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Abstract—Applications on modern supercomputers are in-
creasingly limited by the cost of data movement, but mainstream
programming systems have few abstractions for describing the
structure of a program’s data. Consequently, the burden of
managing data movement, placement, and layout currently falls
primarily upon the programmer.

To address this problem we previously proposed a data model
based on logical regions and described Legion, a programming
system incorporating logical regions. In this paper, we present
structure slicing, which incorporates fields into the logical region
data model. We show that structure slicing enables Legion to
automatically infer task parallelism from field non-interference,
decouple the specification of data usage from layout, and reduce
the overall amount of data moved. We demonstrate that structure
slicing enables both strong and weak scaling of three Legion
applications including S3D, a production combustion simulation
that uses logical regions with thousands of fields, with speedups of
up to 3.68X over a vectorized CPU-only Fortran implementation
and 1.88X over an independently hand-tuned OpenACC code.

I. INTRODUCTION

Modern supercomputers have evolved to incorporate deep
memory hierarchies and heterogeneous processors to meet
the demands of performance and power efficiency from the
computational science community. Each new architecture has
been accompanied by new software for extracting performance
on the target hardware [1, 2, 3, 14, 18]. While these pro-
gramming systems contain many ways for describing paral-
lelism, they offer little support to programmers for managing
data. Consequently, the responsibility for orchestrating all data
movement, placement, and layout both within and across nodes
falls primarily on the programmer. At the same time, data
movement has become increasingly complex and expensive
and now dominates the performance of most applications.

To aid programmers in managing program data, we pre-
viously introduced Legion, a data-centric programming model
based on logical regions [6, 25, 26]. Logical regions are typed
collections that can be recursively partitioned into logical sub-
regions, thereby allowing applications to name the subsets
of data used by different sub-computations. Logical regions
further benefit applications by decoupling the specification of
which data is accessed by computations from where that data
is placed within the memory hierarchy. Using a mapping in-
terface, Legion applications separately control where instances
of logical regions are placed in the machine [6].

Despite these advantages, our experience writing Legion
programs over the last two years has convinced us that a
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Fig. 1. Across-Cell and Across-Field Phases in S3D.

fundamental dimension was missing from the design: describ-
ing compound data types with multiple fields. Consider, for
example, the combustion simulation S3D [11], which was one
of the six applications used for acceptance testing of Titan [19],
the current number two supercomputer [4]. S3D models both
the physics of turbulent gas dynamics as well as the chemistry
of combustion via direct numerical simulation. Physical space
is discretized into a grid of cells and each cell maintains more
than a thousand intermediate values or fields corresponding
to different physical and chemical properties (e.g., temper-
ature, pressure, etc.). Each cell can therefore be considered
a structure with numerous field values. S3D contains many
computational phases, each of which is primarily a physics
or chemistry phase, as shown in Figure 1. Physics phases are
mainly stencils that access neighboring cells, but require only
a few fields from each cell. Chemistry phases require many
fields, but always from a single cell.

In practice, many scientific computing applications share
S3D’s structure: there are one or more large distributed data
structures (regular grid, irregular mesh, graph) and each ele-
ment within these data structures holds many tens, hundreds,
or even thousands of field values. Furthermore, all computa-
tions on these data structures go through phases operating on
different subsets of these fields. The crucial insight is that few,
if any, computations in an application require access to all of
the fields. In this paper, we present structure slicing as an
extension to Legion which allows computations to explicitly
slice logical regions to name the subsets of fields they will
access. Armed with this information, a field-aware Legion
implementation can automatically derive several important
performance benefits.

• Task Parallelism: Legion can automatically infer im-
plicit task parallelism between computations using
disjoint sets of fields.

• Decoupled Data Layout: The specification of dataSC14, November 16-21, 2014, New Orleans, LA, USA
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usage for computations can be decoupled from the
actual data layout by making data layout a Legion
mapping decision.

• Reduced Data Movement: By knowing precisely
which fields are required for tasks, Legion can au-
tomatically determine the minimum subset of data
that needs to be communicated when computations
are moved to new processors on remote nodes or
accelerators with their own address spaces.

The rest of this paper is organized as follows. In Section II
we motivate our design by giving concrete examples of how
S3D benefits from structure slicing. Each of the remaining
sections presents one of our technical contributions:

• We describe the semantics of structure slicing, includ-
ing the need for dynamic field allocation. We detail the
incorporation of fields into Legion’s definition of non-
interference and show how Legion’s mapping interface
decouples data layout from data usage (Section III).

• We describe the implementation of structure slicing in
Legion, including the necessary changes to Legion’s
dynamic dependence analysis as well as the imple-
mentation of data movement routines for managing
field data (Section IV).

• We port several applications, including a full imple-
mentation of S3D, to use a structure slicing Legion
implementation. We demonstrate that the performance
benefits conferred by structure slicing enable both
strong and weak scaling (Section V).

Section VI describes related work and Section VII concludes.

II. MOTIVATION

To motivate our design, we begin by presenting a small
code example from S3D that illustrates the need for structure
slicing. Listing 1 shows a short pseudo-code excerpt from
the right-hand side function rhsf of S3D (lines 57-66). The
rhsf function evaluates the values on the right-hand side of
the Navier-Stokes partial differential equations and is param-
eterized to operate across a range of chemical mechanisms.
The rhsf function is invoked multiple times per time step
on each node by an explicit Runge-Kutta solver and routinely
consumes in excess of 97% of the execution time of an S3D
run. In this section we focus on the computation performed by
the rhsf function on each node.

The rhsf function operates on an array of cells. The
Cell type (declared on lines 1-13) shows the first 42 fields of
the 139 field struct for H2, the smallest chemical mechanism.
Interesting mechanisms used in real research, such as dimethyl
ether (DME) and heptane [11], require 548 and 1046 fields
per cell respectively. In the original Fortran, these fields are
implicitly encoded as a fourth dimension on every array, with
the ordering of dimensions fixing the layout of the data. In
both C and Fortran versions of the code, modifying the data
layout would require changes to a large fraction of the 200K
lines of code in S3D.

In Section III we demonstrate how Legion allows data
layout to be decoupled from the specification of program
data. In a heterogeneous environment, decoupling of data
specification from layout using structure slicing facilitates

1 struct Cell {
2 double avmolwt, mixmw, temp, viscosity, lambda, pressure,
3 yspec h2, yspec o2, yspec o, yspec oh, yspec h2,
4 yspec h20, yspec h, spec h02, yspec oh,
5 ds mixarg h2, ds mixarg o2, ds mixarg o,
6 ds mixarg oh, ds mixarg h20, ds mixarg h, ds mixarg h02,
7 ds mixarg h202, ds mixarg n2, grad vel x x,
8 grad vel x y, grad vel x z, grad vel y x, grad vel y y,
9 grad vel y z grad vel z x, grad vel z y, grad vel z z,

10 grad yy h2, grad yy o2, grad yy o, grad yy oh, grad yy h20,
11 grad yy h, grad yy h02, grad yy h202, grad yy n2,
12 tau x x, tau x y, tau x z, tau y y, tau y z, tau z z, ...
13 };
14

15 /∗ Example across−cell computation: gradient molar species ∗/
16 /∗ Only one direction of stencil shown ∗/
17 #define STENCIL 1D(x, field, ae, be, ce, de) \
18 (ae ∗ (cells[x+1].field − cells[x−1].field)) + \
19 (be ∗ (cells[x+2].field − cells[x−2].field)) + \
20 (ce ∗ (cells[x+3].field − cells[x−3].field)) + \
21 (de ∗ (cells[x+4].field − cells[x−4].field))
22

23 void calc grad yy(Cell ∗cells, int num cells, double dim size) {
24 double ae = 4.0 / 5.0 ∗ dim size;
25 double be = −1.0 / 5.0 ∗ dim size;
26 double ce = 4.0 / 105.0 ∗ dim size;
27 double de = −1.0 / 280.0 ∗ dim size;
28 for (int i = 0; i < num cells; i++) {
29 cells[i].grad yy h2 = STENCIL 1D(i, yspec h2, ae, be, ce, de);
30 cells[i].grad yy o2 = STENCIL 1D(i, yspec o2, ae, be, ce, de);
31 /∗ ... ∗/
32 cells[i].grad yy n2 = STENCIL 1D(i, yspec n2, ae, be, ce, de);
33 }
34 }
35

36 /∗ Example across−field computation: stress tensor ∗/
37 void calc tau(Cell ∗cells, int num cells) {
38 for (int i = 0; i < num cells; i++) {
39 double sum term = cells[i].grad vel x x +
40 cells[i].grad vel y y + cells[i].grad vel z z;
41 cells[i].tau x x = 2.0 ∗ cells[i].viscosity ∗
42 (cells[i].grad vel x x − sum term);
43 cells[i].tau y y = 2.0 ∗ cells[i].viscosity ∗
44 (cells[i].grad vel y y − sum term);
45 cells[i].tau z z = 2.0 ∗ cells[i].viscosity ∗
46 (cells[i].grad vel z z − sum term);
47 cells[i].tau x y = cells[i].viscosity ∗
48 (cells[i].grad vel x y + cells[i].grad vel y x);
49 cells[i].tau x z = cells[i].viscosity ∗
50 (cells[i].grad vel x z + cells[i].grad vel z x);
51 cells[i].tau y z = cells[i].viscosity ∗
52 (cells[i].grad vel y z + cells[i].grad vel z y);
53 }
54 }
55

56 /∗ Right−Hand Side Function (RHSF) ∗/
57 void rhsf(Cell ∗cells, int num cells) {
58 calc volume(cells, num cells);
59 calc temperature(cells, num cells);
60 calc thermal coefficients(cells, num cells);
61 calc grad yy(cells, num cells);
62 calc tau(cells, num cells);
63 calc diffusion flux(cells, num cells);
64 calc reaction rates(cells, num cells);
65 /∗ ... ∗/
66 }

Listing 1. S3D Right-Hand Side Function.

using different data layouts for tasks executed on different
kinds of processors. For example, tasks run on GPU processors
will likely perform best with a struct-of-arrays data layout for
memory coalescing, while tasks run on CPU processors will
often perform best with array-of-structs or hybrid [21] data
layouts to leverage cache prefetch engines.

The rhsf function invokes two different kinds of functions
on the array of cells in Figure 1. The calc_grad_yy
function on lines 17-34 of Listing 1 (which computes the
gradient of the molar fractions for each species using a stencil



computation) is an example of an across-cells function. In
contrast, calc_tau on lines 37-54 (which computes the
stress tensor for each cell using other fields within the same
cell) is an example of an across-fields function. In S3D there
is no function that requires access to all of the fields.

While the implementation of rhsf portrayed in this ex-
ample is a sequential function, there exists significant field-
level task parallelism among its subroutines. For example, it
is safe to execute the adjacent functions calc_grad_yy and
calc_tau in parallel because they access independent sets
of fields and are therefore non-interfering, even though one
function operates across fields and the other operates across
cells. (We formally define non-interference in Section III.) In
practice, it is common for there to exist in excess of 100-way
task parallelism between the hundreds to thousands of fields in
the Cell data type for larger mechanisms in S3D. We show in
Section III how structure slicing enables Legion to implicitly
infer field-level non-interference between tasks.

Structure slicing also enables two important data movement
optimizations. First, on machines with hierarchical memory,
structure slicing permits Legion to know exactly which fields
must be moved for computations to run on an accelerator. For
example, off-loading the data parallel calc_tau task onto a
GPU requires only copying data from the viscosity and
grad_vel fields into the GPU’s framebuffer. Since these are
a small subset of the total fields in a Cell, there is a significant
improvement in performance by only moving the needed field
data. We note that a version of S3D using OpenACC [19]
can perform a similar operation, under the condition that data
is laid out in system memory using a struct-of-arrays format
so individual field data is dense, allowing OpenACC to copy
individual dimensions of the array. Entangling layout with data
movement optimizations in the OpenACC code results in code
that is difficult to modify when exploring different mapping
strategies and tuning for new architectures.

The second data movement optimization enabled by struc-
ture slicing is copy elimination. Consider two instances of
the grad_vel task being performed for the same species
in different dimensions. Both of these tasks require access to
the yspec field for a given species. In the case where both
tasks are mapped onto an accelerator, a structure slicing Legion
implementation will dynamically detect the redundancy in data
movement and ensure that the data is only moved once. This
optimization can also be done in an OpenACC version of the
code, provided the mapping decisions are known statically, but
it is a tedious and error prone transformation to perform by
hand in the presence of the thousands of fields in each S3D
chemical mechanism. To compound matters, the optimization
is implicit in the code, reducing code maintainability, and
potentially introducing bugs under code refactoring. We cover
the details of how Legion automatically performs both data
movement optimizations in a safe way in Section IV.

III. STRUCTURE SLICING

In this section we present extensions to the Legion pro-
gramming model for structure slicing. We describe how fields
are added to logical regions (Section III-A), how field informa-
tion is used to infer non-interference of tasks (Section III-B),
and extensions to the Legion mapping interface for controlling
data layout (Section III-C).

A. Logical Regions with Fields

In the original Legion design [6] (which for brevity we
will call original Legion), logical regions are a cross product
of an index space I [9, 15] and a type T . An index space
is an abstract set which defines the set of entries in a logical
region (e.g., a set of opaque pointers, or a set of points in a
Cartesian grid of arbitrary dimensions). For each point in I ,
there is a corresponding object of type T in the logical region.
The type T is not restricted and can be either a base data type
or a compound data type. Logical regions can be subdivided
by dynamic partitioning operations, which subset the index
space to define subregions.

To extend logical regions to support structure slicing, we
introduce field spaces. Instead of using statically defined types,
logical regions are created at runtime by taking the cross
product of an index space I and a field space F . Each field
f ∈ F has a type Tf . A pair 〈i, f〉 where i ∈ I and f ∈ F
uniquely identifies an entry of type Tf in the logical region.

Fields can be dynamically added to and removed from log-
ical regions. To understand the need for dynamically allocated
fields, consider a program that computes a temporary for every
element in a collection and then performs a stencil computation
over that temporary before summing the result with another
field. The need for such temporary fields is common, and in
many cases programmers will allocate scratch fields in static
data types that are re-used throughout long computations like
S3D’s rhsf function.

There are two problems with how scratch fields are al-
located and used in current programs. First, scratch fields
consume memory at all times. Programmers often address this
memory bloat by reusing a single scratch field for several
(hopefully non-overlapping) temporary variables, at a signif-
icant cost to code maintainability. However, reuse of scratch
fields can introduce false dependencies between two otherwise
independent tasks that happen to reuse the same scratch field.
Second, scratch fields add overhead to data transfers: The
scratch fields of a structure in C or Fortran are copied along
with all the other fields, whether they have data that will be
used by the receiving computation or not. For applications
such as S3D that use a large number of scratch fields and are
constrained by system bandwidth, the costs of copying unused
scratch fields can be large.

By allowing the applications to add fields to a field space
when needed and remove them after the last use, false depen-
dencies can be eliminated and memory footprint and transfer
costs reduced.

B. Field-Based Non-Interference

A Legion application is decomposed into a hierarchy of
tasks. Informally, a pair of tasks t1 and t2 is non-interfering
(written t1#t2) if executing them in either order or con-
currently cannot cause a difference in their behavior or the
observed state of memory after both tasks have finished. The
basic semantic guarantee of Legion is that if two tasks can
interfere, then they will be executed in the original program
order, thus giving Legion a default sequential semantics that
is easy to understand and aids programmer reasoning.



To extract parallelism it is desirable for the Legion runtime
to prove as many pairs of tasks are non-interfering as possible.
To facilitate reasoning about non-interference, Legion requires
that each task name the logical regions it will access. If two
tasks access disjoint regions, for example, the runtime can
prove the tasks are non-interfering and safely execute them
in parallel. To enable finer grain reasoning when two tasks
access the same region, Legion also requires tasks declare their
privileges on region arguments (e.g., read-only, read-write,
reduce). Thus, as another example, when two tasks access the
same region r but with read-only privileges, the two tasks are
non-interfering on r.

A full treatment of non-interference in original Legion can
be found in [25], which derives a sound approximation of the
non-interference test that is efficient enough to be performed
at run time. It also shows how the functional nature of Legion
tasks with effects on logical regions enables a hierarchical
scheduling algorithm and permits distributed non-interference
tests to be performed on different nodes without communica-
tion, which is crucial for scaling Legion to thousands of nodes.

We now extend this framework to include non-interference
on fields. Following the methodology of [25], we first define
a precise non-interference test based on the actual execution
of two tasks and then show a sound approximation that can
be efficiently computed using region field privileges. In [25],
a memory operation ε is a triple (l, op, v) where l is a memory
location, op is the operation performed on l (read, write,
or reduceo with a particular reduction operator o), and v is
the value (the value read, written or folded into l using the
named reduction operator). Non-interference of two memory
operations ε1 and ε2 is then defined as follows:

ε1 # ε2 ⇔(op1 = read ∧ op2 = read) ∨
(op1 = reduceid1

∧ op2 = reduceid2

∧id1 = id2)∨
l1 6= l2

The first two conditions capture the non-interference of two
read operations or two reduction operations (using the same
reduction operator); these conditions are still sufficient for
proving non-interference even under fields. The final condition
looks for accesses to different memory locations l1 and l2. If
we let o1 and o2 be the base address of the objects accessed
by ε1 and ε2 and let f1 and f2 be the names of the fields
being accessed, we can refine the notion of accessing the same
location to the access of the same field within the same object

l1 = l2 ≡ (o1 = o2) ∧ (f1 = f2)

and then rewrite the non-interference test as

ε1 # ε2 ⇔(op1 = read ∧ op2 = read) ∨
(op1 = reduceid1 ∧ op2 = reduceid2

∧id1 = id2) ∨
o1 6= o2 ∨
f1 6= f2

This reformulation splits the original different-location test
into two tests, one that identifies data parallelism from accesses
to different objects, and one that identifies task parallelism
from accesses to different fields.

The non-interference test used in the original Legion run-
time is an approximation that works at the granularity of
privileges and regions rather than individual memory opera-
tions. This coarsening of the test is what makes it practical, as
the cost of a single non-interference test is amortized over
many accesses to the region’s data. A further optimization
is to perform the test based on logical regions rather than
physical instances, the actual physical location(s) where data
in that logical region is currently stored. (Multiple physical
instances are permitted for a logical region when data has been
replicated for improved access.) The analysis in [25] abstracts
this translation of logical regions to physical instances in a
mapping M and shows that a valid mapping M chosen by
an application mapper preserves the soundness of the region-
based non-interference test.

To incorporate structure slicing into the non-interference
test, we augment the privilege declarations on tasks to also
name the fields on each logical region that a task may access.
Let task ti access the set of fields fieldsi of region ri with the
privilege privi, and let M be the mapping of logical regions
to physical instances. The test for non-interference of tasks t1
and t2, extended to include structure slicing, is given below.
Here r1 ∗ r2 is true if r1 and r2 are disjoint logical regions;
M(r1)∩M(r2) is empty if the physical instances M(r1) and
M(r2) share no memory locations.

priv1(r1,fields1)#Mpriv2(r2,fields2)⇔
(priv1 = reads ∧ priv2 = reads) ∨
(priv1 = reducesid1

∧ priv2 = reducesid2
∧ id1 = id2) ∨

(r1 ∗ r2) ∨
(M(r1) ∩M(r2) = ∅) ∨
(fields1 ∩ fields2 = ∅)

This test is nearly identical to the one in [25]. The existing
Legion runtime non-interference checks (which extract other
forms of parallelism) are left unaffected, and a single new
sufficient condition is added, which checks whether the sets of
fields accessed by two tasks for a given privilege are disjoint.
This additional check is performed dynamically (to support
dynamic field spaces); we discuss an efficient implementation
in Section IV. The similarity of the test allows a straightfor-
ward extension of the theorems proving the soundness of the
approximate test and its suitability as the basis for scalable
hierarchical scheduling.

C. Field-Based Mapping

Legion features a dynamic mapping interface that decou-
ples writing applications from tuning performance on specific
target architectures [6]. Programmers work with logical regions
with no implied layout or location in the memory hierarchy.
During program execution the Legion runtime queries a map-
per object about how the application should be mapped to
the target architecture. Prior to the incorporation of structure
slicing, mapping a task t in Legion required a mapper to
respond to the following queries from the Legion runtime:

• Select the target processor for the task t
• For each logical region r that t has privileges, select a

target memory in which to create or reuse a physical
instance of r
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Fig. 2. Example physical region layouts for a 2-D stencil.

Initially applications use the Legion default mapper which
answers these queries using basic heuristics. Legion ap-
plications are then tuned by customizing mappers based
on application-specific and/or architecture-specific knowledge.
Most importantly, mapping decisions made by mappers can-
not impact the correctness of Legion applications, which is
necessary for easy porting and tuning of Legion code [6].

To incorporate structure slicing into the Legion mapping
interface we extend mapper objects to specify the layout
of fields within physical instances. For each logical region
requested for a task, Legion mappers are now queried to select
a layout schema constraining how the region’s index space and
fields should be linearized in memory when creating a physical
instance. For example, layout schemas can encode that fields
should be laid out in struct-of-arrays (SOA) format, with data
for each field compactly stored. Alternatively, data can be laid
out in array-of-structs (AOS) format, or a hybrid format [21]
that allows several values for each field to be stored compactly
for use with vectorized SSE or AVX loads and stores. Layout
specifications also require mappers to specify the ordering of
points within the index space for a logical region. Ordering can
be done by dimensions (e.g., C or Fortran array ordering) or
alternatively with more flexible functions such as Morton space
filling curves. Finally, layout schemas are flexible enough to
interleave field data with different subsets of index spaces.

As an illustrative example, consider a simple 2-D stencil
computation done over a 3-D grid with two different fields:
A and B. Figure 2 shows three different layouts that could
be selected for the physical instance with elements of field A
shown in red and elements of field B shown in blue. The first
layout shows the standard AOS layout with the grid serialized
based on a C-ordering of the dimensions. This layout would
be well suited to CPU kernels which perform both stencils
simultaneously. Alternatively, the second layout depicts the
standard SOA layout of the fields, with the array for each field
serialized using C-ordering of the dimensions. The last layout
in Figure 2 shows how fields can be interleaved with index
space dimensions, with 2-D slices of different fields alternating
in memory and each slice laid out with a Fortran-ordering
on the grid dimensions. Such a layout would be extremely
useful for describing locality if both fields are necessary for
performing the stencil, but coalescing of memory accesses are
necessary for use on a vectorized or GPU processor.

In order to maintain the invariant that mapping decisions
are independent of the correctness of Legion applications, we

need to update our Legion implementation to handle various
layout specifications. In addition to handling the necessary data
movement operations, a Legion implementation also needs
to apply the necessary transformations when moving data
between physical instances with different data layouts. As we
show in Section IV, the cost of transforming data to support
different layouts is often minimal compared to the cost of data
movement itself and any overhead is quickly made up by gains
in memory system performance when executing tasks.

IV. STRUCTURE SLICING IMPLEMENTATION

We now describe an implementation of structure slicing in
Legion. We first summarize necessary extensions to the Legion
runtime interface (Section IV-A). We then present the three
primary modifications to the runtime system: support for dy-
namic field non-interference tests (Section IV-B), modifications
to the mapping interface (Section IV-C), and extensions to data
movement routines (Section IV-D).

A. Interface Extensions

To support structure slicing, we extend the original Legion
interface to support the dynamic creation and deletion of field
spaces as well as the dynamic creation and deletion of fields.
As discussed in Section III, dynamic logical region creation
with structure slicing uses field spaces to specify the available
fields on a logical region. To support dynamic allocation and
deallocation of fields, we exploit the natural level of indirection
between Legion’s logical regions and physical instances. The
dynamic allocation of a field f on a logical region r guarantees
that f is available on future physical instances of r. Similarly,
the destruction of a field f on r ensures that the field need not
be allocated as a part of future physical instances.

We also extend the task launching mechanism to encode the
necessary information for structure slicing. Previously, Legion
tasks declared the logical regions they could access along with
any privileges [6]. In our structure slicing version of Legion,
instead of specifying privileges on entire regions, tasks request
privileges on individual fields of logical regions.

B. Dynamic Field Non-Interference Tests

The primary challenge in extending a Legion implementa-
tion to incorporate structure slicing information is performing
efficient dynamic non-interference tests. The introduction of
an additional dimension of non-interference adds dynamic
analysis overheads; however, we show in Section V that the
cost of this analysis can be minimized and often pays for itself
by discovering additional task and data movement parallelism.

In Legion, subtasks launched within a parent task are issued
in program order to the runtime system. For each subtask t
the runtime must perform non-interference tests between t and
any unfinished subtasks launched within the same parent task
[6]. Recall from Section III-B that the hierarchical nature of
the non-interference test obviates the need to test against any
tasks launched by another parent [25]. Extracting parallelism
from this stream of tasks is an inherently sequential process.
A poor implementation could easily place this analysis on
an application’s critical path, so it is important that the non-
interference tests be implemented efficiently.



...

*
Rp

R1 R2 RN

T0: write(a,b)

T1: read(a),
      write(c)

*

R3 R4

T3: read(b),
      write(c)

T4: read(b),
      write(c)

T2: write(a),
      read(b)

Fig. 3. Example Legion Non-Interference Test

In Section III-B we defined the three disjunctive conditions
for demonstrating the non-interference of two tasks:

• access to independent sets of fields,
• access to independent sets of regions,
• or non-interfering privileges.

These three conditions may be tested in any order. If any
one of the three tests evaluates to true then the tasks are
non-interfering and any remaining tests can be skipped. Con-
sequently the choice of test order can have a significant
performance impact.

The order we use is region independence, field indepen-
dence, and finally non-interference of privileges. This ordering
stems from the observation that Legion programs commonly
express data parallelism at several different granularities both
across nodes and within nodes. It is therefore most likely
that two tasks will be proven to be non-interfering using
the independence of their logical regions. After this, field set
independence is most likely. Finally, privilege non-interference
is a more complicated test and is therefore placed last where
it is least likely to be performed. While it is possible to write
Legion applications that perform better with a different test
ordering, it has been our experience that the performance of
this ordering is sufficient for achieving high non-interference
test throughput. We justify this choice of ordering by show-
ing the breakdown of non-interference tests for several real
applications in Section V-C.

We now build on the Legion non-interference test from [6,
25]. A region tree consists of two kinds of nodes, regions and
partitions. Each region may have one or more child partitions,
and each partition has a number of subregions. An example
region tree is shown in Figure 3, where boxes are regions and
horizontal lines are partitions (the ∗ notation on a partition
indicates the subregions of the partition are disjoint).

At every point in time, the Legion runtime tracks which
already-issued tasks are using which regions by annotating
the logical regions in region trees with task and privilege
information. To extend this algorithm to check field non-
interference, we store the set of fields used in addition to
the privilege information with each task in the region tree, as
illustrated in Figure 3. Each task stored in the region tree has
already performed its non-interference test and recorded itself
on the regions it is using along with its field and privilege
information. To perform the needed non-interference tests for
a new task T4, we begin by traversing the region tree from the
root to where the task has requested privileges, in this case the
logical region R3. We only need to perform non-interference

tests with tasks along this path because regions off of this path
(such as R1 in Figure 3), are already known to be disjoint with
R3. The tasks T1 and T3 can therefore be inferred to be non-
interfering on logical region usage. Performing this traversal
implements the first dimension of our non-interference tests,
which examines region usage.

For all tasks that are encountered along the path, we apply
the second and third dimensions of the non-interference test
in order. We first check for non-interference on fields. Task
T4 is non-interfering with both T0 and T2 on fields a and c,
but interferes with both tasks on field b. For the interfering
field b, we then perform privilege non-interference tests. In
this case T4 interferes with T0 because T0 is writing field b
and T4 is reading field b, resulting in a true data dependence.
However, because both T2 and T4 are reading field b, task T4
is non-interfering with T2 and can potentially run in parallel.

For applications such as S3D with large numbers of fields,
it is challenging to implement non-interference tests on sets of
fields efficiently. To make these tests fast we implement sets
of fields as bit masks. For every region and privilege that a
task requests, a bit mask is inserted into the region tree sum-
marizing the fields used for the specific region and privilege.
Using bit-wise operators, fast tests for both disjointness and
intersection can be performed.

To further improve the performance of bit mask disjoint-
ness testing we place a compile-time upper bound on the
number of fields that can be allocated in a bit mask, which
allows fixed storage to be allocated for each bit mask. The
runtime dynamically maps field allocations for a field space
onto indices in the bit mask, and frees up indices when fields
are deallocated. While this does place a restriction on the total
number of fields in a field space, it does not limit the total
number of fields in a program, as our implementation supports
an unbounded number of field spaces. Additionally, the upper
bound on fields can be programmer controlled, and increasing
the upper bound simply increases the cost of the dynamic non-
interference analysis.

By fixing an upper bound on the number of fields in a
field space, we can optimize the representation of the bits in
the bit mask. In the general case, bit masks are represented
with unsigned 64-bit integers. However, when the hardware
supports it, 128-bit SSE and 256-bit AVX vector data types
are used along with the corresponding vectorized instruction
for performing logical bit manipulation.

The fixed upper bound on the number of bits in a bit
mask also permits another important optimization. The most
common operations on bit masks are testing for disjointness,
intersection, and testing emptiness (e.g., whether any bits are
set. For cases where the upper bound on the number of
bits is large (e.g., more than a 1K bits, which is common
in S3D) all three of these operations can be accelerated by
maintaining a single 64-bit word summary mask that represents
the logical union of all 64-bit words in the bit mask. The test
for disjointness, intersection, and emptiness can be accelerated
by performing them on the summary masks first, and only
performing the full test if needed. These two-level bit masks
are extremely important for applications such as S3D where
the upper bound on the number of fields in a field space is
large, but most tasks only request privileges on a few fields.



C. Field-Aware Mapping

In addition to modifying the Legion runtime interface,
we also extend the original Legion mapping interface. The
original Legion mapping interface requires mappers to specify
on which processors tasks should be run and the memory in
which to place each physical instance of a requested logical
region. To support structure slicing, we also require mappers
to specify the layout of data in each physical instance using
the layout schemas described in Section III-C.

To support this feature, the Legion runtime stores addi-
tional meta-data for physical instances. In addition to tracking
the memory location for a physical instance and whether it
contains valid data, the Legion runtime also tracks which fields
contain valid data as well as the layout schema for the phys-
ical instance. To aid mappers in making intelligent mapping
decisions, this meta-data is also made available through the
mapping interface to allow mappers to know where current
instances reside and their data layout. Using this information,
mappers can either choose to use an existing physical instance
with a given data layout, or create a new instance and specify
the desired layout.

Supporting dynamically chosen data layouts challenges an
important principle of the Legion programming model. Legion
guarantees that mapping decisions cannot impact the correct-
ness of an application. To maintain this property, the runtime
provides generic accessor objects which introduce the neces-
sary level of indirection to mediate the reading and writing of
physical instances with arbitrarily chosen layouts. Accessors
come in two flavors: generic and specialized. Generic accessors
work for all layouts, while specialized accessors only work
for a subset of layouts. Applications can register multiple
functionally equivalent task variants using combinations of
generic and specialized accessors. The Legion runtime will
automatically select a specialized task variant if a compatible
one exists for the specified physical instances, or choose
a variant with generic accessors for handling arbitrary data
layouts if no specialized variant exists.

D. Field-Aware Data Movement

As part of its analysis, the Legion runtime tracks the
physical instances that contain valid data for each logical
region in a Legion program. To support structure slicing, we
extend our implementation of the Legion runtime to store
data specifically regarding which fields contain valid data in
each physical instance. At different times, different subsets
of the fields within an instance may contain valid data while
other fields are invalid. In the case when a mapper chooses
to re-use an existing physical instance, the Legion runtime
can automatically determine which fields contain valid data,
and which fields require copies to acquire valid data. As
mentioned in Section II, this knowledge permits Legion to
automatically perform copy elimination and determine when
data in individual fields within physical instances can safely
be reused by multiple tasks.

While Legion can easily infer the necessary copies between
physical instances, actually performing the copies is more
challenging. In our previous version of Legion, data movement
between physical instances could be performed by linear
copies of segments of memory [26]. By allowing physical
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instances to contain multiple fields and maintain different
data layouts for those fields, the problem of moving data
between physical instances is greatly complicated. For move-
ment between instances with the same layout, we can still use
linear copies, however, for movement between different layouts
additional logic is required for transforming data layout.

Fortunately, while the costs of these transformations are
relatively large in shared memory machines, they are small
compared to the cost of moving data in machines with hi-
erarchical memory. For example, the cost of moving data
over a PCI-E bus or between nodes will always be higher
than for transposing data. Since most data movement in high
performance Legion applications is between distinct memories,
the additional cost of transforming data layouts is minimal.

In practice, our field-aware version of the Legion runtime
fuses together both data movement and transformation within
its data movement pathways. Figure 4 shows several examples
of data movement pathways in Legion both within a node as
well as between nodes. To support these data movement path-
ways, Legion maintains temporary buffers that are registered
with various low-level programming APIs (e.g. uGNI, IBVerbs,
CUDA). The memory for these buffers is pinned to facilitate
direct access by the hardware DMA engines in both GPUs
and network interface cards (NICs). Legion explicitly gathers
and scatters data to and from these buffers to support bulk
data movement operations for higher performance. This is a
common, but tedious, optimization performed by hand in many
applications, and one that happens automatically in Legion.
Our Legion implementation further leverages the natural level
of indirection afforded by these gather and scatter operations
to automatically perform data transformation as part of data
movement, rendering the cost of transforming data between
physical instances with different layouts virtually free.

To perform the gather and scatter routines, we dedicate
a CPU core per node to act as a DMA engine. The DMA
core operates on a queue of requested data movement op-
erations and knows how to perform fast data movement
and transformation routines between all pairs of memories
in our system for various data set sizes. This includes the
use of fast, in-cache transpose routines and offloading data
movement operations to hardware DMA engines when possible
(e.g., using cudaMemcpy2D for gathering and scattering to
and from GPU framebuffer memory). While the decision to
dedicate an entire core on each node for DMA operations
may seem excessive, it is reasonable in an environment where
most applications, such as S3D, are dominated by the cost
of data movement. If current scaling trends continue, more



applications will fall into this category, likely precipitating
even more exotic hardware DMA engines for moving data. As
these new features become available, Legion is well positioned
to incorporate them in a way that is transparent to application
developers and will require no changes to existing Legion
application code.

V. PERFORMANCE EVALUATION

To evaluate the benefits of structure slicing, we consider
three Legion applications on two heterogeneous supercomput-
ing systems. In addition to examining both strong and weak
scaling scenarios, we use data made available by Legion’s
profiling tools to highlight several interesting points.

Two of our applications, Circuit and Fluid, are based on
the original Legion versions described in [6]. The third is
S3D, a production application [11]. There is no original Legion
version of S3D; we compare with existing vectorized Fortran
and OpenACC implementations.

We ran experiments on Keeneland [27] and Titan [4].
Both machines are high performance supercomputers with a
mix of x86 CPUs and NVIDIA GPUs. However, there is
a considerable difference between the computing power of
various processors within these machines. The Keeneland Full
Scale (KFS) system is an upgraded version of the machine used
for the original Legion experiments [6]. The CPUs have been
upgraded to 16-core Intel Sandy Bridge CPUs with support
for AVX instructions, and the Infiniband interconnect has been
upgraded from QDR to FDR. The three M2090 Fermi GPUs
were not upgraded, but make use of a faster PCI-Express bus.

Titan is a larger system with over 18,000 nodes. Each node
has an AMD Interlagos CPU with 16 first-generation Bulldozer
cores, which perform poorly compared to the Sandy Bridge
cores on Keeneland. Each Titan node does possess a single
Kepler K20X GPU with nearly equivalent performance to all
three M2090 GPUs on a Keeneland node. Titan is connected
by a Cray Gemini interconnect with a 3D torus topology.

As evidenced by these two machines, heterogeneity is often
present in more than just processor kinds. By having compo-
nents from different technology generations, there are different
ratios between compute throughput of different processors. On
Keeneland, CPU and GPU throughput is evenly matched, while
on Titan there is a severe imbalance. As we will see, these
differences necessitate exploring different mapping strategies
on each architecture.

A. Circuit

The first Legion application we examine is Circuit, which
simulates the behavior of an electrical circuit, defined as
an arbitrary mesh in which edges are electronic components
and nodes are the points at which they connect. We have
two versions: a field-aware version and a baseline version
that differs only in using a single field for entire structures,
eliminating any benefit from structure slicing.

The performance of the Circuit application was measured
on both Keeneland and Titan and is shown in Figure 5. The size
of the circuit being simulated is kept constant as the number of
nodes is increased to demonstrate strong scaling. Several of the
leaf computation tasks in the application have been optimized
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compared to the version that was tested in [6]. While this
greatly improved single-node performance, the reduction in
computation time increases the relative cost of Legion runtime
and communication overhead, which is visible in the relatively
poor strong scaling of the baseline, especially on Titan. There
is no task parallelism to make use of in Circuit, but structure
slicing is able to reduce the network traffic by only sending
fields that are needed or have been updated by another task,
and allows the use of the GPU-preferred SOA layout of data.
This results in performance improvements of up to 19% on
Keeneland and 257% on Titan, which is much more sensitive
to data layout.

B. Fluid

Fluid is a Legion port of the fluidanimate simulation
from the PARSEC [5] suite. Although the original PARSEC
version of Fluid was designed for a single node, the original
Legion version achieves modest performance improvements
and scaling on multiple nodes by replacing the fine-grain
mutexes used in the PARSEC implementation with coarser-
grain scheduling using logical regions [6].

A single simulation time step in Fluid consists of four
phases. For both the original Legion version of Fluid and
the new structure slicing version, Figure 6 shows the working
set and the amount of network traffic between each of the
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four phases: initialize cells (IC), rebuild reduce (RR), scatter
densities (SD), and gather forces (GF). Structure slicing allows
the Legion runtime to reduce working sets by 27-80% and the
total network traffic per time step by 59%.

The relatively small problem sizes used in this benchmark
present an interesting challenge. For multi-node runs, com-
munication costs quickly dominate execution. The reduction
in bytes of network traffic required due to structure slicing
helps, but only if the data layout is one that can be efficiently
transferred by the NIC. A structure-of-arrays (SOA) layout
addresses this problem, while an array-of-structures (AOS)
layout results in many sparse transfers for individual fields.
However, an AOS layout can yield higher performance for
CPU tasks if the working set fits in the CPU’s cache.

There is therefore a tension between the SOA layout
preferred by the NIC and the AOS layout preferred by the
CPU. In existing programming models, the programmer would
be forced to hard code a single decision into the source. The
Legion mapping interface solves this problem by permitting
experimentation with multiple different mapping strategies in
order to select the best one. We try three different strategies
for laying out physical instances: all AOS, all SOA, and a
mixed strategy that uses AOS layout for instances local to a
node while using SOA for instances shared between nodes.
Figures 7 and 8 show performance results for each of these
three strategies on Titan on two different problem sizes. For
the small problem size, the mixed mapping strategy works best
by matching AOS performance on a single node (where no
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data is shared) and exceeding the SOA-based performance for
larger node counts. On the larger problem size, data no longer
fits in cache and therefore the full SOA mapping strategy
performs best. In contrast, the volume of sparse inter-node
transfers that result from the AOS mapping strategy can no
longer be handled by the runtime’s data layout transformation
buffers, and the performance of AOS drops precipitously. The
Legion mapping interface makes it possible to explore the
tradeoffs inherent in mapping decisions seamlessly with no
code modifications to find the optimal performance points.

C. Non-Interference Tests

As described in Section IV, there are three dimensions to
non-interference tests in Legion. We now provide empirical
evidence for our chosen ordering of these tests. Figure 9 shows
decision diagrams for potential orderings of non-interference
dimensions tests for each application. At each node, we show
the percentage of all non-interference tests that would succeed
with that subset of the tests. The percentage at the end shows
the overall percentage of non-interference tests that succeed
for a given application.

The goal is to minimize the overall cost of the tests, which
favors the early use of cheaper and/or more effective tests.
Although there is considerable variability between applica-
tions, region non-interference is the most effective test overall.
As discussed in Section IV-B, the Legion runtime’s region
tree data structure makes this test inexpensive, and it is the
clear choice for the first test. The combination of fast bit-
mask tests with the benefit of finding significant parallelism in
applications with many fields such as S3D justifies performing
field non-interference second. Finally, the more expensive
privilege non-interference test is placed last to minimize the
number of invocations.
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D. S3D

The final Legion application we use in our evaluation is a
Legion port of S3D [11], a production combustion simulation
code initially written in more than 200K lines of Fortran. We
compare against two versions of S3D: a CPU-only version and
an improved hybrid version from [19] that uses OpenACC.

In practice, the S3D algorithm was designed for weak
scaling to support higher fidelity simulations when running on
larger machines. In these experiments, we demonstrate weak
scaling by holding the problem size per node constant (at
either 483, 643, or 963 grid points per node) as we scale
out to larger node counts. Our graphs show the throughput
per node averaged over 100 time steps, with a flat line
representing perfect weak scaling. We show results for two
different chemical mechanisms: DME and heptane. Results for
the DME mechanism are in Figure 10(a) for Keeneland and
Figure 10(b) for Titan, while the heptane mechanism results
are in Figures 11(a) for Keeneland and 11(b) for Titan.

S3D consists of hundreds of Legion tasks that are launched
every time step. The most obvious challenge is discovering the
best way to map all of these tasks onto the available processors
for both Titan and Keeneland. To address this problem, we
developed several Legion mappers that support various map-
ping strategies designed to both balance work and minimize
data movement. The two most successful mappers are a mixed
mapping strategy that balances work between CPUs and GPUs,

and a GPU-centric mapping strategy that keeps most work
on GPU processors to minimize data movement between the
system and framebuffer memories over the PCI-Express bus.

On Keeneland, the Legion version of S3D ranges from
marginally faster than the AVX-vectorized Fortran version for
the smallest problem size on the smaller DME mechanism to
up to 3.06X faster for the largest problem size on the larger
heptane mechanism. The variability is due to the bottleneck of
the PCI-Express connections between the GPUs and the CPUs
and the corresponding changes in the mapping strategy used
in the Legion implementation. For the smallest problem, the
optimal mapping is to place all work on a single GPU and
avoid the latency cost of moving data across the PCI-Express
bus. A Sandy Bridge CPU and a Fermi M2090 are roughly
equal in their achievable double-precision performance, so
parity in S3D performance is expected. For larger problems,
the latency of PCI-Express transfers can be better hidden, and
mapping strategies that spread work across multiple GPUs and
the CPU cores results in significant improvement compared to
the CPU-only Fortran implementation.

