
Language Support for Dynamic, Hierarchical Data Partitioning

Sean Treichler
Stanford University
sjt@cs.stanford.edu

Michael Bauer
Stanford University

mebauer@cs.stanford.edu

Alex Aiken
Stanford University

aiken@cs.stanford.edu

Abstract
Applications written for distributed-memory parallel archi-
tectures must partition their data to enable parallel execu-
tion. As memory hierarchies become deeper, it is increas-
ingly necessary that the data partitioning also be hierarchical
to match. Current language proposals perform this hierarchi-
cal partitioning statically, which excludes many important
applications where the appropriate partitioning is itself data
dependent and so must be computed dynamically. We de-
scribe Legion, a region-based programming system, where
each region may be partitioned into subregions. Partitions
are computed dynamically and are fully programmable. The
division of data need not be disjoint and subregions of a re-
gion may overlap, or alias one another. Computations use
regions with certain privileges (e.g., expressing that a com-
putation uses a region read-only) and data coherence (e.g.,
expressing that the computation need only be atomic with
respect to other operations on the region), which can be con-
trolled on a per-region (or subregion) basis.

We present the novel aspects of the Legion design, in par-
ticular the combination of static and dynamic checks used to
enforce soundness. We give an extended example illustrating
how Legion can express computations with dynamically de-
termined relationships between computations and data parti-
tions. We prove the soundness of Legion’s type system, and
show Legion type checking improves performance by up to
71% by eliding provably safe memory checks. In particu-
lar, we show that the dynamic checks to detect aliasing at
runtime at the region granularity have negligible overhead.
We report results for three real-world applications running
on distributed memory machines, achieving up to 62.5X
speedup on 96 GPUs on the Keeneland supercomputer.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
OOPSLA ’13, October 29–31, 2013, Indianapolis, Indiana, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2374-1/13/10. . . $15.00.
http://dx.doi.org/10.1145/2509136.2509545

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming; D.3.1 [Program-
ming Languages]: Formal Definitions and Theory; F.3.2
[Logics and Meanings of Programs]: Semantics of Program-
ming Languages

Keywords Legion; regions; type system; independence;
aliasing; hierarchical scheduling; data partitioning; coher-
ence

1. Introduction
In the last decade machine architecture, particularly at the
high performance end of the spectrum, has undergone a rev-
olution. The latest supercomputers are now composed of het-
erogeneous processors and deep memory hierarchies. Cur-
rent programming systems for these machines have elabo-
rate features for describing parallelism, but few abstractions
for describing the organization of data. However, having the
data organized correctly within the machine is becoming
ever more important. Current supercomputers have at least
six levels of memory, most of which are explicitly man-
aged by software; even current commodity desktop and mo-
bile computers have at least five levels.1 As machines of all
scales increase the number of processing cores and quantity
of available memory, the latency between system compo-
nents inevitably increases. For many applications the place-
ment and movement of data is already the dominant perfor-
mance consideration, particularly in high-end machines, and
this problem will only grow more acute as overall transistor
counts and latencies in future machines increase while the
total power budget remains relatively constant.

To program parallel machines with distributed memory
(hierarchically organized or not), data must be partitioned
into subsets that are placed in the individual memories. For
example, in graph computations it is common to subdivide
the graph into subgraphs sized to fit in fast memory close
to a processor. Note that the term partition does not imply
the subdivisions of the data are always disjoint—it is desir-

1 A typical organization is (1) distributed memory across a physical network
of nodes; (2) shared RAM on chip; (3) one to three levels of cache for
each CPU, some shared, some not; (4) GPU global memory; (5) GPU
shared memory; (6) GPU registers. Only the CPU caches are managed
by hardware and only the global network is not present in commodity
consumer machines.

able to also allow subdivisions that overlap or alias. Con-
tinuing with the example, many graph computations require
knowledge of the nodes bordering each subgraph. Some of
these ghost nodes for a particular subgraph may also bor-
der other subgraphs. In general, the ghost nodes for different
subgraphs often alias.

In machines with more than two levels of explicitly man-
aged memory, data partitioning involves a hierarchy where
the initial partitions of the data are themselves further parti-
tioned. Often divide-and-conquer strategies repeatedly sub-
divide the data so that the finest granularity fits in the small-
est, fastest memory closest to a processor where a specific
computation can access it, which results in complex commu-
nication patterns as coarser and finer sets of data are shuffled
up and down the memory hierarchy [10]. Thus, the place-
ment and movement of data, and subsets of data, is a first-
order programming concern. We adopt a region-based ap-
proach that makes these groupings of data explicit in the pro-
gram: a logical region names a set of data, a subregion of a
logical region names a subset of a logical region’s data, and
a partitioning of a logical region r names a number of (pos-
sibly overlapping) subregions of r. We use the term logical
region (which we sometimes abbreviate to region) to empha-
size that our language-level regions do not imply a physical
layout or placement of the logical region’s data in the mem-
ory hierarchy. Logical regions are just sets of elements and
a subregion is literally a subset of its parent region.2

By making the groupings of data into regions explicit, it
becomes possible for the programmer to express properties
of the different regions in a program and for the language
system to leverage this information for both performance
and correctness in ways that would be difficult to infer with-
out the programmer’s guidance. In addition to partitioning
regions into subregions, we focus on three properties that
Legion programmers can express about regions:

• Privileges. Computations have privileges specifying how
they can use regions: read-only, read-write, and reduce.
More computations can execute in parallel using privi-
leges than without. For example, regions that alias can
still be accessed simultaneously by multiple parallel
computations provided that the computations all access
the regions with read-only privileges, or all access the
regions to perform reductions using the same associative
and commutative reduction operator.
• Coherence. Computations are written in a sequential pro-

gram order. By default all computations access regions
with exclusive coherence, which ensures the compu-
tations appear to execute in the sequential order, per-

2 A separate system of physical regions hold concrete copies of the data
of logical regions at run-time. Physical regions have a specific data layout
and live in a specific memory. The Legion run-time system may maintain
multiple physical copies of a single logical region for performance reasons;
for example, read-only may be replicated in multiple physical regions to put
it closer to the computations that use it.

mitting parallelism only when computations access dis-
joint regions or have non-interfering privileges. However,
computations can also request relaxed coherence modes
atomic and simultaneous on regions. Relaxed coherence
modes allow reordering and parallel execution of com-
putations that otherwise would execute sequentially due
to accessing aliased sets of regions. For example, two
computations each requesting atomic coherence on the
same region may be re-ordered with respect to the se-
quential execution order so long as their accesses are
serializable. Simultaneous coherence imposes no restric-
tions on other computations’ access to a region; one in-
stance where simultaneous access is useful is when a
programmer has implemented his own, higher-level syn-
chronization mechanism.
• Aliasing. As outlined above, regions can be partitioned

into subregions that may be disjoint or may overlap. De-
tecting region aliasing is necessary to identify computa-
tions that can run in parallel. A central insight of our ap-
proach is that detecting region aliasing is both easy and
inexpensive when done dynamically at the granularity of
logical regions instead of individual memory locations.

Previous work on hierarchically partitioned data has fo-
cused on fully static approaches with no runtime overhead.
A key feature of these systems is that they disallow all alias-
ing to make their static analyses tractable. Two recent ex-
amples, Sequoia [10] and Deterministic Parallel Java (DPJ)
[4], each provide a mechanism to statically partition the heap
into a tree of collections of data. The two designs are dif-
ferent in many aspects, but agree that there is a single tree-
shaped partitioning of data that must be checked statically
(see Section 10). Both approaches also include a system of
privileges, but have either no or limited coherence systems.

Our own experience writing high-performance applica-
tions in Sequoia [10] as well as in the current industry stan-
dard mix of MPI, shared-memory threads, and CUDA has
taught us that a fully static system is insufficient. In many
cases, the best way to partition data is a function of the
data itself—the partitions must be dynamically computed
and cannot be statically described. Furthermore, applications
often need multiple, simultaneous partitions of the same
data—a single partitioning is not enough. Because data par-
titioning is at the center of what these applications do, shift-
ing from fully static partitions to partitions computed at run-
time affects all aspects of the programming model, and in
particular the interactions between aliasing, privileges, and
coherence. The challenge is to design a system that is both
semantically sound and flexible in handling partitions, priv-
ileges and coherence with minimal runtime overhead.

In this paper, we present static and dynamic semantics for
Legion [2], a parallel programming model that supports mul-
tiple, dynamic data partitions and is able to efficiently reason
about aliasing, privileges, and coherence. Specifically:

• Legion’s logical regions are first-class values and may be
dynamically allocated and stored in data structures.
• Logical regions can be dynamically partitioned into sub-

regions; partitions are fully programmable.
• A logical region may be dynamically partitioned in mul-

tiple different ways; subregions from multiple partitions
may include the same data.
• For each computation, privileges and coherence modes

are specified on a per-region basis, giving the program-
mer fine-grained control over how data is accessed.

We make the following specific contributions:

• We present a type system for Core Legion programs that
statically verifies the safety of individual pointers and
region privileges at call boundaries (Section 4).
• We present a novel parallel operational semantics for

Core Legion. This semantics is compositional, hierarchi-
cal, and asynchronous, reflecting the way such programs
actually execute on the hardware (Section 5.3).
• We prove the soundness of Legion’s static type and priv-

ilege system (Section 6). In particular, we show that Le-
gion’s very liberal dynamic manipulations of regions can
be handled with a combination of static and inexpensive
dynamic checks.
• Using the soundness of the type system, we show that

if expressions e1 and e2 are non-interfering (can be ex-
ecuted in parallel), then subexpressions e′1 of e1 and e′2
of e2 are also non-interfering (Section 8). This result is
the basis for Legion’s hierarchical, distributed scheduler,
which is crucial for high performance on the target class
of machines. We note that no other parallel language or
runtime system currently supports distributed scheduling.
• We give experimental evidence that supports the Le-

gion design choices. On three real-world applications,
we show that dynamic region pointer checks would be
expensive, justifying checking this aspect of the type
system statically. We also show that the cost of region
aliasing checks is low, showing that an expressive and
dynamic language with aliasing is compatible with both
high performance and safety (Section 9).

2. Circuit Example
We begin by introducing a circuit simulation written in the
Legion programming model that serves as a running exam-
ple throughout the remainder of the paper. In this section we
describe how the requirements of the simulation motivate the
novel features of Legion. Section 3 introduces the Core Le-
gion language by showing examples of code from the circuit
simulation.

The circuit simulation takes as input an arbitrary graph
of circuit elements (wires and nodes where the wires con-
nect) represented by the two logical regions all nodes

all_nodes

rn0

*
rn1

rnn rg0 rg1 rgn

(a) Node region tree.

rn0 rn1

rnn

(b) Circuit piece coloring.

(c) Ghost rg0 coloring. (d) Ghost rg1 coloring.

Figure 1. Partitions of the all nodes region.

and all wires. The simulation iterates for many time
steps, performing three computations during each time
step: calc new currents, distribute charge, and fi-
nally update voltage. For these computations to be run
in parallel, the regions representing the graph must be par-
titioned into pieces that match the simulation’s data access
patterns. The choice of partitioning will ultimately dictate
performance and is therefore the most important decision in
any Legion program.

An ideal partitioning depends on many factors, includ-
ing the shape of data structures, the input, and the desired
number of partitions (which usually varies with the target
machine). Due to the multitude of factors that can influence
partitioning, a critical design decision made in Legion is to
provide a programmable interface whereby the application
can compute a partitioning dynamically and communicate
that partitioning to the Legion runtime system. This design
absolves the Legion implementation of the responsibility for
computing an ideal partition for all regions across all appli-
cations on any potential architecture. Instead, our approach
provides the application with direct control over all parti-
tioning decisions that ultimately impact performance.

In Legion, partitioning takes place in two steps. First, the
programmer assigns a color to each element of the region to
be partitioned. The number of colors and how they are as-
signed to elements can be the result of an arbitrary computa-
tion, giving the programmer complete control over the col-
oring. Second, Legion creates new subregions, one for each
color, with each region element assigned to the subregion
of the appropriate color. Thus, the programmer expresses
the desired partitioning of a region, and Legion provides the
mechanism to carry out the programmer’s directions.

