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Abstract
Traditional methods for building spoken language understand-
ing systems require manual rules or annotated data, which are
expensive. In this work, we present an unsupervised method for
bootstrapping a relation classifier, which identifies the knowl-
edge graph relations present in an input query. Unlike existing
work, we utilize only one knowledge graph entity instead of two
for mining relevant query patterns from query click logs. As a
result, the mined patterns can be used to infer both explicit re-
lations (where the objects of the relations are expressed in the
queries) and implicit relations (where the objects of the rela-
tions are being asked about). Using only the mined queries, the
final classifier achieves an F-measure of 55.5%, which is signifi-
cantly higher than the previous unsupervised learning baselines.
Index Terms: conversational understanding systems, relation
detection, search query click logs, unsupervised learning, se-
mantic graph

1. Introduction
In a dialog system, the spoken language understanding (SLU)
module receives transcribed speech queries and extracts their
semantic information, which can be used for decision making
and response generation [1, 2]. We focus on building a rela-
tion detector, which outputs all relations expressed in the query
(e.g., “Who played Jake Sully in Avatar” has relations acted by,
character name, and movie name). These relations are used to
form queries to databases or knowledge graphs in order to gen-
erate an appropriate response [3].

Most approaches for building SLU systems depend on ei-
ther complex hand-crafted rules, which require time and ex-
pertise to write, or supervised learning, which requires a large
amount of human-annotated data. However, designers of SLU
systems may reduce supervision by using external resources
that relate natural language to some computable semantic struc-
tures. We focus on two resources: knowledge graphs, which
represent relations between entities as large directed graphs, and
web search query click logs, which link search queries to the
URLs that the users click on.

In this work, we propose a totally unsupervised method for
bootstrapping a relation detector. Instead of using manually an-
notated sentences, we acquire natural language queries in the
domain of interest from search query click logs. Subsequently,
we use knowledge graphs and URLs from the click logs to fil-
ter the queries and automatically label them with relations. Our
previous work on relation detection [3] uses a similar distant su-
pervision approach that automatically annotates sentences with
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the intended relations when both of the related entities appear
in the search queries or web documents. However, such an ap-
proach only targets explicit relations, as it requires the subjects
and objects of the relations to both be specified in the queries
(e.g., the director name relation in “Find Avatar movie directed
by James Cameron”), and hence makes limited use of related
search queries. With our new methods, we can also infer im-
plicit relations, where the values of the relations are being asked
about and thus left unspecified (e.g., the directed by relation in
“Who made Avatar”). Explicit and implicit relations are in-
ferred with separate but related techniques: for explicit rela-
tions, we use knowledge graph entity-relation-entity triples to
automatically label the objects of the relations, while for im-
plicit relations, we consider the entities that can invoke the rela-
tions and leverage the query patterns mined from those entities.
The final classifier which uses only the mined data achieves a
micro F-measure of 55.5%, a large improvement over previous
unsupervised learning baselines.

The rest of the paper is organized as follows. The next sec-
tion formally introduces the task, knowledge graphs, and query
click logs. