and the private points are further partitioned
into disjoint pieces for each submesh, those partitions of the
mesh are isolated from any data movement in the system.

Regent tracks these relationships between regions, and en-
sures that tasks only access data for which they have de-
clared the appropriate privileges: Regent tasks must say
whether they plan to access a region with read, read/write,
or reduction privileges (and, in the case of reduction privi-
leges, the reduction operator must also be specified). Tasks
may only call other tasks with subsets of their own priv-
ileges. The call to adv pos full in Listing 2 line 17 is safe
because simulate holds a superset of the privileges required
by adv pos full, but also because Regent understands that
the partition access at points all private p[i] is a subregion of
points all private, for which simulate has privileges. Similarly,
all pointer accesses (such as those in Listing 1 lines 7-10) are
associated with a particular region, ensuring that the access
stays safely within the bounds of the regions for which the
task has privileges.

For comparison to the Regent code above, Listings 3 and
4 show implementations of the same tasks written with the
Legion C++ API. Listing 3 corresponds to Listing 1 while
Listing 4 corresponds to the three lines of Listing 2 lines
16-18. Clearly the C++ API is more verbose. However, be-
yond the length, these code samples also illustrate that Le-
gion exposes a programming model with more moving parts
than Regent. Regent is able to handle the additional as-
pects (which we discuss in Section 3) automatically within
the compiler, and so hides them from the programmer and
provides a higher-level interface while maintaining the per-
formance of hand-tuned Legion.

3. PROGRAMMING MODEL
Before we discuss the Regent programming model in more

detail, we explain more about Legion so that the reader can
appreciate the differences between the two systems. Legion,
the runtime which Regent targets, is implemented as a soft-
ware out-of-order processor [9]. Tasks are issued to the Le-
gion runtime in program order, but the underlying Legion
scheduler may reorder tasks and execute them in parallel if
it can prove that it is safe to do so. The Legion runtime
analyzes each task’s privileges for its region arguments to
identify when tasks are using the same regions in ways that



either allow parallel execution or require that the tasks be
serialized in the order they were issued.

Besides managing the tasks, the Legion runtime also man-
ages the regions. Tasks are written using logical regions,
which simply name collections of objects. During execution
each logical region may correspond to any number of physi-
cal instances, which are actual allocated copies of the data.
Separating the logical and physical levels allows important
patterns, such as having multiple copies of read-only data,
to be expressed directly.

The Legion abstractions allow programmers to write effi-
cient task-based programs that run out-of-order, asynchro-
nously, and in a distributed fashion. However, because Le-
gion is embedded in C++, which does not understand the
semantics of tasks and regions, the Legion API is forced to
expose functionality beyond the logical layer of the program-
ming model. Programmers must generally write Legion pro-
grams with some awareness of both the logical and physical
levels.

Regent exposes only the logical level. The lower-level,
physical details of the Legion execution model are hidden
from the programmer. For a naive implementation, this
would be disastrous for performance. However, with the
support of static analysis and compiler optimizations, Re-
gent is able to close the gap between logical and physical
constructs and provide a seamless abstraction to the pro-
grammer.

In the rest of this section we present the Regent and Le-
gion programming models in more detail, examine the dif-
ferences between the two, and demonstrate how a Regent
compiler is able to translate between them. In Section 4 we
consider the optimizations performed by the compiler that
enable this translation to be efficient.

3.1 Tasks
Tasks are the fundamental unit of control in both Regent

and Legion. Tasks are issued in program order, exactly as
they are written in the text, and every possible program ex-
ecution is guaranteed to be indistinguishable from serial ex-
ecution. As discussed in Section 2, tasks specify the regions
they use and their permissions for those regions (whether the
task performs reads, writes, or reductions to each region).
In addition, tasks declare which fields of the objects in the
region the task accesses. Together, the declaration that spe-
cific fields of a region are accessed with certain privileges is
called a region requirement.

Whenever two tasks are non-interfering, accessing either
disjoint regions, different fields of the same region, or the
same fields with compatible permissions (e.g., both tasks
only read the field or only perform the same reduction to the
field), Regent allows those tasks to run in parallel. Wherever
two tasks interfere, Regent inserts the appropriate synchro-
nization and copy operations to ensure that the data depen-
dence is handled properly. In addition to regions, tasks can
also take partition arguments and specify partition require-
ments.