To efficiently support the circuit simulation’s access pat-
terns, the region all nodes holding all the nodes of the
graph is partitioned in two different ways. The desired region
tree is shown in Figure 1(a). First, there are subregions of

T ::= types bv ::= false | true
| bool | int base types
| 〈T1, . . . , Tn〉 tuple iv ::= 0 | 1 . . .
| T@(r1, . . . , rn) pointer
| coloring(r) region coloring e ::= expressions
| ∃r1, . . . , rn.T where Ω region relationship | bv | iv constants
| ∀r1, . . . , rn.(T1, . . . , Tn),Φ, Q→ Tr functions | 〈e1, . . . , en〉 | e.1 | e.2 | . . . tuple

| id
Ω ::= {ω1, . . . , ωn} region constraints | new T@r | null T@r | isnull(e)
ω ::= r1 ≤ r2 subregion | upregion(e, r1, . . . , rn)

| r1 ∗ r2 disjointness | downregion(e, r1, . . . , rn)
| read(e1) | write(e1, e2) memory access

Φ ::= {φ1, . . . , φn} privileges | reduce(id, e1, e2)
φ ::= reads(r) | writes(r) | reducesid(r) | newcolor r | color(e1, e2, e3) coloring

| e1 + e2 integer ops
Q ::= {q1, . . . , qn} coherence modes | e1 < e2 comparisons
q ::= atomic(r) | simult(r) | let id : T = e1in e2

| if e1 then e2 else e3

v ::= values | id[r1, . . . , rn](e1, . . . , en) function calls
| bv | iv base values | partition rp using e1 as r1, . . . , rn in e2

| 〈v1, v2〉 tuple | pack e1 as T [r1, . . . , rn]
| null | l memory location | unpack e1 as id : T [r1, . . . , rn] in e2

| {(l, iv), . . .} coloring
| 〈〈ρ1, . . . , ρn, v〉〉 reg. relation instance

Figure 2. Core Legion

all nodes that describe the set of nodes “owned” by each
piece, called rn0, rn1, Since each node is in one piece,
this partition is disjoint, which is indicated by a ∗ on the left
subtree. Figure 1(b) shows one possible partitioning along
with the necessary coloring to generate the disjoint partition
in Figure 1(a). Second, each piece of the circuit needs ac-
cess to the ghost nodes on its border. The ghost nodes for
two circuit pieces are shown in Figures 1(c) and 1(d); note
that two nodes are in both sets. Because a node may neigh-
bor more than one other circuit piece, this second partition of
all nodes is aliased. Thus, there are two sources of alias-
ing in the region tree: the two distinct partitions divide the
all nodes region in different ways, and the ghost node sub-
regions are not disjoint.

There are two alternative approaches to using multiple
partitions for the circuit simulation, both of which avoid
introducing aliasing. We could create a single partition with
2n subregions, one for each possible case of sharing, or
computations on each piece could use the all nodes region
to access their ghost nodes. Neither option is attractive: the
former significantly complicates programming and the latter
greatly overestimates the required ghost nodes, increasing
runtime data movement as well as limiting parallelism.

For simplicity this example has only one level of parti-
tioning (although in two different ways). All the semantic
issues that concern the results of this paper can be illustrated
with one level of partitioning. In general, however, the region
tree can have many levels, as subregions are themselves par-
titioned, perhaps also in multiple ways. Typically, the num-
ber of levels and size of partitions depends on both the data

and the memory hierarchy of the target machine, allowing
regions to be placed in levels of memory where they fit [2].

Because data is partitioned dynamically in arbitrary ways
and because these partitions may not be disjoint, parallelism
is necessarily detected dynamically in Legion. Functions
that the Legion runtime considers for parallel execution are
called tasks. Tasks are required to specify the regions that
they access as well as the task’s privileges and coherence
modes on each region; the type system introduced in Sec-
tion 4 verifies that Legion tasks abide by their declared re-
gion access privileges. The partitioning of the data, task re-
gion privileges, and task coherence modes all contribute to
determining which tasks can be executed in parallel.

The Legion task scheduler considers task calls in sequen-
tial program execution order. If a task’s region accesses do
not conflict with a previously issued task, the task can be
launched as a parallel task, otherwise it is serialized with all
of its conflicting tasks. One of our main results is a sufficient
condition for deciding that two tasks do not interfere on their
region arguments and can be executed in parallel (Section 7).
Subtasks may also be launched within tasks, giving nested
parallelism. A second result allows even the scheduling de-
cisions to be made in parallel, so that scheduling does not
become a serial bottleneck (Section 8).

3. Core Legion
In this paper, we work with Core Legion, a subset of the
full Legion language introduced in [2]. Although equally
expressive, Core Legion trades programmer convenience for
a reduction in the number of constructs, simplifying the

proofs that follow. We illustrate Core Legion programming
through snippets from the circuit simulation. The full Core
Legion program for the circuit simulation is in Appendix A.
(Line numbers in the code snippets can be used to locate
them in the full program.)

Figure 2 defines Core Legion syntax. The basic types
include booleans, integers, tuples, and pointers. In addition
to specifying the type of the value they point to, pointer
types in Legion are annotated with one or more logical
regions; any non-null pointer value must point to a location
that is contained in at least one of the regions. Pointers are
created by using the new expression to allocate space within
a specified region and may be tested for validity with the
isnull expression.

To help address the proliferation of types that vary only
in their regions, the Core Legion compiler supports type dec-
larations parameterized on logical region names, which are
expanded into the syntax of Figure 2 before any analysis is
performed. For clarity and conciseness we present the ex-
amples using parameterized types, but we omit the transla-
tion step to monomorphic Core Legion types, which is com-
pletely standard.

The following code snippet shows the types used to de-
scribe the nodes and wires in a circuit. The CircuitWire

is parameterized on two regions, with rn intended to be the
region of nodes owned by a piece of the circuit, and rg the
region of that piece’s ghost nodes. An edge has two node
endpoints, one of which is in the piece and the other which
may be either in the piece or a ghost node—i.e., the edge
is either entirely within the piece or crosses a boundary into
another piece.

1 −− 〈voltage,current,charge,capacitance,piece ID〉
2 type CircuitNode = 〈int,int,int,int,int〉
3 −− 〈 owned node, owned or ghost node, resistance, current〉
4 type CircuitWire〈rn,rg〉 = 〈CircuitNode@rn, CircuitNode@(rn,rg),int,int〉

Core Legion is an expression language, using let expres-
sions to define local variables. Pointers are manipulated us-
ing explicit read, write, and reduce expressions as shown
here:

95 −− update voltage on a node
96 let node : CircuitNode = read(node ptr) in
97 let voltage : int = (node.3 / node.4) in
98 let new node : CircuitNode = 〈 voltage, node.2, node.3, node.4, node.5 〉 in
99 write(node ptr, new node)

As described in Section 2, deciding how to partition re-
gions is left to the application. In the circuit simulation we
use METIS[14], a standard graph-partitioning library. Be-
cause we need a way to iterate over all the nodes and wires,
we define (parameterized) types for lists of nodes and wires
and then give a prototype for the actual METIS function:

6 type NodeList〈rl,rn〉 = 〈 CircuitNode@rn, NodeList〈rl,rn〉@rl 〉
7 type WireList〈rl,rw,rn,rg〉= 〈 CircuitWire〈rn,rg〉@rw, WireList〈rl,rw,rn,rg〉@rl 〉
8 function extern metis[rl,rn,rw](node list : NodeList〈rl,rn〉@rl,
9 wires list : WireList〈rl,rw,rn,rn〉@rl), reads(rl,rn,rw), writes(rn) : bool

METIS records how the graph is to be partitioned by
annotating each CircuitNode with a piece ID. Note that

both list types use a second region parameter to allow the
spine of the list to be in a region different than the region
where the nodes or wires themselves are placed. There are no
global region names in Legion, so functions must be region-
polymorphic, with all region names used in the function’s
prototype being implicitly universally quantified. In addition
to giving names and types of formal parameters and the
type of the return value, a Legion function also declares the
necessary access privileges. In this case, all three regions are
read by extern metis, but only the rn region is written
(since it contains the piece IDs). A function can be called
only if the caller possesses all the privileges needed by the
called function.

Once an application has decided how it wants to parti-
tion a region, that information must be provided to the Le-
gion runtime. This is achieved through the use of an ob-
ject of a special coloring type, which maps locations within
a specified region to “colors”. (Core Legion uses integers
for colors.) A coloring is created by the newcolor expres-
sion, and the mapping is updated by the color expression.
The following code snippet shows how the coloring for the
“owned nodes” partition is generated. Similar code for the
ghost nodes partition and wires can be found in Appendix A.
The full Legion language includes a multicoloring type to
conveniently describe aliased partitions. In Core Legion, a
multicoloring and the corresponding partitioning operation
are implemented by performing a separate coloring and par-
tition for each aliased subregion, which soundly captures the
aliased nature of a multicoloring.

109 function owned node coloring[rl,rn] (node list: NodeList〈rl,rn〉@rl),
110 reads(rl,rn) : coloring(rn) =
111 if isnull(node list) then
112 newcolor rn
113 else −− tuple fields accessed by .(field number)
114 let list elem : NodeList〈rl,rn〉 = read(node list) in
115 let part coloring : coloring(rn) = owned node coloring[rl,rn](list elem.2) in
116 let node ptr : CircuitNode@rn = list elem.1 in
117 let node : CircuitNode = read(node ptr) in
118 let piece id from metis: int = node.5 in
119 color(part coloring, node ptr, piece id from metis)

Once a coloring has been created, it may be used in
a partition expression, which gives local names to the
subregions corresponding to each color used.

27 let owned node map : coloring(rn) = owned node coloring[rl,rn](all nodes) in
33 partition rn using owned node map as rn0,rn1 in

At run time, the partition operation extends the region tree
(recall Figure 1(a)) maintained by the Legion runtime; this
data structure, which includes all the allocated dynamic re-
gions and their parent-child relationships, is used to decide
whether computations can run in parallel based on what re-
gions they access and with what privileges[2]. At compile
time, the partition operation introduces constraints into the
static type environment describing both the disjointness of
subregions (e.g., rn0 ∗ rn1) and the subregion relation-
ships (e.g., rn0 ≤ all nodes).

Because subregions are entirely included in the orig-
inal parent region, there is a subtyping-like relationship

between a pointer-into-a-subregion and a pointer-into-the-
parent-region. However, Core Legion provides no automatic
conversions between pointer types. A pointer into a subre-
gion may be “upcast” to a pointer to a parent region via
the explicit upregion expression, which statically verifies
the subregion relationship. The corresponding “downcast”
is available via the downregion expression, which must
perform a run-time check that the pointer does point into
the specified subregion. (If it does not, the pointer value is
replaced by null, which is defined to exist in all regions.)

Regions are first-class entities and may be stored in the
heap. This feature is important in many applications; for ex-
ample, in a simple work list algorithm the work list may be
a queue of regions to be processed. When a region is stored
into the heap, however, it escapes the scope of the enclosing
partition expressions and the region’s relationships to other
regions (whether it is a subregion or disjoint from another re-
gion) are forgotten. To allow these facts to be retained across
heap reads and writes of values containing regions, Core
Legion has region relationships. A region relationship is a
bounded existential type that allows a programmer to pack
one or more regions, a value (whose type may include those
regions), and subregion or disjointness constraints, together.
The example region relationship below for a CircuitPiece
involves its region of wires rpw, region of nodes rpn, region
of ghost nodes rg, and important constraints. Note that the
names of rpw, rpn, and rg are bound in the region rela-
tionship, and the knowledge that they are subregions of free
region names rw and rn is captured in the constraints.

11 type CircuitPiece〈rl,rw,rn〉 = rr[rpw,rpn,rg]
12 〈WireList〈rl,rpw,rpn,rg〉@rl, NodeList〈rl,rpn〉@rl 〉
13 where rpn≤ rn and rg≤ rn and rpw≤ rw and
14 rn ∗ rw and rl ∗ rn and rl ∗ rw

The Core Legion type system statically verifies the cor-
rectness of region relationships as part of a pack expression.
The regions and constraints bound in a region relationship
can be reintroduced (with fresh names) within the body of
an unpack expression. In the circuit simulation given in Ap-
pendix A, region relationships are mostly a convenience, al-
lowing the programmer to give a name to a collection of
regions and constraints that results in simpler function in-
terfaces. However, in a version of the circuit simulation that
partitions the graph into many more than two pieces having
a data structure that stores all the pieces with their associated
ghost regions is essential.

In contrast to disjointness and subregion constraints, re-
gion access privileges cannot be captured in a region rela-
tionship. A function inherits a subset of the privileges of its
caller, and thus privileges belong to functions. This is a key
requirement for soundness of the Legion type system that
we return to in Section 4. When a function unpacks a re-
gion r from a region relationship, no privileges for r itself
are granted. To access r, the function must already hold the
needed privileges on some region q that is a superset of r
(i.e., q is r’s parent or another ancestor region), and further-

1 −− Leaf Task Declarations (implementations in appendix)
2 function calc new currents[rl,rw,rn,rg] (ptr list : WireList〈rl,rw,rn,rg〉@rl),
3 reads(rl,rw,rn,rg), writes(rw) : bool
4 function distribute charge[rl,rw,rn,rg] (ptr list : WireList〈rl,rw,rn,rg〉@rl),
5 reads(rl,rw,rn), reduces(reduce charge,rn,rg), atomic(rn,rg) : bool
6 function update voltage[rl,rn] (ptr list : NodeList〈rl,rn〉@rl),
7 reads(rl,rn), writes(rn) : bool
8

9 −− Reduction function for distribute charge
10 function reduce charge (node : CircuitNode, current : int) : CircuitNode
11 let new charge : int = node.3 + current in
12 〈 node.1,node.2,new charge,node.4〉
13

14 −− Time Step Loop
15 function execute time steps[rl,rw,rn] (p0 : CircuitPiece〈rl,rw,rn〉,
16 p1 : CircuitPiece〈rl,rw,rn〉, steps : int) , reads(rn,rw,rl), writes(rn,rw) : bool =
17 if steps < 1 then true else
18 unpack p0 as piece0 : CircuitPiece〈rl,rw,rn〉[rw0,rn0,rg0] in
19 unpack p1 as piece1 : CircuitPiece〈rl,rw,rn〉[rw1,rn1,rg1] in
20 let : bool = calc new currents[rl,rw0,rn0,rg0](piece0.1) in
21 let : bool = calc new currents[rl,rw1,rn1,rg1](piece1.1) in
22 let : bool = distribute charge[rl,rw0,rn0,rg0](piece0.1) in
23 let : bool = distribute charge[rl,rw1,rn1,rg1](piece1.1) in
24 let : bool = update voltage[rl,rn0](piece0.2) in
25 let : bool = update voltage[rl,rn1](piece1.2) in
26 execute time steps[rl,rw,rn](p0,p1,steps−1)

Listing 1. Main Simulation Loop

more there must be constraints in the region relationship that
prove r ≤ q.

The main simulation loop, shown in Listing 1, runs
for many time steps, each of which performs three com-
putations: calculate new currents, distribute charges, and
update voltages on the circuit. For simplicity, this exam-
ple is written for a graph that is partitioned into only two
pieces. For each time step, the loop (tail recursive func-
tion execute time steps, lines 15-26) unpacks the two
previously packed circuit pieces, giving new names to the
subregions introduced by each region relationship. The
execute time steps function will have read/write priv-
ileges for the newly named regions, such as rn0, because
it has read/write privileges for rn and the CircuitPiece

region relationship ensures that rn0 ≤ rn.
The execute time steps function illustrates the im-

portance of having different partitions provide multiple
views onto the same logical region. The calc new currents

function uses the owned and ghost regions of a piece, which
are from different partitions; no single partition of the nodes
describes this access pattern. In calc new currents these
regions only need read privileges, while the only writes are
performed to the wires subregion belonging to that piece.
Thus, both instances of calc new currents can be run
as parallel tasks. Similarly, the update voltage function
(lines 6-7) modifies only the disjoint owned regions, while
only reading from regions shared with the other instance; the
two instances of update voltage can also run in parallel.

The most interesting function is distribute charge

(lines 2-5), which uses a reduction privilege for regions rn
and rg. A reduction names the reduction operator (which is
assumed to be associative and commutative) as the first com-
ponent of the privilege. Programmers can write their own re-
duction operators, such as the function reduce charge in
Listing 1. Reductions allow updates to the named regions

Ω ⊆ Ω∗

ri ≤ rj ∈ Ω∗ ⇒ ri ≤ ri ∈ Ω∗ ∧ rj ≤ rj ∈ Ω∗

ri ≤ rj ∈ Ω∗ ∧ rj ≤ rk ∈ Ω∗ ⇒ ri ≤ rk ∈ Ω∗

ri ≤ rj ∈ Ω∗ ∧ rj ∗ rk ∈ Ω∗ ⇒ ri ∗ rk ∈ Ω∗

ri ∗ rj ∈ Ω∗ ⇒ rj ∗ ri ∈ Ω∗

Φ ⊆ Φ∗

ri ≤ rj ∈ Ω∗ ∧ reads(rj) ∈ Φ∗ ⇒ reads(ri) ∈ Φ∗

ri ≤ rj ∈ Ω∗ ∧writes(rj) ∈ Φ∗ ⇒ writes(ri) ∈ Φ∗

ri ≤ rj ∈ Ω∗ ∧ reducesid(rj) ∈ Φ∗ ⇒ reducesid(ri) ∈ Φ∗

reads(r) ∈ Φ∗ ∧writes(r) ∈ Φ∗ ⇒ reducesid(r) ∈ Φ∗

for every function identifier id

Figure 3. Privilege and Constraint Closure

that are performed with the named reduction operator to be
reordered. For example, reductions can be performed locally
by a task and only the final results folded in to the desti-
nation region. However, by default, functions with no co-
herence annotation have exclusive coherence for their region
arguments: reads and writes have the results expected as if
the original sequential execution order of the program was
preserved, unaffected by any concurrently executing tasks.
Thus, to fully exploit reductions it is important to use a re-
laxed coherence mode, in this case atomic coherence, which
permits other tasks performing the same reduction operation
on the named regions to execute in parallel. The most relaxed
coherence mode is simult; simultaneous coherence allows
concurrent access to the region by all functions that are using
the region in a simultaneous mode. The interaction between
tasks using the same region with different coherence modes
is formalized in Section 7. While associative and commu-
tative reductions always produce the same result regardless
of execution order, in general relaxed coherence modes in-
troduce non-determinism into Legion programs. This non-
determinism is completely under programmer control, at the
per-region (or subregion) granularity.

4. Type System
Core Legion is explicitly typed using judgments of the form

Γ,Φ,Ω ` e : T

Besides a type environment Γ, type judgments include the
access privileges Φ for the logical regions in the expression e
as well as constraints Ω that must hold between those logical
regions.

A representative selection of the type rules is given in
Figure 4. Both Φ and Ω are used in the heap access expres-
sions read, write, and reduce. A valid heap access has
the needed permission for logical region(s) in the pointer’s
type. Note the exact region need not be named in Φ if per-
missions exist for logical regions that provably contain the
pointer’s region(s). To simplify this check, Figure 3 defines
closure operations Ω∗ (all constraints implied by Ω) and Φ∗

(all privileges implied by Φ and Ω∗).

Region constraints are introduced into Ω by the partition
expression. The type system constrains the coloring used in
a partitioning to only include pointers into the region be-
ing partitioned. In Core Legion, the subregions that result
from a single partition expression are always disjoint. (As a
reminder, the aliased subregions that result from a multicol-
oring are obtained in Core Legion through multiple nested
partition expressions.)

The pack expression requires the programmer to explic-
itly name which regions are expected to satisfy the con-
straints of the region relationship’s type. The programmer
also provides the new names for regions that result from an
unpack, with the constraint that fresh names are chosen.

Finally, the type checking rule for the overall Legion pro-
gram shows how each function is type-checked separately,
with no global variables or region constraints. Although the
coherence modes (Qi) are part of a function’s prototype, they
influence only the runtime behavior, not the type checking.

5. Operational Semantics
Operational semantics for parallel languages are tradition-
ally constructed using small-step semantics. The state of the
system includes the current state of each concurrent compu-
tation and a small step allows one of two things to happen:
either a single computation makes progress or a subset of
the computations rendezvous on an explicit synchronization
primitive (e.g., a matching send and receive on a channel).
Although an operational semantics for Legion can be con-
structed in such a manner, it is not natural, and certainly
Legion programmers do not think about the execution of
Legion programs in this way. Nested parallelism (subtasks
recursively launching other subtasks) and the absence of ex-
plicit synchronization constructs encourage programmers to
think about programs compositionally, as the execution of
child tasks in the context of a parent task.

To formalize this view of Core Legion executions, we ex-
press the operational semantics in a big-step style, which
captures the hierarchical nature of Legion tasks. In addition
to being arguably more intuitive to someone trying to un-
derstand Legion runtime behavior, the preservation of the
task hierarchy in our semantics makes it considerably eas-
ier to prove the soundness of the type system and the safety
of our hierarchical scheduling algorithms. Finally, a big-step
semantics simplifies the explanation of Legion’s novel treat-
ment of coherence.

Core Legion’s operational semantics rules have the form

M,L,H, S,C ` e 7→ v,E

and specify that the evaluation of expression e yields a value
v. The environment includes the standard mapping L of lo-
cal variables to their values, and an immutable heap typing
H assigning types to heap locations. An additional map-
ping M is used to translate logical regions ri to physical re-
gions ρi, which are sets of concrete memory locations. M is

Γ,Φ,Ω ` e1 : T@(r1, . . . , rn)

∀i. reads(ri) ∈ Φ∗

Γ,Φ,Ω ` read(e1) : T

[T-Read]

Γ,Φ,Ω ` e1 : T@(r1, . . . , rn)

Γ,Φ,Ω ` e2 : T

∀i. writes(ri) ∈ Φ∗

Γ,Φ,Ω `write(e1, e2) : T@(r1, . . . , rn)

[T-Write]

Γ(id) = (T1, T2), ∅, ∅ → T1

Γ,Φ,Ω ` e1 : T1@(r1, . . . , rn)

Γ,Φ,Ω ` e2 : T2

∀i. reducesid(ri) ∈ Φ∗

Γ,Φ,Ω ` reduce(id, e1, e2) : T1@(r1, . . . , rn)

[T-Reduce]

Γ,Φ,Ω ` new T@r : T@r [T-New]

Γ,Φ,Ω ` e : T@(r′1, . . . r
′
k)

∀i.∃j, r′i ≤ rj ∈ Ω∗

Γ,Φ,Ω `upregion(e, r1, . . . , rn) : T@(r1, . . . , rn)

[T-UpRgn]

Γ,Φ,Ω ` e : T@(r′1, . . . r
′
k)

Γ,Φ,Ω `downregion(e, r1, . . . , rn) : T@(r1, . . . , rn)

[T-DnRgn]

Γ,Φ,Ω ` newcolor r : coloring(r) [T-NewColor]

Γ,Φ,Ω ` e1 : coloring(r)

Γ,Φ,Ω ` e2 : T@r

Γ,Φ,Ω ` e3 : int

Γ,Φ,Ω ` color(e1, e2, e3) : coloring(r)

[T-Color]

Γ,Φ,Ω ` e1 : coloring(rp)

Ω′ = Ω ∧
∧
i∈[1,k] ri ≤ rp ∧

∧
1≤i<j≤k ri ∗ rj

Γ,Φ,Ω′ ` e2 : T

{r1, . . . , rk} ∩ regions of (Γ, T) = ∅
Γ,Φ,Ω `partition rp using e1 as r1, . . . , rk in e2 : T

[T-Partition]

T1 = ∃r′1, . . . r′k. T2 where Ω1

Ω1[r1/r
′
1, . . . , rk/r

′
k] ⊆ Ω∗

Γ,Φ,Ω ` e1 : T2[r1/r
′
1, . . . , rk/r

′
k]

Γ,Φ,Ω `pack e1 as T1[r1, . . . , rk] : T1

[T-Pack]

T1 = ∃r′1, . . . , r′k. T2 where Ω1

Γ,Φ,Ω ` e1 : T1

Γ′ = Γ[T2[r1/r
′
1, . . . , rk/r

′
k]/id]

Ω′ = Ω ∪ Ω1[r1/r
′
1, . . . , rk/r

′
k]

Γ′,Φ,Ω′ ` e2 : T3

{r1, . . . , rk} ∩ regions of (Γ, T1, T3) = ∅
Γ,Φ,Ω `unpack e1 as id : T1[r1, . . . , rk] in e2 : T3

[T-Unpack]

Γ(id) = ∀r′1, . . . r′k.(T1, . . . , Tn),Φ′, Q′ → Tr
Γ,Φ,Ω ` ei : Ti[r1/r

′
1, . . . , rk/r

′
k]

Φ′[r1/r
′
1, . . . , rk/r

′
k] ⊆ Φ∗

Γ,Φ,Ω ` id[r1, . . . , rk](e1, . . . , en) : Tr[r1/r
′
1, . . . , rk/r

′
k]

[T-Call]

for 1 ≤ i ≤ p,
Γ(idi) = ∀ri1, . . . riki .(T

i
1 , . . . , T

i
ni

),Φi, Qi → T ir
Γi = Γ[ai1/T

i
1 , . . . , a

i
ni
/T ini]

Γi,Φi, ∅ ` ei : T ir

` {function id1[r1
1, ..., r

1
k1

](a1
1 : T 1

1 , ..., a
1
n1

: T 1
n1

),Φ1, Q1 : T 1
r : e1,

. . .

function idp[r
p
1 , ..., r

p
kp

](ap1 : T p1 , ..., a
p
np : T pnp),Φp, Qp : T pr : ep} : •

[T-Program]

M,L,H, S,C ` e 7→ l, E S′ = apply(S,E)

v =

{
S′(l), ifl 6∈ C
v′ : H(l), otherwise

M,L,H, S,C ` read(e) 7→ v,E++[read(l, excl, v, 0)]

[E-Read]

M,L,H, S,C ` e1 7→ l, E1 S′ = apply(S,E1)

M,L,H, S′, C ` e2 7→ v,E2 valid interleave(S,C,E′, E1, E2)

M,L,H, S,C `write(e1, e2) 7→ l, E′++[write(l, excl, v, 0)]

[E-Write]

M,L,H, S,C ` e1 7→ l, E1 S′ = apply(S,E1)

M,L,H, S′, C ` e2 7→ v,E2 valid interleave(S,C,E′, E1, E2)

M,L,H, S,C ` reduce(id, e1, e2) 7→ l, E′++[reduceid(l, excl, v, 0)]

[E-Reduce]

l ∈M(r) l 6∈ domain(S) H(l) = M [[T]]

M,L,H, S,C ` new T@r 7→ l, []
[E-New]

M,L,H, S,C ` e 7→ v,E

M,L,H, S,C ` upregion(e, r1, . . . , rn) 7→ v,E
[E-UpRgn]

M,L,H, S,C ` e 7→ l, E

v =

{
l, if ∃i, l ∈M(ri).

null, otherwise.

M,L,H, S,C ` downregion(e, r1, . . . , rn) 7→ v,E

[E-DnRgn]

K = {(l1, iv1), . . . , (lp, ivp)}, where

(∀i ∈ [1, p].li ∈M(r)) ∧ (∀i, j ∈ [1, p].li 6= lj)

M,L,H, S,C ` newcolor r 7→ K, []

[E-NewColor]

M,L,H, S,C ` e1 7→ K,E1 S′ = apply(S,E1)

M,L,H, S′, C ` e2 7→ l, E2 S′′ = apply(S′, E2)

M,L,H, S′′, C ` e3 7→ v,E3

K′ = {(l, v)} ∪ {(li, vi) : (li, vi) ∈ K ∧ l 6= li}
valid interleave(S,C,E′, E1, E2, E3)

M,L,H, S,C ` color(e1, e2, e3) 7→ K′, E′

[E-Color]

M,L,H, S,C ` e1 7→ K,E1 ρi = {l : (l, i) ∈ K}, for1 ≤ i ≤ k
M ′ = M [ρ1/r1, . . . , ρk/rk] S′ = apply(S,E1)

M ′, L,H, S′, C ` e2 7→ v,E2 valid interleave(S,C,E′, E1, E2)

M,L,H, S,C `partition rp using e1 as r1, . . . , rk in e2 7→ v,E′

[E-Partition]

M,L,H, S,C ` e1 7→ v,E ρi = M [ri], for1 ≤ i ≤ k
v′ = 〈〈ρ1, . . . , ρk, v〉〉

M,L,H, S,C `pack e1 as T1[r1, . . . , rk] 7→ v′, E

[E-Pack]

M,L,H, S,C ` e1 7→ 〈〈ρ1, . . . , ρk, v1〉〉, E1 M ′ = M [ρ1/r1, . . . , ρk/rk]

L′ = L[v1/id] S′ = apply(S,E1)

M ′, L′, H, S′, C ` e2 7→ v2, E2 valid interleave(S,C,E′, E1, E2)

M,L,H, S,C ` unpack e1 as id : T1[r1, . . . , rk]in e2 7→ v2, E
′

[E-Unpack]

M,L,H, S,C ` e1 7→ v1, E1 S1 = apply(S,E1)

. . .

M,L,H, Sn−1, C ` en 7→ vn, En Sn = apply(Sn−1, En)

valid interleave(S,C,E′, E1, . . . , En)

function id[r′1, . . . , r
′
k](a1 : T1, . . . , an : Tn),Φ′, Q′ : Tr = en+1

M ′ = {(r′1,M(r1)), . . . (r′k,M(rk))}
L′ = {(a1, v1), . . . , (an, vn)}
S′ = apply(S,E′)

C′ = C ∪ {l : ∃ρ. l ∈ ρ ∧ (atomic(ρ) ∈M ′[[Q′]] ∨ simult(ρ) ∈M ′[[Q′]])}
M ′, L′, H, S′, C′ ` en+1 7→ vn+1, En+1

E′n+1 = mark coherence(En+1,M
′[[Q′]], taskid) taskid fresh

valid interleave(S,C,E′′, E′, E′n+1)

M,L,H, S,C ` id[r1, . . . , rk](e1, . . . , en) 7→ vn+1, E
′′

[E-Call]

Figure 4. Type System and Operational Semantics

extended in the standard way to map types, environments,
and constraints that refer to logical regions into correspond-
ing structures that refer to physical regions. For example,
M [[int@r1]] = int@ρ1.

The two unusual components of the operational seman-
tics are the dynamic memory trace E and the clobber set C.
As these are the key to making the Core Legion semantics
composable, we discuss them in detail in the following two
subsections.

5.1 Dynamic Memory Traces
In a sequential big-step semantics for a language with side
effects, evaluation commonly begins in an initial store S and
produces a value v and a final store S′. In our Core Legion
semantics, instead of a final store, an explicit list of all
memory operations (i.e. reads, writes, reductions) is returned
in the form of a dynamic memory trace. When necessary, the
dynamic memory trace can be used to regenerate the final
store using the apply(S,E) helper function (see Figure 5).

Keeping the list of memory operations performed by the
evaluation of an expression serves multiple purposes. First,
the proof of soundness in Section 6 requires this list. Second,
it makes it much easier to describe when and how computa-
tion of subexpressions may be interleaved (i.e. executed in
parallel). As a simple example, consider the operational se-
mantics rule for the addition of two integers:

M,L,H, S,C ` e1 7→ v1, E1

S′ = apply(S,E1)

M,L,H, S′, C ` e2 7→ v2, E2

v′ = v1 + v2

E′ = valid interleave(S,C,E′, E1, E2)

M,L,H, S,C ` e1 + e2 7→ v′, E′

[E-Add]

In this rule, the subexpressions e1 and e2 are evaluated,
producing memory traces E1 and E2. Our compositional
semantics return a single memory trace E′ for the parent
expression by interleaving the individual operations from
E1 and E2 according to certain constraints captured in the
valid interleave predicate, defined in Figure 7. A full expla-
nation of these constraints is deferred to Section 7, but we
describe the four most common cases here:

• If e1 and e2 access the same region(s) with exclusive co-
herence and there are no concurrently executing expres-
sions that may modify the locations accessed by e1 and
e2 (i.e. the locations are not in the clobber set C, see Sec-
tion 5.2), then e1 and e2 execute in sequential program
order, so E′ = E1++E2, where ++ is sequence concate-
nation.
• If e1 and e2 include task calls that access the same re-

gion(s) with atomic coherence (and there are no concur-
rent executions accessing the same locations), each of e1

and e2 must execute atomically, but the ordering of the
two executions is not constrained. In this case, E′ may

be E1++E2 or Ẽ2++Ẽ1. (Ẽ2 and Ẽ1 are used in the sec-
ond case to emphasize that the actual memory traces are
likely to be different depending on which of e1 or e2 is
executed first.)
• If e1 and e2 require exclusive (or atomic) coherence,

but access disjoint sets of heap locations, they are non-
interfering computations and may be performed in paral-
lel while still giving the appearance of sequential execu-
tion. In this case, E′ can be an arbitrary interleaving of
the memory operations in E1 and E2.
• Finally, if e1 and e2 include task calls that access the same

region(s) with simultaneous coherence, parallel computa-
tion of the subexpressions has been explicitly allowed by
the programmer. The two computations may access the
same locations and see the results of the other’s writes
and reductions. The resulting memory trace E′ will be an
interleaving of Ẽ1 and Ẽ2. (Again, Ẽ1 and Ẽ2 are used
instead of E1 to emphasize that the traces are likely to be
different due to the interactions through the heap.)

5.2 Clobber Sets
As alluded to in the previous discussion, a composable paral-
lel semantics must account for the unknown, concurrent con-
text in which an expression executes. In particular, there may
be locations read by an expression that are being altered (i.e.
“clobbered”) by other concurrently executing expressions.
The set of such locations for a given expression is called the
clobber set C. When a read is performed to a location that
falls in C, the operational semantics leave the result of the
read unconstrained. Instead, the check that the value of the
read is consistent with the preceding writes (or reductions)
is deferred to the first parent expression that encloses all of
the computations that may be accessing the same locations.

To give a concrete example of how dynamic memory
traces and clobber sets work, consider the following Core
Legion tasks:

1 function A[r](i : int@r), reads(r), writes(r) : int =
2 (B[r](i, 1) + B[r](i, 2)) + B[r](i, 3)
3

4 function B[r](i : int@r, v : int), reads(r), writes(r), atomic(r): int=
5 let x: int = read(i) in
6 let : int@r = write(i, v) in
7 x

There is a single region r in which a single integer has
been allocated at location l (and given an initial value of 0),
which is stored in pointer variable i. Function A requests
exclusive access to r, and will return the sum of three calls
to function B. Each call to function B performs an exchange
on the memory location l, storing the value passed in as
an argument and returning the original contents. Function
B requests atomic coherence on region r allowing the three
sibling task calls to B in A to execute in any order while
guaranteeing that the individual exchanges are performed
atomically. The scope of a coherence mode on a region for
a task call t is always the sibling task calls of t within the

apply(S, []) = S

apply(S,E++[read(l, c, v, t)]) = apply(S,E)

apply(S,E++[write(l, c, v, t)]) = apply(S,E)[v/l]

apply(S,E++[reduceid(l, c, v, t)]) = S′[id(S′(l), v)/l],

where S′ = apply(S,E)

mark coherence([], Q̂, taskid) = []

mark coherence([op(l, c, v, t)]++E, Q̂, taskid) = [op(l, c′, v, taskid)]++mark coherence(E, Q̂),

where c′ =


simult, if ∃ρ.l ∈ ρ ∧ simult(ρ) ∈ Q̂
atomic, if ∃ρ.l ∈ ρ ∧ atomic(ρ) ∈ Q̂
excl, otherwise

Figure 5. Helper Functions for Type Rules and Operational Semantics

parent task. The atomic coherence on region r affects the
order of memory operations of the three calls to B within
A, but not, for example, the interleaving of A with a sibling
task, which is determined by A’s exclusive coherence for r.

One valid execution for a call to A[r](i) in a parent task
would result in:

M,L,H, S,C `A[r](i) 7→ 5, E′

where:

M = [r : {l}]

L = [i : l]

H = [l : int]

S = [l← 0]

C = ∅
E′ = [read(l, excl , 0, A),write(l, excl , 2, A),

read(l, excl , 2, A),write(l, excl , 3, A),

read(l, excl , 3, A),write(l, excl , 1, A)]

Recall that a memory trace records the sequence of mem-
ory operations performed by a task (and all of its subtasks).
Each memory operation includes five pieces of information:
the type of operation (read, write, or reduceid with reduction
operator id), the location affected, the coherence mode, the
value that is read, written, or reduced (combined with the
value already in the memory location by the reduction op-
erator), and the unique identifier of the task performing the
operation. Here the call B[r](i, 2) (referred to as B2 below)
has executed first (reading the initial value 0 of i in the store),
followed by B[r](i, 3) (B3 below) and finally B[r](i, 1) (B1).
Note that the memory trace is coherent with respect to i:
each read of i returns the value of the previous write of i
or the initial value of i when there is no previous write. All
the memory operations are marked with A’s task id and with
exclusive coherence, because this is the mode in which A

accesses r. The fact that the accesses occurred in different
subtasks of A (and with different coherence modes) is not
visible outside of A.

To show how E′ was obtained, we will follow the expres-
sion hierarchy, beginning at the leaf tasks:

B1 : M, [i : l, v : 1], H, SB1 , {l} ` let x . . . 7→ 3, EB1

B2 : M, [i : l, v : 2], H, SB2 , {l} ` let x . . . 7→ 0, EB2

B3 : M, [i : l, v : 3], H, SB3 , {l} ` let x . . . 7→ 2, EB3

where:

EB1 = [read(l, excl , 3, 0),write(l, excl , 1, 0)]

EB2 = [read(l, excl , 0, 0),write(l, excl , 2, 0)]

EB3 = [read(l, excl , 2, 0),write(l, excl , 3, 0)]

There are several important points to note here. First, each
subtask’s evaluation includes location l in the clobber set.
Because these tasks access region r with atomic coherence,
all locations in r (i.e. l) are added to the clobber set C′ in the
[E-Call] rule. This allows the read operations performed by
the subtasks to return a value other than what is contained in
the initial stores SB1 , SB2 , and SB3 and allows the resulting
dynamic memory traces to be non-coherent with respect to
those initial stores. (Note that the stores are only used for the
sequential portion of the semantics, which is the sequence of
memory operations on locations with exclusive access that
are not also in the clobber set. Thus, the stores are threaded
through the rules in the usual sequential manner and used for
operations on locations that can’t be concurrently accessed.)
Finally, although these tasks requested atomic coherence on
region r, the memory operations within the task are marked
with with the excl coherence mode, allowing proper ordering
of the operations within each individual atomic subtask.

We next consider the function call expressions within the
body of function A.

M,L,H, SB1 , ∅ `B[r](i, 1) 7→ 3, E′B1

M,L,H, SB2 , ∅ `B[r](i, 2) 7→ 0, E′B2

M,L,H, SB3 , ∅ `B[r](i, 3) 7→ 2, E′B3

where:

E′B1
= [read(l, atomic, 3, B1),write(l, atomic, 1, B1)]

E′B2
= [read(l, atomic, 0, B2),write(l, atomic, 2, B2)]

E′B3
= [read(l, atomic, 2, B3),write(l, atomic, 3, B3)]

Here we see the result of using the mark coherence helper
function (defined in Figure 5) to annotate the dynamic mem-
ory traces of function calls with their coherence modes and
unique task id. The next step is to perform the inner addition:

M,L,H, S, ∅ `B[r](i, 1) +B[r](i, 2) 7→ 3, Eint

where:

Eint = [read(l, atomic, 0, B2),write(l, atomic, 2, B2)

read(l, atomic, 3, B1),write(l, atomic, 1, B1)]

Because all accesses to location l are performed with
atomic coherence, either of E′B1

++E′B2
or E′B2

++E′B1
is

permitted, and we have chosen the latter for our intermediate
trace Eint. Note that this trace is not coherent (in particular,
the second read of l does not return what was written by
the previous write). Only sequential consistency of each
subtask’s accesses is required at this point.

The evaluation of the body of A is completed by perform-
ing the outer addition:

M,L,H, S, ∅ ` (. . .) +B[r](i, 3) 7→ 5, E

where:

E = [read(l, atomic, 0, B2),write(l, atomic, 2, B2)

read(l, atomic, 2, B3),write(l, atomic, 3, B3),

read(l, atomic, 3, B1),write(l, atomic, 1, B1)]

The requirements of the valid interleave predicate allow
for three possible interleavings of Eint and E′B3

, and we
have chosen the one that inserts E′B3

in the middle of Eint.
The final value of E′ above is attained by applying the
mark coherence helper function to E, replacing the task
ids and coherence modes of A’s subtasks with those of A
itself. Now that the accesses to location l are marked as excl
rather than atomic and l is not in the clobber set, the trace
is required to be coherent with respect to l, and this is the
point at which any traces with inconsistencies between the
choices of values read from location l in the calls to function
B and the dynamic memory trace interleavings chosen in A
are disallowed.

5.3 Operational Semantics Rules
In addition to the novel construction and interleaving of
memory traces and clobber sets discussed above, the Core
Legion operational semantics include rules for the new con-
structs introduced in the language. These rules are also
shown in Figure 4.

The new expression selects a location that is not currently
in use and that also has the correct heap typing from the
set of locations assigned to the logical region argument.
Similarly, downregion checks whether a location is within
the set assigned to the logical region. If this dynamic check
fails, null is returned. The application can use the isnull

expression to test for this case and handle it appropriately. As
discussed above, the correctness of upregion expressions is
checked statically—there is no runtime component.

The color expression creates a copy of the input color-
ing in which the specified location is modified to have the
specified color. The behavior of newcolor is subtler. The
operational semantics for new requires that the newly allo-
cated location already be present in the designated region.
To allow allocations to be performed in subregions, addi-
tional, unused memory locations are assigned to each sub-
region when it is created. Because subregions are created
by partitioning an existing region using a coloring, it is sim-
plest to have newcolor put these extra locations in the initial
coloring. Adding extra locations to a region cannot cause a
computation to fail or alter its output, but it does admit ex-
ecutions in which some memory locations are assigned to a
region but are never used (never allocated by new). This se-
mantics reflects the behavior of our implementation, which
also preallocates extra space in regions that may never be

used, because adding space to a region on a call to new re-
quires additional synchronization with users of that region
and any containing regions to ensure all agree on the pres-
ence of the new location. It is much cheaper to simply add
some extra locations when there is only a single user of the
region, namely at the point where the region is created.

Because the necessary checks are performed at compile
time, the operational semantics for the pack and unpack

expressions are simple. A pack expression just uses M to
map logical regions to physical regions, while unpack aug-
ments M with the new logical region names assigned to the
physical regions stored in the region relationship.

6. Soundness of Privileges
Our first result shows that a well-typed expression accesses
the heap in ways consistent with its static privileges. A
judgment E :M Φ holds if memory operations in memory
trace E have types and locations covered by privileges Φ:

E :M Φ⇔ ∀ε ∈ E.
(ε = read(l, c, v, t)⇒ ∃r, l ∈M(r) ∧ reads(r) ∈ Φ) ∧
(ε = write(l, c, v, t)⇒ ∃r, l ∈M(r) ∧writes(r) ∈ Φ) ∧
(ε = reduceid(l, c, v, t)⇒ ∃r, l ∈M(r) ∧ reducesid(r) ∈ Φ)

As usual, the soundness claim is proven assuming the initial
type and execution environments are consistent. For our
results, three consistency properties are needed:

• mapping consistency, written M ∼ Ω, guarantees a re-
gion mapping M satisfies the region constraints Ω

• local value consistency, written L ∼H M [[Γ]], guarantees
local values in L have types consistent with the environ-
ment Γ (using M to map logical regions in Γ to physical
regions)
• store consistency, written S ∼ H, guarantees locations in
S have values consistent with heap typing H

Two additional properties are proven for each subexpression:

• result value consistency, written v ∼H M [[T]], guarantees
any evaluation of an expression yields a value of the right
type
• memory trace consistency, written E ∼ H, guarantees

that all writes and reductions use values of the right types

Figure 6 defines these properties.

Theorem 1. If Γ,Φ,Ω ` e : T and M,L,H, S,C ` e 7→ v,E

and M ∼ Ω, L ∼H M [[Γ]] and S ∼ H, then v ∼H M [[T]],
E ∼ H and E :M Φ.

We spare the reader the lengthy proof, which can be found
in [19], and merely outline the general strategy, which makes
use of a standard induction on the structure of the derivation.
For each of the Core Legion expressions, we show that the
consistency of the expression’s initial execution environment
(i.e. mapping, local value, and store consistency) guarantees

M ∼ Ω ⇔ (∀ri, rj .ri ≤ rj ∈ Ω⇒M(ri) ⊆M(rj)) ∧
(∀ri, rj .ri ∗ rj ∈ Ω⇒M(ri) ∩M(rj) = ∅)

L ∼H M [[Γ]] ⇔ ∀(id, v) ∈ L.v ∼H M [[Γ]](id)
S ∼ H ⇔ ∀(l, v) ∈ S.v ∼H H(l)

E ∼ H ⇔ (∀l, c, v.write(l, c, v, t) ∈ E ⇒ v ∼H H(l)) ∧
(∀id, l, v.reduceid(l, c, v, t) ∈ E ⇒
(M [[Γ]](id) = (T̂1, T̂2), ∅, ∅ → T̂1) ∧H(l) = T̂1 ∧ v ∼H T̂2)

bv ∼H bool
iv ∼H int

null ∼H T̂@ρ

l ∼H T̂@ρ ⇔ l ∈ ρ ∧H(l) = T̂

〈v1, v2〉 ∼H 〈T̂1, T̂2〉 ⇔ (v1 ∼H T̂1) ∧ (v2 ∼H T̂2)

〈〈ρ1, . . . , ρn, v〉〉 ∼H rr[r1, . . . , rn] T̂ where Ω̂ ⇔ (v ∼H T [ρ1/r1, . . . ρn/rn]) ∧ ({(ri, ρi)} ∼ Ω̂)
K ∼H coloring(ρ) ⇔ ∀l1, v1.(l1, v1) ∈ K ⇒ (l1 ∈ ρ ∧

∀l2, v2.(l2, v2) ∈ K ⇒ (l1 6= l2) ∨ (v1 = v2))

Figure 6. Consistency Properties

a consistent environment for subexpressions, and the con-
sistency of subexpressions’ results (i.e. result value consis-
tency, memory trace consistency, and containment of heap
accesses) results in similar consistency for the enclosing ex-
pression’s results. Many of the cases are similar, and benefit
from the use of the following lemmas (proofs of which can
also be found in [19]). As discussed earlier, apply(S,E), de-
fined in Figure 5, applies the operations in an execution trace
E to a store S, the operator ++ is sequence concatenation,
and the valid interleave predicate is defined in Figure 7.

Lemma 1. If S ∼ H and E ∼ H, then apply(S,E) ∼ H.

Lemma 2. If E1 ∼ H and E2 ∼ H, then E1++E2 ∼ H.

Lemma 3. If E1 ∼ H and E2 ∼ H and
valid interleave(S,C,E′, E1, E2), then E′ ∼ H.

Lemma 4. If E1 :M Φ and E2 :M Φ, then E1++E2 :M Φ.

Lemma 5. If E1 :M Φ and E2 :M Φ and
valid interleave(S,C,E′, E1, E2), then E′ :M Φ.

Lemma 6. M ∼ Ω∗ if and only if M ∼ Ω.

Lemma 7. E :M Φ∗ if and only if E :M Φ.

Lemma 8. M ∼ Ω if and only if ∅ ∼M [[Ω]].

The interesting cases for each property are summarized
here:

M ∼ Ω - Three expressions have subexpressions that mod-
ify M or Ω and therefore do not trivially satisfy re-
gion mapping consistency. For partition, the con-
sistency of the coloring preserves region mapping con-
sistency with respect to the constraints. For unpack,
the consistency of a region relation instance guaran-
tees consistency of region mapping. Finally, the body
of a called function uses an initially-empty set of con-
straints, which are trivially satisfied.

L ∼H M [[Γ]] - Four expressions have subexpressions that
modify L, Γ, or M . For partition, which only modi-
fiesM , the requirement that it not reuse existing names
ensures that M [[Γ]] does not change. For let, the value
and type of the binding is obviously consistent, while
the binding created in an unpack is less obviously so,
requiring an induction over the type of the unpacked

value to show equivalence under the new mapping.
The last case is the body of a called function, which
requires the same style of proof as for unpack for each
formal parameter.

S ∼ H - The heap typing consistency of all stores used in
subexpressions follows directly from Lemma 1.

v ∼H M [[T]] - The consistency of upregion is guaranteed
by the type checking requirement of appropriate sub-
region constraints and the mapping’s consistency with
those constraints, and downregion’s result is consis-
tent because of the runtime check. The consistency of
a read’s result is trivial for an address in the clob-
ber set and uses the consistency of the store otherwise.
The consistency of a color’s result depends on the
pointer subexpression’s consistency and the removal
of any previous coloring of that location from the col-
oring set.

The remaining interesting cases arise from changes
to the mapping M rather than transformations on the
value v. In the case of partition and unpack, the
type system guarantees that the subexpression’s result
cannot use the regions that were added to the mapping,
allowing the changes to the mapping to be ignored.
The last case is again the body of a called function,
and the same strategy that was used for the type con-
sistency of the formal parameters works in reverse for
the function’s result.

E ∼ H - The type consistency of the values in an ex-
pression’s memory trace follows from Lemma 2 and
Lemma 3. New memory operations are added by
write and reduce expressions, but consistency fol-
lows directly from the induction hypothesis. Finally,
the consistency of the values in a called function’s
memory trace is addressed in the same way as the
return value.

E :M Φ - The proof of the crucial property of containment of
heap accesses within the available privileges is similar
in outline to the previous step. The easy cases are
covered by Lemma 3. Straightforward proofs cover
read, write, reduce, with one final special case for
function calls.

7. Coherence
In our compositional operational semantics, the execution
of an expression assumes any concurrent environment and
there may be many possible execution traces for a given
expression. When the semantics of multiple subexpressions
are combined in the operational semantics rules, we can
restrict the set of execution traces to those that are consistent
with the joint behavior of the subexpressions under the given
region coherence requirements.

Interestingly, however, an insight from the proof of The-
orem 1 is that it does not rely on the full definition of
valid interleave. In fact, soundness of privileges is pre-
served even if the valid interleave test is replaced with
any interleave (Figure 7), which allows arbitrary interleav-
ings of memory traces from subexpressions. The stronger
constraints in valid interleave address the coherence of heap
accesses, specifying permitted interleavings of memory op-
erations for the particular coherence modes on logical re-
gions.

To determine whether an interleaving of two or more
memory traces is valid, we consider three sets of addresses:

• exclusive locations (l ∈ Lexcl) are those which have at
least one access in exclusive mode in the traces and are
not in the clobber set. For these locations, we require
sequential execution semantics—all reads to these loca-
tions see the effect of previous writes and reductions, and
the resulting state of the store is as if all writes and reduc-
tions were applied from each trace in order.
• atomic locations (l ∈ Latomic) are those which have at

least one access in atomic mode in the traces and are
in neither Lexcl nor the clobber set. For these locations,
we allow permutations of the original subexpression trace
order.
• for locations with only access in simult mode or in the

clobber set, no constraints are enforced. The valid inter-
leaving of these accesses is determined within the context
of the closest enclosing task call where the locations are
neither in the clobber set nor accessed only with simulta-
neous coherence.

7.1 Sequential Execution
We now show that a sequential execution trivially satisfies
the interleaving criteria required by the operational seman-
tics. Our proof of the soundness of parallel scheduling de-
pends on this result.

Sequential execution ignores the coherence mode Q in all
function calls, using Q′ = ∅ instead, and interleaves traces
by concatenating the subexpressions’ traces in program or-
der. By ignoring the coherence modes, the clobber set re-
mains empty and the result of all read expressions is fully
determined. The following lemma and theorem show that the
value and memory trace that result from a sequential execu-
tion are always valid executions.

Lemma 9. Let Γ,Φ,Ω ` e : T and M,L,H, S,C ` e 7→ v,E

and S ∼ H. If C ⊆ C′, then M,L,H, S,C′ ` e 7→ v,E.

Theorem 2. Let e1, . . . , en be expressions such that

M,L,H, Si−1, C ` ei 7→ vi, Ei

where Si = apply(Si−1, Ei). If E′ = E1++ . . .++En, then
valid interleave(S0, C,E

′, E1, . . . , En).

7.2 Parallel Execution
To determine when parallel execution is safe, we start from
the sequential execution trace and allow the reordering of
adjacent heap operations that do not change the behavior of
the application. If we can show that it is safe to reorder any
pair of operations that come from two different constituent
traces, then any interleaving of the constituent traces will be
equivalent to a sequential execution and parallel execution
is safe. To efficiently discover these cases at runtime, we
require a test that can determine this property prior to the
actual execution of the tasks that create the traces. We show
that a test based on the subtask privileges and the current
region mapping can soundly predict when this property will
hold. We begin by defining a non-interference operator on
two memory operations ε1 = op1(l1, c1, v1, t1) and ε2 =

op2(l2, c2, v2, t2):

ε1 # ε2 ⇔(op1 = read ∧ op2 = read) ∨
(op1 = reduceid1 ∧ op2 = reduceid2 ∧ id1 = id2)∨
l1 6= l2

Reads have no side effects, and cannot change what another
read returns. The safety of the second case follows from the
requirement that reduction operations be commutative. Fi-
nally, accesses to different locations cannot affect each other.
Therefore, an adjacent pair of non-interfering memory oper-
ations in a memory trace can be reordered while preserving
the validity of an interleaving.

Lemma 10. Let S be a store,C a clobber set,E1, . . . , En, E
′
a, E

′
b

memory traces, and ε1, ε2 be two memory operations from
Ei and Ej (i 6= j). Then,

valid interleave(S,C,E′a++[ε1, ε2]++E′b, E1, . . . , En) ∧ ε1#ε2

⇒ valid interleave(S,C,E′a++[ε2, ε1]++E′b, E1, . . . , En).

Two whole memory traces are non-interfering if no opera-
tion from one trace interferes with any from the other:

E1#E2 ⇔
∧

ε1 inE1,ε2 inE2

ε1#ε2

If whole memory traces are non-interfering, any interleaving
can be sorted via pairwise swaps to match the sequential
memory trace. This gives us a result permitting safe parallel
execution:

Lemma 11. Let S be an initial store, C be a clobber set,
E1, . . . , En be memory traces such that Ei#Ej for every
1 ≤ i < j ≤ n. Then, any interleave(E′, E1, . . . , En)⇒

valid interleave(S,C,E′, E1, . . . , En).

any interleave([], [], . . . , []) = true

any interleave([ε]++E′, E1, . . . , [ε]++Ei, . . . , En) = any interleave(E′, E1, . . . , Ei, . . . , En)

valid interleave(S,C,E′, E1, . . . , En) =

any interleave(E′, E1, . . . , En) ∧
coherent(S,Lexcl(E

′, C), Lexcl(E
′, C), E′) ∧

seq equiv(S,Lexcl(E
′, C), Lexcl(E

′, C), E′, E1, . . . , En) ∧
∀t.seq equiv(S,Latomic(E

′, C), ∅, E′ ↓t, (E1++ . . .++En) ↓t)

coherent(S,L1, L2, []) = true
coherent(S,L1, L2, [ε]++E) =

(l ∈ L2 ⇒ S(l) = v) ∧
coherent(S,L1, L2, E), if ε = read(l, c, v, t)

coherent(apply(S, ε), L1, L2 ∪ {l}, E), if ε = write(l, c, v, t)

and l ∈ L1

coherent(apply(S, ε), L1, L2, E), otherwise

seq equiv(S,L1, L2, E
′, E1, . . . , En) =

coherent(S,L1, L2, E1++ . . .++En) ∧
∀l ∈ L1.apply(S,E′)(l) = apply(S,E1++ . . .++En)(l)

Lexcl(E,C) = {l : op(l, excl , v, t) in E} \ C
Latomic(E,C) = {l : op(l, atomic, v, t) in E} \ (C ∪ Lexcl(E,C))

[] ↓t = []

(op(l, c, v, t′)++E) ↓t =

{
op(l, c, v, t′)++(E ↓t), if t = t′

E ↓t, otherwise

Figure 7. Valid Interleaving Test

We now use the bounds that static privileges place on run-
time accesses to give an efficient runtime test for non-
interference. We first extend the non-interference operator
to work on privileges:
priv1(r1)#Mpriv2(r2)⇔

(priv1 = reads ∧ priv2 = reads) ∨
(priv1 = reducesid1 ∧ priv2 = reducesid2 ∧ id1 = id2) ∨
(r1 ∗ r2) ∨
(M(r1) ∩M(r2) = ∅)

Φ1#MΦ2 ⇔
∧

φ1∈Φ1,φ2∈Φ2

φ1#Mφ2

The cases where both subtasks have read-only privileges or
both subtasks have reduce-only privileges have equivalents
for regions, which can be tested statically. Detecting the case
where the two sets of memory addresses are disjoint is ap-
proximated by two tests. The first uses (logical) region dis-
jointness constraints from the type system to statically infer
non-interference. The second uses the region mapping M to
dynamically determine the disjointness of the two regions.
Although a dynamic test, it is performed once per pair of re-
gions rather than for every pair of memory operations. An
algorithm to perform the dynamic test efficiently is given in
[2]. As region non-interference is an approximation of mem-
ory trace non-interference, we must show that it is sound.

Lemma 12. Let M be a region mapping and E1 and E2 two
memory traces such that E1 :M Φ1 and E2 :M Φ2. If Φ1 and
Φ2 are non-interfering under M , then E1 and E2 must be
non-interfering.

We now state the theorem that allows the Legion run-
time to perform hierarchical and parallel scheduling of non-
interfering tasks.

Theorem 3. Let e1, . . . , en be well-typed Legion expres-
sions, each with its own privileges Φi. Let M be a region
mapping, L a local value mapping, H a heap typing, and
S be an initial store satisfying M ∼ Ω, L ∼H M [[Γ]], and
S ∼ H. If Φi#MΦj for 1 ≤ i < j ≤ n, then any parallel exe-
cution of expressions e1, . . . , en results in a valid interleaving
of memory operations.

The proof follows directly from Lemmas 11 and 12. This
result holds even if the clobber set C is non-empty, allow-
ing locally independent subtasks to run in parallel even if
they interact (in a programmer-permitted way) with another
subtask.

We highlight an important aspect of a Legion implemen-
tation that is different from other systems and relies on the
soundness of privileges. Dynamic non-interference of mem-
ory operations can only be determined after evaluation of
an expression is completed, and only at great expense, as
illustrated by work on transactional memory [13]. At the
other extreme are systems like Jade [17] and DPJ [5] that
check non-interference statically, but must disallow alias-
ing to do so. In contrast, Legion can verify non-interference
of privileges at runtime, which is much simpler and more
efficient than checking non-interference of dynamic mem-
ory traces. Even though the privileges themselves are static,
the region mapping M is dynamic. Dynamically testing non-
interference on the privileges of physical regions allows par-
allel execution in many more cases than a purely static anal-
ysis can achieve in the presence of aliasing. When a dynamic
test fails, the Legion runtime is conservative and forces se-
quential ordering between the tasks to guarantee correct be-
havior.

7.3 Atomic Coherence
In cases where Legion cannot safely infer non-interference
of privileges (perhaps because two tasks actually access the
same data in aliased regions), relaxation of the constraints
on execution order can still be requested by the programmer
through the use of coherence annotations on individual re-
gions passed to a task. The atomic coherence mode specifies
that although two tasks interfere due to accessing aliased re-
gions, they may execute in either order, allowing the task
issued later in program order to possibly run before the task
issued earlier in program order. This relaxation only applies
if all aliased regions are annotated with atomic coherence.
To show this is safe, we define a relaxed version of non-
interference for atomic coherence:

op1(l1, c1, v1, t1) #A op2(l2, c2, v2, t2)⇔

op1(l1, c1, v1, t1) # op2(l2, c2, v2, t2) ∨

(c1 = atomic ∧ c2 = atomic ∧ t1 6= t2)

We repeat the steps in Section 7.2 using the #A operator
and reach another result used by the Legion runtime sched-
uler:

Theorem 4. Let e1, . . . , en be well-typed Legion expres-
sions, each with its own privileges Φi. Let M be a region
mapping, L a local value mapping, H a heap typing, and
S be an initial store satisfying M ∼ Ω, L ∼H M [[Γ]], and
S ∼ H. If Φi#

A
MΦj for 1 ≤ i < j ≤ n, then for any permu-

tation (π1, . . . , πn) of (1, . . . , n), Eπ1++ . . .++Eπn is a valid
interleaving.

7.4 Simultaneous Coherence
Coherence also can be relaxed using the simult mode, which
allows multiple tasks to access the same region concurrently.
The simult coherence mode is appropriate in two important
cases:

1. When subtasks are accessing disjoint data, but the dis-
jointness is difficult to describe (e.g. walking separate
linked lists that have been allocated in the same region).

2. When the algorithm is tolerant of non-determinism (e.g.
in a breadth-first search, setting the parent pointer of a
node with multiple equally-short paths to the root).

To support the simult coherence, the non-interference test is
extended with a #S operator, analogous to #A for atomic
coherence. Because the rules for valid interleavings exclude
locations that are only accessed in simult mode, it is straight-
forward to extend Theorem 3 to show that parallel execution
is safe as long as Φi#

S
MΦj .

It is also possible to have both atomic and simult coher-
ence modes at the same time for different regions in a task
call. In this case the non-interference test #AS uses both the
atomic and simult relaxations, and Theorem 4 is extended to
allow arbitrary reordering (but not simultaneous execution)
of subtasks when Φi#

AS
M Φj .

8. Hierarchical Scheduling
Because testing non-interference of tasks is a pairwise op-
eration, scheduling n tasks can require O(n2) tests. Thus,
a scheduler that must globally consider all pairs of tasks
will be impractical for large machines and large numbers of
tasks. The following theorem, however, shows that Legion
programs enjoy a locality property that limits the scope of
the needed non-interference tests.

Theorem 5. Let e1 and e2 be well-typed expressions using
privileges Φ1 and Φ2 respectively, where Φ1#MΦ2. Let e′1
be a subexpression of e1 and e′2 be a subexpression of e2.
Any memory traces E′1 of e′1 and E′2 of e′2 resulting from
evaluation of e1 and e2 (with the usual consistent M , L, H,
and S) are non-interfering.

The Legion task scheduler uses Theorem 5 as follows:
sibling function calls (those invoked within the same func-
tion body) e1 and e2 are checked for non-interference of their
(dynamic) privileges. Since e1 and e2 are called on the par-
ent task’s node, no communication is required to perform
the non-interference test. If they interfere they are executed
in program order or serialized depending on their coher-
ence specifications; otherwise they are considered for exe-
cution as parallel subtasks. If e1 and e2 are determined to
be non-interfering and are scheduled in parallel on different
remote processors then Theorem 5 guarantees that there is
no communication required between e1 and e2 to perform
non-interference tests between their sub-tasks. Therefore,
the runtime requires no communication for scheduling.

9. Evaluation
We evaluate the design of Legion’s static and dynamic se-
mantics on four criteria: expressivity (can real applications
be written—Section 9.1), overhead (what are the dynamic
checking costs—Section 9.2), scalability (can it enable hier-
archical scheduling—Section 9.3), and performance (does
the performance increase from relaxed coherence modes
warrant the increased semantic complexity—Section 9.4).
Our prototype implementation has two components: a type
checker for the language of Section 3 and a C++ runtime
library for executing programs written in the Legion pro-
gramming model. All experiments are conducted on the
Keeneland supercomputer[20]. Each node of Keeneland
consists of two Xeon 5660 CPUs, three Tesla M2090 GPUs,
and 24 GB of DRAM. Nodes are connected by a QDR In-
finiband interconnect.

9.1 Expressivity
We evaluate Legion on three real-world applications. To
qualitatively gauge the expressivity of Legion, we introduce
these applications by describing features used in their im-
plementations. The Circuit example was already covered in
detail in Section 2.

3 6 12 24 48 96
Total GPUs (3 GPUs/node)

0

100

200

300

400

500

600

P
ro

ce
ss

or
Ti

m
e

(s
ec

on
ds

)

Checking Overhead
Communication
Runtime Overhead
Kernel

Figure 8. Overhead in Circuit simulation with 96 pieces.

Fluid is a distributed memory version of the fluidanimate
benchmark from the PARSEC suite[3]. Fluid simulates the
flow of an incompressible fluid using particles that move
within a regular grid of cells. To perform operations in par-
allel, the array of cells is partitioned. Unlike Circuit, Fluid
creates and partitions regions before allocating cells in them.
Another difference is that Fluid maintains separate regions
for ghost cells rather than using multiple partitions of the re-
gions containing shared data. Region relationships are used
to capture which regions are required for each grid.