The results are much different on Titan, due to the extreme
disparity in floating-point capability between the K20X GPU
and the Bulldozer CPU cores. For the 483 and 643 problem
sizes, where the GPU-centric mapping strategy is possible, the
Legion implementation outperforms the CPU-only Fortran im-
plementation by factors up to 3.54X for the DME mechanism
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and 3.68X for the heptane mechanism. For the 963 problem
sizes, the GPU’s limited memory capacity forces a mixed
mapping strategy that uses both CPU cores and the GPU. The
structure slicing implementation of Legion automatically infers
that only a subset of fields need to be moved to the GPU
allowing the working set to fit in the constrained framebuffer
memory. The overall performance is greatly reduced due to
the significantly slower Bulldozer cores, but still exceeds the
CPU-only Fortran implementation by up to 1.94X for the DME
mechanism and 2.10X for the heptane mechanism.

The speedup of the Legion implementation compared to
the OpenACC implementation on Titan is between 31-88%
for the 483 and 643 problem sizes and can be attributed to
two factors. First, the Legion implementation is able to use
the computational power of both the Bulldozer cores and the
K20X GPU, whereas the OpenACC code in many cases leaves
the CPU cores idle while performing work solely on the GPU.
Second, the latency of transferring data between the GPU’s
memory and the main system memory can be significant.
The extra task and data movement parallelism discovered by
structure slicing enables Legion to run tasks on the GPU for
some fields while data transfers for other fields are in progress.
No comparison is possible for the 963 problem size. The
OpenACC version cannot fit the necessary data in the GPU’s
framebuffer memory, and modifying it to employ an alternate
mapping strategy that uses the CPU as well would involve
significant code refactoring.

The weak scaling of the Legion implementation is also
better than both the Fortran and OpenACC versions. Fig-
ures 12(a) and 12(b) show the parallel efficiency of the
DME and heptane mechanisms respectively at 1024 nodes. As
expected, in all cases parallel efficiency increases with both
larger problem sizes and larger mechanisms (recall heptane
simulates 52 chemical species while DME simulates only 30
species). Both larger problem sizes and larger mechanisms
provide additional work which can be used to better hide
communication latencies. Not surprisingly, Legion confers the
largest performance gains at scale relative to Fortran and
OpenACC on the smallest problem size (483 DME) because
structure slicing enables Legion to discover additional work
and better hide communication latencies with computation.

VI. RELATED WORK

We briefly survey work related to structure slicing. First,
there is a long history of two-dimensional views of data
in relational databases [13]. The concurrent processing of
transactions over two-dimensional relations relies on signifi-
cant parallelism across rows [16], which corresponds to data
parallelism. More recently, there has been considerable interest
in column-oriented databases [23]. We are unaware of any
concurrent transactional systems that leverage both field- and
column-level parallelism for performance.

Structure slicing is loosely related to a common technique
for achieving high performance in shared memory applications.
Under heavy lock contention, programmers routinely turn to
fine-grained locking techniques that assign locks to individual
fields in data structures. The burden of the implementation
of such a locking scheme falls entirely on the programmer
with no help from the programming system and minimal tool
support [22]. Structure slicing makes extracting parallelism
on individual fields explicit and furthermore operates over
distributed memory architectures.

Dynamic Parallel Java (DPJ) uses static region annotations
on data structures to help identify parallelism in Java applica-
tions [7]. Although these annotations can be applied to fields in
Java classes, they pertain to the objects pointed to by the field
contents, rather than the fields themselves. In Legion structure
slicing, privileges apply directly to the fields being accessed,
supporting task parallelism between tasks accessing different
fields of the same object.

The analysis performed for loop fission optimizations in
many Fortran compilers [20] has similarities to structure slic-
ing. This analysis relies both on the prohibition of aliasing of
normal Fortran arrays and on the Fortran idiom of expressing
arrays of complex data structures as separate arrays for each
field. This can result in issues with memory locality for tasks
that operate on many fields at a time. Structure slicing extracts
task parallelism between fields without destroying locality and
without restrictions on the data collections.

Several recent efforts [8, 10, 12, 21, 24] have taken
advantage of the substructure of objects in arrays to change the
layout of the data in memory to better match the different types
of processors in a heterogeneous system, such as converting
from an array-of-structs to a struct-of-arrays or transposing the
contents of arrays. However, all require some changes to the
application code and commit to a layout decision at compile
time. By decoupling of the layout decision from the application
code and allowing the decision itself to be made at run time
Legion enables the layout to be optimized even when the right
answer is data- or system-dependent or when it is impractical
to generate code for all possible cases at compile time.

VII. DISCUSSION AND CONCLUSION

The incorporation of structure slicing into the Legion pro-
gramming model generalizes the logical region abstraction and
allows it to encode a wider range of potential data structures.
In many ways logical regions with structure slicing share the
same properties as relations from the database literature, albeit
without supporting the full cast of relational algebra operators.
Structure slicing of logical regions on fields is similar to the
projection (π) operation while partitioning logical regions into
sub-regions is analogous to the selection (ρ) operation. Rela-
tions have been shown to be a useful abstraction for describing
a wide array of data structures [17] and emulating them will



allow logical regions to handle the growing complexity of data
structures and data decomposition patterns required by modern
supercomputing applications.

The addition of structure slicing to logical regions has
also opened up data layout as a new design dimension to
be considered when writing Legion applications. Most im-
portantly, the Legion programming model encapsulates data
layout decisions within the mapper interface, ensuring that
Legion applications remain portable. As hardware becomes
increasingly heterogeneous and data movement costs continue
to escalate, we anticipate seeing additional hardware support
for data layout including programmable DMA engines and
processors specialized for specific layouts. By abstracting data
layout with logical regions and structure slicing, Legion codes
are well positioned to be easily ported to and optimized for
new hardware via different mapping strategies.

We have presented structure slicing, a general technique
for extracting field-level task parallelism from applications
that use structures with many fields. The task parallelism
discovered by structure slicing composes well with the existing
abstractions in Legion and better enables programmers to
leverage the heterogeneous processors and hierarchical mem-
ories on existing supercomputers. To illustrate the benefits
of structure slicing, we have ported several applications and
shown significant performance improvements over optimized
Fortran and OpenACC codes on heterogeneous architectures.
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