When writing (or compiling) to the Legion C++ inter-
face, several additional aspects of the Legion runtime im-
plementation are exposed, requiring additional user effort.
Legion’s dynamic dependence analysis imposes a cost with
every task launched. To ensure that this overhead stays off
the critical path, the Legion runtime is itself asynchronous
and parallel [9]. The goal is for the runtime to run ahead of

the application, issuing tasks and analyzing task interference
in advance of when those tasks can actually run. Pipeline
stalls, blocking operations, and excessive analysis costs can
all cause the runtime to fall behind and hurt the perfor-
mance of the application. Legion mitigates these issues by
providing more sophisticated abstractions which can result
in higher performance, but also have more complex seman-
tics.

3.1.1 Avoiding Pipeline Stalls
Task execution in Legion is pipelined. In general, a task

must complete a pipeline stage before it passes to the next
stage. If a given stage stalls for any reason, that task and
any task that depends on it also stalls. Mapping, described
in greater detail in Section 3.3, is one pipeline stage. When
a task is mapped, a processor is selected to execute the task
and memories are chosen to hold the physical instances of
each of its region arguments.

Because tasks can execute subtasks, Legion must wait for
all subtasks to map before it can consider a parent task to
have completed mapping. In general the only way to know
that a parent task cannot issue more subtasks is that the
parent task has terminated, which can result in unnecessary
pipeline stalls when the task in question never intended to
launch any subtasks.

Legion allows users to annotate tasks as leaf tasks if they
launch no subtasks, a mechanism inherited from Sequoia [22].
In Legion, the runtime considers the mapping of a leaf task
to be complete once the task itself is mapped, avoiding un-
necessary pipeline stalls for dependent operations.

3.1.2 Avoiding Blocking Operations
Tasks can produce results in one of two ways: direct return

values, or as a side-effect on a region argument. In Legion,
operations can block whenever a parent task consumes a
result produced by one of its child tasks. The Legion runtime
provides ways of avoiding blocking on both kinds of task
results.

When tasks produce direct return values, Legion wraps
those values in futures. Users can block to obtain the value
of a future, but Legion also supports passing futures as in-
puts to other tasks without blocking. In this way, the pro-
grammer can describe the flow of values between tasks with-
out blocking, allowing the runtime to run further ahead and
hide runtime analysis costs. Futures are visible in the C++
sample codes in Listing 3 lines 18-19 and Listing 4 line 23.

When a parent task needs to read the results of a region
written by a child task, unless the parent task has explicitly
indicated otherwise, the Legion runtime must conservatively
assume that the parent task may attempt to access the re-
gions used by the child task as soon as the child returns. To
preserve sequential semantics, the runtime blocks the parent
while the child task is in flight to ensure the child’s results
are available before the parent continues. To avoid blocking,
parents must declare to the runtime that the region data is
not required by unmapping (releasing) the physical instance
of the region prior to calling the child.

3.1.3 Reducing Analysis Costs
Even when execution does not stall in the runtime or block

in the application, the cost of dynamic analysis itself can
cause the runtime to fall behind. One approach for reduc-
ing runtime overheads is to use index space task launches.



Conceptually, index launches simply represent a loop of task
launches. Listing 2 lines 16-18 shows an example of a Re-
gent loop that can be transformed into an index launch (with
corresponding C++ code in Listing 4). However, the Legion
runtime places several restrictions on index launches to en-
sure that they are well-behaved:

1. Arguments to all tasks in the index launch must be
computed outside the launch, guaranteeing that argu-
ments are available and that no arguments depend on
side-effects from tasks within the launch.

2. Futures, if any, are added to the launch as a whole,
not to individual tasks.

3. Requirements can be in one of two forms:

• Individual region requirements add a single region
to all tasks in the launch.

• Partition requirements add a subregion of the par-
tition for each task.

Legion supports user-defined projection functions to
allow the programmer to dynamically select subregions
for each type of region requirement.

4. Because an index launch implies parallel execution, all
the tasks must be non-interfering.

5. If tasks within the launch return a value, then the
launch as a whole is allowed to either return a map
with all the resulting futures, or to reduce the futures
into a single value.

When executing an index launch, the runtime still per-
forms dynamic checks to ensure that the tasks within the
launch are non-interfering. However, Legion is able to amor-
tize these checks across the entire index launch instead of
performing them individually.

3.2 Regions
Logical regions are created as the cross product of an index

space (set of indices) and a field space (set of fields). Logi-
cal regions can be compared to arrays of objects or structs,
though this analogy falls short in several ways. In particular,
as discussed previously, because a logical region may have
multiple physical instances, there is no one-to-one mapping
between a logical region and its representation in memory.