The third application is a Legion port of an adaptive mesh
refinement (AMR) benchmark from BoxLib [15]. The al-
gorithm solves the two dimensional heat diffusion equation
on a grid of cells using three levels of refinement with sub-
refinements randomly placed on the surface. Every level of
refinement uses a separate region, which is partitioned sev-
eral ways to support multiple views of the cells. One par-
titioning separates cells into pieces that can be updated in
parallel. Additional partitions are created for viewing data
from coarser and finer levels of the simulation. Two types of
region relationships are created: one describes pieces at each
level of refinement, and another describes relationships be-
tween pieces at different levels of refinement. The dynamic
nature of AMR requires that regions be created and parti-
tioned at runtime.

Dynamically creating and partitioning regions at runtime
is crucial to Legion’s ability to handle applications that make
runtime decisions about data organization (AMR). Having
multiple partitions of regions is necessary for describing
the many ways that data can be accessed (Circuit, AMR).
All the types of privileges and coherence are needed in
some application; region relationships are used in all appli-
cations. Finally, all applications introduce aliasing of data
either through the use of multicolorings or by having mul-
tiple partitions. Our implementations of these applications
both type check and execute, proving that our type system is
sufficiently expressive to handle real-world applications.

9.2 Checking Overhead
The first Legion implementation consisted of a C++ library
of Legion primitives [2] with no checking of region mem-
ory accesses. When using this system we frequently en-

8 16 32 64 128
Total CPUs (8 CPUs/node)

0

200

400

600

800

1000

1200

1400

1600

P
ro

ce
ss

or
Ti

m
e

(s
ec

on
ds

)

PARSEC
Checking Overhead
Communication
Runtime Overhead
Kernel

Figure 9. Overhead in Fluid simulation with 19200 cells.

countered memory corruption due to illegal region accesses
caused by application bugs. In many cases, this corruption
occurred between nodes in the cluster or on GPUs, environ-
ments for which debugging tools are primitive at best. To
locate the application bugs causing these illegal accesses,
we initially added dynamic checks on all region accesses
for both CPUs and GPUs which added considerable runtime
overhead. In short, the standard benefits of type checking
(increased program safety and efficiency) are magnified in
high performance parallel applications, because debugging
is so difficult and efficiency considerations are paramount.
To preserve the benefit of checking every access without the
cost of dynamic checks, we implemented the type, privilege,
and coherence checker we have described. We then rewrote
the applications in this language and type checked them,
at which point the dynamic region access checks could be
safely elided.

Figures 8, 9, and 10 show the total time spent by all
CPUs and GPUs in each phase of the application. The top-
most component of each bar shows the overhead added by
the dynamic checks. In each figure the problem size stays
the same as the number of processors increases (strong scal-
ing). Figure 10 includes multiple problem sizes to show how
overhead is affected by changing problem size (weak scal-
ing). For cases where there is an existing implementation to
compare against we have included a dotted line indicating
baseline performance. In a few cases (Figures 9 and 10(a)),
the checking overhead is the difference between better and
worse performance than the baseline. The overall perfor-
mance relative to the baseline implementations is discussed
in [2].

In addition to total processor overhead, we also measured
performance gain from eliding checks in terms of wall-clock
time. Since most region accesses occur in leaf tasks, the
checks parallelize well. Wall-clock performance gains from
eliding memory checks ranged from 1-10%, 1-15%, and 2-
71% for Circuit, Fluid, and AMR respectively. Performance
gains for AMR were larger than the other applications be-
cause AMR was already memory bound and the additional
checks intensified memory pressure. For the GPU kernels
in the Circuit application checking required up to 8 addi-
tional registers per thread. While the GPU kernels in Cir-

1 2 4 8 16
Nodes

0

5

10

15

20

25

30

35

P
ro

ce
ss

or
Ti

m
e

(s
ec

on
ds

)

BoxLib
Checking Overhead
Communication
Runtime Overhead
Kernel

(a) 4096 cells per dimension

1 2 4 8 16
Nodes

0

20

40

60

80

100

120

P
ro

ce
ss

or
Ti

m
e

(s
ec

on
ds

)

BoxLib
Checking Overhead
Communication
Runtime Overhead
Kernel

(b) 8192 cells per dimension

1 2 4 8 16
Nodes

0

100

200

300

400

500

600

P
ro

ce
ss

or
Ti

m
e

(s
ec

on
ds

)

BoxLib
Checking Overhead
Communication
Runtime Overhead
Kernel

(c) 16384 cells per dimension

Figure 10. Overhead in AMR application.

cuit were not bound by available on-chip memory, kernels
that are would be susceptible to extreme performance degra-
dation due to the extra registers required for checking. We
also measured the overhead of the dynamic checks associ-
ated with checking task call privileges but found them to
be negligible, demonstrating that runtime non-interference
checks are inexpensive in Legion.

9.3 Scalability
Figures 8, 9, and 10 show that the overhead of the Legion
runtime is always less than 7% of the total execution time of
the applications. In some applications communication does
not scale well, but this is a result of the algorithm required by
the application, not the Legion runtime. Even in the case of
the Circuit application, which exhibits quadratic increases in
communication cost, the Legion runtime is able to achieve a
62.5X speedup on 96 GPUs over a hand-coded single GPU
implementation[2].

1 16 32 48
Total GPUs (3 GPUs/node)

0

10

20

30

40

50

S
pe

ed
up

vs
.

H
an

d-
C

od
ed

S
in

gl
e

G
P

U Linear
Relaxed Coherence
Exclusive Coherence

(a) 48 Piece Problem Size

1 16 32 48 64 80 96
Total GPUs (3 GPUs/node)

0

10

20

30

40

50

60

70

S
pe

ed
up

vs
.

H
an

d-
C

od
ed

S
in

gl
e

G
P

U Linear
Relaxed Coherence
Exclusive Coherence

(b) 96 Piece Problem Size

Figure 11. Performance of relaxed coherence modes.

9.4 Performance
To demonstrate the benefit of relaxed coherence modes,
we modified the circuit example from Section 2 to use ex-
clusive coherence instead of atomic coherence in the dis-
tribute charge task and compared the performance of the
two versions. The results are shown in Figure 11. Slow-
downs ranged from 34% on 48-GPUs to 67% on 96 GPUs
and more importantly scaled with node count. This is a di-
rect consequence of Amdahl’s Law. Even though the dis-
tribute charge tasks are a small fraction of the total work,
the serialization that results from requiring exclusive ac-
cess to the overlapping ghost regions limits the scalability
of the application. Relaxed coherence modes will be crucial
in achieving scalability of applications with aliased data on
distributed memory machines.

10. Related Work
Legion is most directly related to Sequoia [1, 10]. Sequoia is
a static language with a single unified hierarchy of tasks and
data; Legion is more dynamic with separate task and region
hierarchies.

Deterministic Parallel Java (DPJ) is the only other region-
based parallel system of which we are aware[4]. While there
are similarities between DPJ’s effects and Legion privileges,
there are differences stemming from DPJ’s static approach.
Regions in Legion are first-class and can be created, par-
titioned, packed, and unpacked dynamically, allowing pro-
grammers to compute data organization at runtime; like Se-
quoia, DPJ partitioning schemes are static. Legion allows
programmers to create multiple partitions of the same region
to give different views onto the same data, which is not pos-
sible in DPJ. DPJ supports both exclusive and atomic tasks
which are similar to Legion’s coherence modes, but only al-
lows specification at the coarser granularity of tasks and not
individual regions.

Chapel [7] and X10 [8] also provide some Legion-like
facilities. Chapel’s locales and X10’s places provide the pro-
grammer with a mechanism for expressing locality, similar
to regions in Legion. However, locales and places are not
used for independence analysis to discover parallelism. In
contrast, Jade uses annotations to describe data disjointness,
and like Legion leverages the disjointness information to dis-
cover parallelism, but lacks a region system to name and or-
ganize unbounded collections of objects [17].

Hierarchical Place Trees (HPT) [21] is a generalization
of the Sequoia and X10 program models. HPT presents hi-
erarchical places in which to put data; places are mapped
onto physical locations in the memory hierarchy. HPT has
no equivalent to partitioning in Legion, leaving the burden
on the programmer to ensure that data is moved correctly
through the place hierarchy and to ensure the safety of par-
allel task execution.

Many efforts use static region systems for memory man-
agement (e.g., [12, 18]). Our system is more closely related
to dynamic region systems used for expressing locality for
performance [11]. Titanium is an SPMD parallel language
with a region system where regions are tightly bound to spe-
cific processors [22].

There have been many type and effect systems for owner-
ship types [6] including ones that leverage nested regions for
describing relationships (e.g., [9]). However, ownership type
and effect systems are primarily used for reasoning about de-
terminism in object oriented languages and don’t capture the
range of disjointness properties in Legion. Reasoning about
disjoint data is the strong suit of separation logic [16]. While
we have borrowed some separation logic notation, we chose
to use a privileges system because separation logic does not
easily support reasoning about the interleaving of operations
to aliased regions of memory.

11. Conclusion
Modern architectures have dramatically increased in com-
plexity in recent years. To program this class of machines,
new programming systems will be required that are capable
of reasoning about the structure of data and how it should
be partitioned. We have presented the static and dynamic se-
mantics for the Legion programming system, showing how
a combination of static and dynamic checks can be used to
support region-level privileges and coherence, even in the
presence of dynamically partitioned and aliased data. We
have also given a novel compositional parallel semantics,
permitting a precise treatment of relaxed coherence modes;
in particular we have shown the Legion design is sound
even with relaxed coherence. These semantics make possi-
ble a novel hierarchical scheduling algorithm that is crucial
for scaling on large distributed machines. Finally, we have
demonstrated that our system enables static elision of many
dynamic checks leading to large performance improvements
on real world applications.

Acknowledgments
This research used resources of the Keeneland Computing
Facility at the Georgia Institute of Technology, supported
by the National Science Foundation under Contract OCI-
0910735. Sean Treichler and Michael Bauer were supported
by grant W911NF-07-2-0027-1 from the Army High Per-
formance Computing Research Center. Michael Bauer was
supported by an NVIDIA Graduate Research Fellowship.

References
[1] M. Bauer, J. Clark, E. Schkufza, and A. Aiken. Programming

the memory hierarchy revisited: Supporting irregular paral-
lelism in Sequoia. In Proceedings of the Symposium on Prin-
ciples and Practice of Parallel Programming, 2011.

[2] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. Legion:
Expressing locality and independence with logical regions. In
Supercomputing (SC), 2012.

[3] C. Bienia. Benchmarking Modern Multiprocessors. PhD
thesis, Princeton University, January 2011.

[4] R. Bocchino et al. A type and effect system for deterministic
parallel Java. In OOPSLA, 2009.

[5] R. Bocchino et al. Safe nondeterminism in a deterministic-by-
default parallel language. In POPL, 2011.

[6] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for
object encapsulation. In POPL, 2003.

[7] B.L. Chamberlain et al. Parallel programmability and the
chapel language. Int’l Journal of HPC Applications, 2007.

[8] P. Charles et al. X10: An object-oriented approach to non-
uniform cluster computing. In OOPSLA, 2005.

[9] D. Clarke and S. Drossopoulou. Ownership, encapsulation
and the disjointness of type and effect. In OOPSLA, 2002.

[10] K. Fatahalian et al. Sequoia: Programming the Memory Hier-
archy. In Supercomputing, November 2006.

[11] D. Gay and A. Aiken. Language support for regions. In PLDI,
2001.

[12] D. Grossman et al. Region-based memory management in
cyclone. In PLDI, 2002.

[13] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Com-
posable memory transactions. In PPOPP, 2005.

[14] G. Karypis and V. Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM J. Sci. Com-
put., 1998.

[15] M. Lijewski, A. Nonaka, and J. Bell. Boxlib. https://ccse.
lbl.gov/BoxLib/index.html, 2011.

[16] J. C. Reynolds. Separation logic: A logic for shared mutable
data structures. In IEEE Symposium on Logic in CS, 2002.

[17] M. C. Rinard and M. S. Lam. The design, implementation,
and evaluation of Jade. ACM Trans. Program. Lang. Syst.,
1998.

[18] M. Tofte and J.P. Talpin. Region-based memory management.
In POPL, 1994.

[19] S. Treichler, M. Bauer, and A. Aiken. Language sup-
port for dynamic, hierarchical data partitioning: Extended
version. http://theory.stanford.edu/~aiken/

publications/papers/oopsla13a-extended.pdf,
2013. Technical Report.

[20] J.S. Vetter et al. Keeneland: Bringing heterogeneous gpu com-
puting to the computational science community. Computing
in Science Engineering, pages 90 –95, 2011.

[21] Y. Yan, J. Zhao, Y. Guo, and V. Sarkar. Hierarchical place
trees: A portable abstraction for task parallelism and data
movement. In Workshop on Languages and Compilers for
Parallel Computing, 2009.

[22] K. Yelick et al. Titanium: A high-performance Java dialect.
In Workshop on Java for High-Performance Network Com-
puting, 1998.