3.2.1 Physical Instances
In Legion, a logical region may, at any given point in

time, map to zero or more physical instances. Access to
each field of a physical instance is mediated through a field-
specific accessor. In the Legion C++ interface, the program-
mer must manage distinct LogicalRegion, PhysicalRegion, and
Accessor types.

In Regent, these differences disappear because the com-
piler manages the mapping from logical to physical regions
(and physical regions to accessors) transparently for the pro-
grammer. Field spaces can be constructed concisely from
struct types, and nested structs are automatically expanded
into their component fields. Accessors are created automat-
ically for whatever fields the programmer declared in the
privileges for the task. These differences are illustrated in
the difference between Listing 1 and Listing 3. In contrast

to users of the Legion C++ API, Regent programmers can
usually pretend that regions are simply arrays of structs or
objects.

Physical instances in Legion may be stored in one of a
number of layouts. Examples of common layouts include
array-of-structs and struct-of-arrays, while more esoteric lay-
outs may include arrays blocked for vectorized CPU instruc-
tions. Legion provides explicit accessor objects in order to
constant-fold compile-time information about instance lay-
outs for efficient access, as seen in Listing 3 lines 6-17. Re-
gent manages accessors, along with instances, on behalf of
the programmer.

Regent also manages the creation of region requirements
for each task. For each task, Regent flattens the fields,
groups them by privilege, and issues a region requirement
for each privilege and set of fields; see the correspondence
between Listing 2 line 17 and Listing 4 lines 6-22.

3.2.2 Partitions
Partitioning a region using the Legion C++ interface hap-

pens in two steps. First, the user creates an index partition
of the index space to specify how the sets of indices are sub-
divided between the spaces. Second, the user applies the
index partition to a logical region created using that same
index space to obtain a corresponding logical partition. In
Regent, these operations are combined, as the correspon-
dence between logical regions and index spaces is managed
for the programmer.

3.3 Mapping
As briefly described previously, mapping is the process of

selecting a processor to run each task and a memory (and
data layout) for each logical region. Mapping is under the
control of the application, though Regent provides a default
mapper with sensible settings to allow users to get up and
running quickly.

Legion also provides a mapping interface, but because of
the distinction between physical and logical constructs ex-
posed in Legion, this mapping process is more involved.

In Legion, logical regions must be mapped to physical
instances in a specific memory before they can be used. By
default, at the start of a task Legion automatically maps
each region used by the task, and when the task ends each
of those regions is unmapped. Before launching a subtask
a parent task must also unmap any region that the child
task needs to use. By default, the Legion runtime unmaps
all of the parent’s regions before calling a child and remaps
them when the child terminates. While this default behavior
guarantees correct execution, if the parent and child have
interfering privileges for a region (e.g., both can write the
region) then the parent will most likely block until the child
terminates, as the parent cannot remap the region until the
child unmaps it (recall the discussion in Section 3.1.2).

For higher performance, Legion programmers can explic-
itly manage region mappings themselves through explicit
map and unmap calls provided by the Legion interface. By
unmapping a region, the programmer notifies the runtime
that the data in that region is not required by the parent
task until a corresponding map call is issued. In typical us-
age, programmers unmap all regions before entering a main
loop, and remap all regions once the loop completes, which
ensures that the runtime can avoid blocking when issuing
tasks within that loop. An example of such an unmap call



can be seen in Listing 4 line 1.

4. OPTIMIZATIONS
As illustrated in Section 3, Regent simplifies the Legion

programming model and provides a higher level of abstrac-
tion that is concerned only with logical, rather than physi-
cal, constructs. The Regent compiler is able to manage the
correspondences between logical and physical constructs in
a way that achieves significantly better performance than
a naive implementation. This section describes a number
of optimizations that together allow the Regent compiler to
achieve performance comparable to hand-tuned code written
to the Legion C++ API.

4.1 Mapping Elision
Regent frees programmers of the burden of managing phys-

ical instances of regions by statically computing correct and
optimal placements of map and unmap calls. The Regent
type system guarantees that the compiler has complete in-
formation about what regions can be accessed within any
task. The compiler uses this information to perform a flow-
sensitive analysis over the AST to determine the spans over
which regions are used and inserts the map and unmap calls
at the boundaries of spans when switching between usage in
a parent and a child task. In the case where a region is not
used at all within a task, the compiler issues a single unmap
call at the top of the task and leaves the region unmapped
for the entire duration of the task’s execution. In contrast,
the Legion runtime, in the absence of manually placed calls
to map and unmap, is forced to continue to map and unmap
the region throughout the task’s execution.

4.2 Leaf Tasks
As discussed in Section 3.1.1, correctly identifying leaf

tasks is an important optimization for Legion programs, as
otherwise the Legion runtime must consider the mapping
of a task still in progress until it can be certain all child
tasks have mapped. Regent automatically infers at com-
pile time which tasks are leaf tasks. The compiler knows all
call targets and is therefore able to determine, using a flow-
insensitive analysis, whether a given task calls any subtasks.
These annotations are guaranteed to be correct and precise,
in contrast to the user-provided leaf task annotations in Le-
gion.

4.3 Index Launches
Whenever possible, the Regent compiler transforms loops

of task launches into index space task launches. The analysis
for this optimization proceeds in multiple phases:

1. The compiler begins with a structural analysis of the
code to determine whether the loops in question are
eligible for transformation into an index space launch.
Currently all simple loops containing single task launches
are considered eligible.

2. For each loop, the compiler determines whether the
body of the loop (aside from the task call itself) is
side-effect free. In particular, the loop body must not
read or modify data that the task itself might read or
modify. Doing so would introduces a loop-carried de-
pendence and shows the loop is not fully parallelizable.

3. For each argument to the task launch, the compiler
determines whether the argument in question is eligible
to be transformed into an argument for an index task
launch. Arguments must be one of:

• a non-region value;

• a region value that is provably loop invariant;

• a region value that is provably an analyzable func-
tion of the loop index; i.e., it is an expression such
as a partition access p[i] indexed by the loop vari-
able i.

4. The compiler then performs a static variant of Legion’s
dynamic non-interference analysis. For each region-
typed argument, the compiler determines whether it is
statically non-interfering with other region-typed ar-
guments. As with the dynamic analysis, the com-
piler has several dimensions along which to prove non-
interference:

• disjointness, either because the region types are
incompatible, or because the compiler can stati-
cally prove disjointness through the static tree of
region partitions;

• field disjointness, because the arguments use dif-
ferent fields; or

• privileges, because both arguments use compati-
ble privileges (e.g. both read-only, or both reduc-
tions with the same reduction operator).

If the analysis determines that a task launch is eligible for
optimization, the compiler emits the code to perform the
index task launch.

It is worth noting that while this optimization looks sim-
ilar in principle to forall-style constructs in other languages
and programming models, it behaves quite differently in
many respects. In particular, when index launch optimiza-
tion fails (because any of the properties above cannot be
established), that does not imply the resulting code runs
sequentially. The Legion runtime will perform its standard
dynamic analysis, and will parallelize all tasks that are dy-
namically non-interfering, regardless of whether the com-
piler performs the optimization or not. This optimization
simply allows the runtime to amortize the dynamic analy-
sis costs in cases where the loops can be analyzed statically.
Thus, Regent has a much more forgiving fallback for when
static analysis is insufficient than language implementations
that rely solely on static analysis.

4.4 Futures
In Legion, tasks can return futures, which can be passed to

other tasks without blocking, allowing applications to build
chains of asynchronous operations ahead of the actual com-
putation. The Regent compiler can automatically lift vari-
ables and simple operations to futures to take advantage of
these benefits. This optimization has three phases:

• The compiler first performs a flow-insensitive analysis
to determine which variables are assigned to futures
at any point within each task. Any such variables are
automatically promoted to hold futures.

• The compiler then issues calls to automatically wrap
and unwrap futures when storing a concrete value into



a future-typed variable, or when reading a future-typed
value because a concrete value is required. Tasks do
not require arguments to be concrete, and can there-
fore be issued in advance of when the concrete argu-
ments are ready.

• Finally, the compiler emits tasks to allow simple side-
effect free operations (such as arithmetic) to be per-
formed directly on futures.

4.5 Pointer Checks Elision
As noted in [33], static type checking of Legion programs

allows certain classes of pointer checks to be elided. Regent
preserves all the properties of the type system which make
this possible. In particular, all pointer types in Regent ex-
plicitly contain one or more regions that they point into.
Regent checks these annotations to ensure correctness at
compile time, and elides the dynamic pointer checks, which
are often prohibitively expensive at runtime.

4.6 Dynamic Branch Elision
In addition, Regent is able to elide certain classes of dy-

namic branches when accessing pointers in Legion. Pointers
that can point into multiple different regions (e.g., private
or ghost points in PENNANT) carry some dynamic tag bits
encoding the region the pointer currently points to. In some
cases, however, the memory for the two regions is actually
co-located at runtime (e.g. because of a decision to map
both regions to the same memory), allowing the dynamic
branches on the tag bits to be elided. The compiler emits
code that automatically detects such cases at runtime and
selects the fast path when it is available.

4.7 Vectorization
Regent leaf tasks frequently feature loops over regions. In

many cases, the Regent compiler is able to vectorize these
loops automatically, often exceeding performance provided
by traditional autovectorizers.

Regent performs runtime code generation to LLVM [28]
via Terra [20]. While LLVM provides an autovectorizer, the
low level of abstraction of the LLVM IR means that the
vectorizer frequently misses vectorization opportunities or
chooses the wrong optimization strategies for its vector code.
Regent’s native understanding of regions allows the vector-
izer to make these decisions with improved precision. Regent
uses Terra’s built-in vector types to produce explicit vector
instructions for LLVM, resulting in significant performance
gains in many cases.

Regent derives this advantage in precision from two sources.
First, Regent has improved information about aliasing through
type, field, and region-based analysis. In particular:

• While accesses for composite types are ultimately ex-
pressed as array accesses to fundamental types (inte-
gers, double-precision floating point, etc.), Regent is
able to compare the original types to determine if there
is potential for aliasing.

• Furthermore, even for identical types, Regent knows
which fields are accessed and may be able to use this
information to prove independence.

• Finally, when two accesses are to different regions, Re-
gent may be able to use its knowledge of region dis-
jointness to prove that accesses are independent.

Beyond this, Regent has access to implicit information
about the costs of potential vectorization opportunities through
regions. Regions are hierarchical and distributed data struc-
tures intended to provide opportunities for parallelism. There-
fore, when Regent sees an outer loop over a region, and an
inner loop (over something other than a region), Regent can
infer with high confidence that the outer loop is the better
opportunity for vectorization. In some cases, largely be-
cause it lacks comparable information for its cost model,
LLVM chooses to vectorize the inner rather than outer loop,
resulting in degraded performance.

5. IMPLEMENTATION
We have implemented an optimizing Regent compiler us-

ing Terra [20], a low-level programming language with se-
mantics comparable to C, but with extensive and sophis-
ticated support for meta-programming via multi-stage pro-
gramming [32]. Terra is embedded inside Lua [24], a high-
level scripting language with first-class functions. Lua plays
the same role for Terra that C++ templates play for C++,
and provides many of the same benefits. However, Lu-
a/Terra provides much better ease of use, because the meta-
programming language is a full programming language rather
than C++’s restricted template language.

Terra uses LLVM [28] to provide efficient JIT compilation
of Terra functions to fast machine code. As noted in Sec-
tion 4.7, Terra makes it possible to perform vectorization
and specialization with full awareness of the vector instruc-
tion set supported by the machine. The use of LLVM as the
JIT compiler also allows both Terra and Regent functions
to call and link easily against native C libraries.

We have implemented Regent as a co-embedded language
within Terra. The Terra API provides support for extending
the parser with additional keywords, which when seen in the
source program text cause Terra to invoke the embedded lan-
guage compiler. Regent overloads a number of keywords—
most notably, the task keyword—allowing the Regent lan-
guage to interoperate seamlessly with both Lua and Terra.
Regent tasks may call Terra functions and have access to all
data types supported by Terra, including structs, arrays, and
explicit vector types. The Regent compiler uses this infor-
mation to provide automatic structure slicing [10] for struct
types stored inside logical regions. Regent tasks may also
be dynamically specialized, using Lua, to provide multiple
implementations, which are JIT compiled prior to starting
the Legion runtime.

6. EVALUATION
We evaluate the performance of the Regent implementa-

tion, and the effectiveness of the optimizations performed by
the Regent compiler, on three applications: a circuit simu-
lation; PENNANT, a Lagrangian hydrodynamics code; and
MiniAero, an explicit solver for the compressible Navier-
Stokes equations on an unstructured mesh. The experiments
were done on the Certainty supercomputer [1]. Each node
has two sockets with an Intel Xeon X5650 per socket for
a total of 12 physical cores per node (24 threads with hy-
perthreading). Nodes are connected with Mellanox QDR
Infiniband. The Legion runtime, along with all three C++
reference codes, have been compiled with GCC 4.9.2. Terra
(and therefore Regent) uses LLVM 3.5.

We perform several experiments on the Regent and ref-
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Figure 2: Legend key for knockout experiments.

Application Regent Reference
Circuit 825 1701
PENNANT 1789 2416
MiniAero 2836 3993

Figure 3: Lines of code (non-comment, non-blank) for Re-
gent and reference implementations.

erence implementations of each application. First, we com-
pare Regent absolute performance against the reference on
the target machine.

Next, to demonstrate the impact of the compiler opti-
mizations performed by Regent, we perform knockout exper-
iments for each application, disabling each optimization pre-
sented in Section 4 in turn. In addition, we perform double
knockout experiments, measuring performance with all pos-
sible pairs of two optimizations disabled, and call out a few
interesting combinations. As several of the optimizations
impact the achieved parallelism, we evaluate each configu-
ration in a parallel configuration and compare against the
best sequential performance achieved by Regent. The la-
bels for the various optimizations are described in Figure 2.
Pointer check elision has been previously demonstrated to
have a significant impact on performance [33] and has been
left out of the knockout to reduce clutter.

Finally, we evaluate the productivity of Regent by com-
paring the number of lines of codes in each Regent imple-
mentation against each reference. Figure 3 summarizes the
results. Application-specific details are described along with
each application below.

6.1 Circuit
Circuit, introduced in [9], is a distributed circuit simula-

tion, operating over an arbitrary graph of nodes and wires.
While in principle the topology of the graph can be arbi-
trary, Circuit is concerned primarily with topologies with
interconnected dense subgraphs. Such graphs allow Circuit
to achieve some level of scalability, though that scalability
is ultimately limited by the global all-to-all communication
pattern between the subgraphs.

We compare the performance of Regent against a hand-
tuned and manually vectorized CPU implementation written
to the C++ Legion API. We evaluate both implementations
on a graph with 800K wires connecting 200K nodes. Fig-
ure 4a shows the performance of Regent against the baseline
C++ Legion implementation running on up to 8 nodes on
Certainty. Notably, the fully-optimized Regent implemen-
tation—which is written in a straightforward way with no
use of explicit vectors or vector intrinsics, and is less than
half the total number of lines of code—achieves performance
comparable to the manually vectorized C++ code, exceed-
ing the performance that can be achieved by using the LLVM
3.5 vectorizer alone.

Figure 5a demonstrates the impact of disabling individ-
ual and pairs of optimizations on the performance of the
Regent implementation of Circuit. Certain optimizations
impact the parallelism available in the application; index
launch optimization and mapping elision are two such op-
timizations. When both are disabled simultaneously, the
code runs sequentially. As described in Section 4.1, the Le-
gion runtime, in the absence of the map and unmap calls
placed by the compiler, must copy back the results of each
task execution before returning control to caller. This cre-
ates an effective barrier between consecutive tasks, but the
effect is not noticeable as long as index launch optimization
is able to parallelize the task launches. Disabling both op-
timizations serializes the code. But if either optimization is
disabled by itself, the application continues to run in parallel
at somewhat reduced throughput.

Dynamic branch elision does not have a significant im-
pact on the performance of Circuit and has been omitted to
reduce clutter.

6.2 PENNANT
PENNANT [23] is a mini-app for Lagrangian hydrody-

namics representing a subset of the functionality of FLAG [13],
a LANL production code. Figure 4b evaluates Regent against
an OpenMP implementation of PENNANT on a problem
containing approximately 2.6M zones. Implementation de-
tails of the Regent version are discussed in Section 2.

Regent performs better than OpenMP for all core counts
up to 10, surpassing OpenMP by 8% at 10 cores. Starting
at 12 cores, Regent performance degrades because the ad-
ditional compute threads interfere with threads Legion uses
for dynamic dependence analysis and data movement. The
Legion runtime is also unable to exclusively allocate physical
cores for each thread and abandons pinning altogether, lead-
ing to increased interference between application threads.

PENNANT is largely memory-bound, and is thus sig-
nificantly impacted by the NUMA architecture of the ma-
chine. OpenMP performance was substantially impacted
by CPU affinity, and a manual assignment of threads to
cores was needed for optimal performance. Regent auto-
matically binds threads to cores when possible and round
robins threads between NUMA domains, thus performing
well with minimal manual tuning.

Regent achieves good performance despite an overall de-
crease in lines of code. The numbers listed in Figure 3 ex-
clude a number of routines, shared between both implemen-
tations, for generating the input mesh and exporting the
output of the simulation to files.

Figure 5c shows that the Regent implementation of PEN-
NANT exhibits varied behavior with certain combinations
of optimizations disabled. As with Circuit, the combination
of index launches and mapping elision causes the application
to execute sequentially. However, PENNANT offers a differ-
ent response to the combination of index and leaf optimiza-
tions. PENNANT’s pattern of task launches is such that
when leaf optimization is disabled, the Legion runtime must
stall for mapping to complete in order to ensure that all the
dependencies are correctly captured. Circuit is structured
differently from PENNANT and is therefore not impacted
significantly by the leaf optimization (in combination with
index launches or otherwise).

PENNANT also shows the most benefit from eliminat-
ing dynamic branches. In contrast to Circuit and MiniAero
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Figure 4: Performance evaluations.

which are generally compute or memory bound, certain per-
formance critical kernels in PENNANT contain long chains
of dependent math instructions, which in turn depend on
conditional memory accesses (when dynamic branch elision
is not enabled). At 10 cores, throughput improves by 15%
if dynamic branches can be eliminated.

6.3 MiniAero
MiniAero [3] is a computational fluid dynamics mini-app

that uses a Runge-Kutta fourth-order time marching scheme
to solve the compressible Navier-Stokes equations on a 3D
unstructured mesh. The baseline version of MiniAero is im-
plemented as a hybrid code, using MPI for inter-node com-
munication and Trilinos Kokkos [21] for intra-node paral-
lelism. Figures 4c and 4d compare performance between a
Regent implementation and the baseline MPI+Kokkos ver-
sion on a problem size with 4M cells and 13M faces running

on up to 4 nodes on Certainty. The Regent implementation
for MiniAero is approximately 30% shorter by lines of code
than the reference.

Regent outperforms MPI+Kokkos on 8 cores by a factor
of 2.8X through the use of a hybrid SOA-AOS data layout,
an approach similar to that taken in [10]. The improved
data layout substantially boosts cache reuse and improves
utilization of memory bandwidth.

Figure 5b demonstrates that MiniAero is sensitive to the
combination of index launches and mapping elision. When
both optimizations are disabled, the code runs serially. Mini-
Aero is otherwise relatively resilient to the choice of opti-
mizations performed. MiniAero is not significantly impacted
by dynamic branch elision (not shown).

6.4 Limitations
While the Regent compiler significantly simplifies aspects
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Figure 5: Knockout experiments. The red line in each graph shows the best sequential Regent performance.

of writing to the Legion programming model, our current
implementation does have limitations. The most important
one is that Legion’s support for simultaneous access to re-
gions by tasks is not currently implemented in Regent [9].
Briefly, simultaneous access allows Legion programs to im-
plement SPMD style patterns, such as are typically used in
UPC [14, 2], Titanium [35] and MPI [31] programs, where
multiple concurrently executing tasks share access to the
same region, mediated by explicit synchronization opera-
tions. Simultaneous access exists in Legion to address a
problem that any dynamic task-based model with subtasks
(i.e., not just Legion) faces. The performance of a task
that launches substasks depends on the number of subtasks
launched and the duration of those subtasks; the runtime
overhead incurred is proportional to the number of subtasks
launched, and so the more subtasks that are launched by a
task, the longer those subtasks must run to keep the ratio
of useful work to runtime overhead low. When launching
very large numbers of tasks, say across a petascale super-
computer, the runtime overheads will dominate the useful
computation of the tasks unless the tasks run for a long
time. For applications in which the bulk of the available par-
allelism comes from repeated and regular data-parallel task
launches, the SPMD structure allows a very large number of
long-running tasks to be launched at application start, and
then be further subdivided using the functional-style task
calls we have shown in our examples in this paper (where
each task has exclusive access to its region arguments [9]).

In our experience, such applications should be written in
the SPMD syle at the outermost level of control if they are
to scale past somewhere between 10 and 100 nodes, depend-
ing on the application domain. Because of that, and because
the optimizations described in this paper are effective even
on a single node, we have focused on experiments on one
or a small number of nodes. There is no technical barrier
to adding support for simultaneous access to Regent as it
already exists in Legion. This approach is known to provide
scalability to more than 10K nodes in Legion [7], and it may
be the solution we eventually adopt, but simultaneous access
does add another dimension of complexity to the program-

ming model that we would like to avoid in Regent if possible.
As future work we are interested in whether it is possible to
provide scalability to large numbers of nodes in Regent for
applications with regular (and repetitive) data parallel tasks
by compiler transformations that target Legion’s simultane-
ous coherence without exposing that feature to the Regent
programmer.