A. Core Legion Circuit Code

1 −− 〈voltage,current,charge,capacitance,piece ID〉
2 type CircuitNode = 〈int,int,int,int,int〉
3 −− 〈 owned node, owned or ghost node, resistance, current〉
4 type CircuitWire〈rn,rg〉 = 〈CircuitNode@rn, CircuitNode@(rn,rg),int,int〉
5

6 type NodeList〈rl,rn〉 = 〈 CircuitNode@rn, NodeList〈rl,rn〉@rl 〉
7 type WireList〈rl,rw,rn,rg〉= 〈 CircuitWire〈rn,rg〉@rw, WireList〈rl,rw,rn,rg〉@rl 〉
8 function extern metis[rl,rn,rw](node list : NodeList〈rl,rn〉@rl,
9 wires list : WireList〈rl,rw,rn,rn〉@rl), reads(rl,rn,rw), writes(rn) : bool

10

11 type CircuitPiece〈rl,rw,rn〉 = rr[rpw,rpn,rg]
12 〈WireList〈rl,rpw,rpn,rg〉@rl, NodeList〈rl,rpn〉@rl 〉
13 where rpn≤ rn and rg≤ rn and rpw≤ rw and
14 rn ∗ rw and rl ∗ rn and rl ∗ rw
15

16 −− Multicoloring helper for aliased partitions
17 type multicoloring〈rn〉 = 〈 coloring(rn), coloring(rn) 〉
18

19 −− Simulation initialization and invocation
20 function simulate circuit[rl,rw,rn] (all nodes : NodeList〈rl,rn〉@rl,
21 all wires : WireList〈rl,rw,rn,rn〉@rl, steps : int),
22 reads(rn,rw,rl), writes(rn,rw,rl) : bool =
23 −− use METIS to decide how to partition circuit
24 let : bool = extern metis[rl,rn,rw](all nodes, all wires) in
25

26 −− create colorings to describe METIS results to Legion
27 let owned node map : coloring(rn) = owned node coloring[rl,rn](all nodes) in
28 let ghost node map : multicoloring〈rn〉 =
29 ghost node coloring[rl,rw,rn,rn](all wires) in
30 let wire map : coloring(rw) = wire coloring[rl,rw,rn,rn](all wires) in
31

32 −− Disjoint partition for the owned nodes of each piece
33 partition rn using owned node map as rn0,rn1 in
34 −− Aliased partition for ghost nodes of each piece
35 partition rn using ghost node map.1 as rg0 in
36 partition rn using ghost node map.2 as rg1 in
37 −− Disjoint partition for the owned wires of each piece
38 partition rw using wire map as rw0,rw1 in
39

40 −− Create region relationships for circuit pieces
41 let lists0 : 〈WireList〈rl,rw0,rn0,rg0〉@rl,NodeList〈rl,rn0〉@rl〉 =
42 〈 build piece wire list[rl,rw,rn,rw0,rn0,rg0](all wires),
43 build piece node list[rl,rn,rn0](all nodes) 〉 in
44 let piece0 : CircuitPiece〈rl,rw,rn〉 =
45 pack lists0 as CircuitPiece〈rl,rw,rn〉[rw0,rn0,rg0] in
46 let lists1 : 〈WireList〈rl,rw1,rn1,rg1〉@rl,NodeList〈rl,rn1〉@rl〉 =
47 〈 build piece wire list[rl,rw,rn,rw1,rn1,rg1](all wires),
48 build piece node list[rl,rn,rn1](all nodes) 〉 in
49 let piece1 : CircuitPiece〈rl,rw,rn〉 =
50 pack lists1 as CircuitPiece〈rl,rw,rn〉[rw1,rn1,rg1] in
51

52 −− do actual (parallel) simulation
53 execute time steps[rl,rw,rn](piece0,piece1,steps)
54

55 −− Time Step Loop
56 function execute time steps[rl,rw,rn] (p0 : CircuitPiece〈rl,rw,rn〉,
57 p1 : CircuitPiece〈rl,rw,rn〉, steps : int) , reads(rn,rw,rl), writes(rn,rw) : bool =
58 if steps < 1 then true else
59 unpack p0 as piece0 : CircuitPiece〈rl,rw,rn〉[rw0,rn0,rg0] in
60 unpack p1 as piece1 : CircuitPiece〈rl,rw,rn〉[rw1,rn1,rg1] in
61 let : bool = calc new currents[rl,rw0,rn0,rg0](piece0.1) in
62 let : bool = calc new currents[rl,rw1,rn1,rg1](piece1.1) in
63 let : bool = distribute charge[rl,rw0,rn0,rg0](piece0.1) in
64 let : bool = distribute charge[rl,rw1,rn1,rg1](piece1.1) in
65 let : bool = update voltage[rl,rn0](piece0.2) in
66 let : bool = update voltage[rl,rn1](piece1.2) in
67 execute time steps[rl,rw,rn](p0,p1,steps−1)
68

Listing 2. Top-Level Application Code

69 function calc new currents[rl,rw,rn,rg] (ptr list : WireList〈rl,rw,rn,rg〉@rl),
70 reads(rl,rw,rn,rg), writes(rw) : bool =
71 if isnull(ptr list) then true else
72 let wire node : WireList〈rl,rw,rn,rg〉 = read(ptr list) in
73 let wire : CircuitWire〈rn,rg〉 = read(wire node.1) in
74 let in node : CircuitNode = read(wire.1) in
75 let out node : CircuitNode = read(wire.2) in
76 let current : int = (in node.1− out node.1) / wire.3 in
77 let new wire : CircuitWire〈rn,rg〉 = 〈wire.1,wire.2,wire.3,current〉 in
78 let : CircuitWire〈rn,rg〉@rw = write(wire node.1, new wire) in
79 calc new currents[rl,rw,rn,rg](wire node.2)
80

81 function distribute charge[rl,rw,rn,rg] (ptr list : WireList〈rl,rw,rn,rg〉@rl),
82 reads(rl,rw,rn), reduces(reduce charge,rn,rg), atomic(rn,rg) : bool =
83 if isnull(ptr list) then true else
84 let wire node : WireList〈rl,rw,rn,rg〉 = read(ptr list) in
85 let wire : CircuitWire〈rn,rg〉 = read(wire node.1) in
86 let : CircuitNode@rn = reduce(reduce charge, wire.1, wire.4) in
87 let : CircuitNode@(rn,rg) = reduce(reduce charge, wire.2, wire.4) in
88 distribute charge[rl,rw,rn,rg](wire node.2)
89

90 function update voltage[rl,rn] (ptr list : NodeList〈rl,rn〉@rl),
91 reads(rl,rn), writes(rn) : bool =
92 if isnull(ptr list) then true else
93 let node ptr : CircuitNode@rn = read(ptr list).1 in
94 let : CircuitNode@rn =
95 −− update voltage on a node
96 let node : CircuitNode = read(node ptr) in
97 let voltage : int = (node.3 / node.4) in
98 let new node : CircuitNode = 〈 voltage, node.2, node.3, node.4, node.5 〉 in
99 write(node ptr, new node)

100 in
101 let next : NodeList〈rl,rn〉@rl = read(ptr list).2 in
102 update voltage[rl,rn](next)
103

104 −− Reduction function for distribute charge
105 function reduce charge (node : CircuitNode, current : int) : CircuitNode =
106 let new charge : int = node.3 + current in
107 〈 node.1, node.2, new charge, node.4, node.5 〉
108

Listing 3. Leaf Computation Tasks

109 function owned node coloring[rl,rn] (node list: NodeList〈rl,rn〉@rl),
110 reads(rl,rn) : coloring(rn) =
111 if isnull(node list) then
112 newcolor rn
113 else −− tuple fields accessed by .(field number)
114 let list elem : NodeList〈rl,rn〉 = read(node list) in
115 let part coloring : coloring(rn) = owned node coloring[rl,rn](list elem.2) in
116 let node ptr : CircuitNode@rn = list elem.1 in
117 let node : CircuitNode = read(node ptr) in
118 let piece id from metis: int = node.5 in
119 color(part coloring, node ptr, piece id from metis)
120

121 function ghost node coloring[rl,rw,rn,rg] (wire list: WireList〈rl,rw,rn,rg〉@rl),
122 reads(rl,rw,rn,rg) : multicoloring〈rn〉 =
123 if isnull(wire list) then
124 〈 newcolor rn, newcolor rn 〉
125 else −− tuple fields accessed by .(field number)
126 let list elem : WireList〈rl,rw,rn,rg〉 = read(wire list) in
127 let part coloring : multicoloring〈rn〉 =
128 ghost node coloring[rl,rw,rn,rg](list elem.2) in
129 let wire ptr : CircuitWire〈rn,rg〉@rw = list elem.1 in
130 let wire : CircuitWire〈rn,rg〉 = read(wire ptr) in
131 let in node : CircuitNode = read(wire.1) in
132 let out node : CircuitNode = read(wire.2) in
133 let in piece id : int = in node.5 in
134 let out piece id : int = out node.5 in
135 let id not equal : bool =
136 if in piece id 〈 out piece id then true else
137 if out piece id 〈 in piece id then true else false
138 in
139 if id not equal then
140 if in piece id 〈 2 then
141 〈 color(part coloring.1, downregion(wire.2, rn), 1), part coloring.2 〉
142 else
143 〈 part coloring.1, color(part coloring.2, downregion(wire.2, rn), 1) 〉
144 else
145 〈 part coloring.1, part coloring.2 〉
146

147 function wire coloring[rl,rw,rn,rg] (wire list: WireList〈rl,rw,rn,rg〉@rl),
148 reads(rl,rw,rn) : coloring(rw) =
149 if isnull(wire list) then
150 newcolor rw
151 else −− tuple fields accessed by .(field number)
152 let list elem : WireList〈rl,rw,rn,rg〉 = read(wire list) in
153 let part coloring : coloring(rw) = wire coloring[rl,rw,rn,rg](list elem.2) in
154 let wire ptr : CircuitWire〈rn,rg〉@rw = list elem.1 in
155 let wire : CircuitWire〈rn,rg〉 = read(wire ptr) in
156 let node ptr : CircuitNode@rn = wire.1 in
157 let node : CircuitNode = read(node ptr) in
158 let piece id from metis: int = node.5 in
159 color(part coloring, wire ptr, piece id from metis)
160

Listing 4. Coloring Functions

161 function build piece node list[rl,rn,rpn] (all nodes : NodeList〈rl,rn〉@rl),
162 reads(rl), writes(rl) : NodeList〈rl,rpn〉@rl =
163 if isnull(all nodes) then
164 null NodeList〈rl,rpn〉@rl
165 else
166 let list elem : NodeList〈rl,rn〉 = read(all nodes) in
167 let part list : NodeList〈rl,rpn〉@rl =
168 build piece node list[rl,rn,rpn](list elem.2) in
169 let node ptr : CircuitNode@rpn = downregion(list elem.1, rpn) in
170 if isnull(node ptr) then
171 part list
172 else
173 let new elem ptr : NodeList〈rl,rpn〉@rl = new NodeList〈rl,rpn〉@rl in
174 let new elem : NodeList〈rl,rpn〉 = 〈 node ptr, part list 〉 in
175 let : NodeList〈rl,rpn〉@rl = write(new elem ptr, new elem) in
176 new elem ptr
177

178 function build piece wire list[rl,rw,rn,rpw,rpn,rpg]
179 (all wires : WireList〈rl,rw,rn,rn〉@rl),
180 reads(rl,rpw), writes(rl,rpw) : WireList〈rl,rpw,rpn,rpg〉@rl =
181 if isnull(all wires) then
182 null WireList〈rl,rpw,rpn,rpg〉@rl
183 else
184 let list elem : WireList〈rl,rw,rn,rn〉 = read(all wires) in
185 let part list : WireList〈rl,rpw,rpn,rpg〉@rl =
186 build piece wire list[rl,rw,rn,rpw,rpn,rpg](list elem.2) in
187 let wire ptr : CircuitWire〈rn,rn〉@rpw = downregion(list elem.1, rpw) in
188 if isnull(wire ptr) then
189 part list
190 else
191 let old wire : CircuitWire〈rn,rn〉 = read(wire ptr) in
192 let new wire ptr : CircuitWire〈rpn,rpg〉@rpw =
193 new CircuitWire〈rpn,rpg〉@rpw in
194 let new wire : CircuitWire〈rpn,rpg〉 = 〈 downregion(old wire.1, rpn),
195 downregion(old wire.2, rpn, rpg),
196 old wire.3, old wire.4 〉 in
197 let : CircuitWire〈rpn,rpg〉@rpw = write(new wire ptr, new wire) in
198 let new elem ptr : WireList〈rl,rpw,rpn,rpg〉@rl =
199 new WireList〈rl,rpw,rpn,rpg〉@rl in
200 let new elem : WireList〈rl,rpw,rpn,rpg〉 = 〈 new wire ptr, part list 〉 in
201 let : WireList〈rl,rpw,rpn,rpg〉@rl = write(new elem ptr, new elem) in
202 new elem ptr
203

Listing 5. List-Building Helper Functions