7. RELATED WORK
Legion [9], though implemented as a runtime system, is

designed to be a programming model for which many prop-
erties could in principle be statically checked. In particular,
there is a static type system for key Legion abstractions [33].
Regent extends that work into a complete language and com-
piler, with a focus on productivity and performance. Among
other things, partitions in Regent are first-class and can
be passed to subtasks, facilitating certain interesting design
patterns impossible in the initial type system.

Legion is itself the spiritual successor of Sequoia [22]. Most
notably, Sequoia, in contrast to Legion, was entirely static:
the application, machine specification, and mapping from
application to machine were all given as inputs to the com-
piler, which produced an optimized (but entirely static) ex-
ecutable. Legion grew out of the difficulties encountered
in adapting Sequoia to irregular, and thus more dynamic,
applications [8]. Regent itself differs from the Sequoia com-
piler [29] in that the compiler plays a different role with
respect to the runtime system, facilitating the efficient op-
eration of the runtime, rather than the other way around.
As a result, the optimization needs of each system differ.

Deterministic Parallel Java (DPJ) [11, 12] is a parallel
extension to the Java programming language adding sup-
port for regions. Regions in DPJ also express locality, as
they do in Regent. However, DPJ is a fully static system,
while Regent is a hybrid system with a static type system
and compiler optimizations but also an aggressively optimiz-
ing dynamic runtime. As a result, while Regent’s semantic
safety properties must be enforced at compile time, Regent
is free to discover parallelism at runtime, giving it the ability
to exploit dynamic information about the application when



insufficient static information is available.
An older but related language is Jade [30]. Jade provides

an apparently-serial programming model that implicitly par-
allelizes through the use of a dynamic dataflow graph. Jade
differs substantially in design and implementation from Le-
gion because of the characteristics of the hardware at the
time, when processors were much slower relative to net-
works and it was plausible to track dynamic dataflow on
a per-object basis. Regent addresses these challenges by ag-
gregating data with logical regions and providing language
constructs for hierarchical decomposition of those regions.
Regent’s design also allows it to employ a hierarchical, dis-
tributed scheduling algorithm [33].

Swift/T [34, 5] (not to be confused with Apple Swift) is
a more recent effort focusing on high-productivity scripted
parallel workflows. Both Swift/T and Regent employ an im-
plicitly parallel programming model, and both achieve par-
allelism through dataflow. Swift/T differs from Regent in
that it is purely functional, while Regent allows tasks to have
side-effects on regions, but serializes execution when tasks
have the potential to interfere. Unlike regions, Swift/T’s
aggregate data types do not have a first-class concept of
partitioning, as in Regent. Beyond this, while both Swift/T
and Regent optimize for parallelism, the Swift/T makes no
attempt to generate efficient sequential code while Regent is
able to match the performance of hand-tuned and manually
vectorized kernels.

Other runtime systems with support for task-based pro-
gramming include Charm++ [27], Uintah [19], StarPU [6],
and OCR [4]. While these systems differ substantially in the
details, they all provide a common abstraction of a task as a
fundamental unit of execution, with a graph of dependencies
between tasks providing communication and synchroniza-
tion. These systems differ from Regent in that, as dynamic
runtime systems, they impose a small but potentially signif-
icant runtime overhead which must be overcome to achieve
performance. Beyond this, these systems do not provide the
ability to partition data multiple ways and to migrate data
dynamically between these views as the application moves
between different phases of computation. This makes sev-
eral design patterns more straightforward to implement in
Regent compared to the above systems.

Another related class of work is represented by PGAS
and related models, such as UPC [14, 2], Titanium [35],
Chapel [16, 15], X10 [18, 17, 25] and HPX [26]. Regent is
similar to PGAS programming models in so far as point-
ers created in Regent are valid everywhere in the machine.
However, Regent pointers can only be dereferenced when the
task in question has privileges to the region that it points
into. This property allows Regent to preserve a number of
other important properties important for performance and
correctness, such as guaranteeing non-interference of tasks
executing in parallel.

8. CONCLUSION
We have presented Regent, a high-productivity program-

ming language for high performance computing with logical
regions. Regent provides a sequential programming model
that parallelizes implicitly by performing dynamic dataflow
on regions. We have presented an optimizing compiler for
Regent which produces efficient Legion implementations, and
evaluated the implementation on three benchmark applica-
tions.
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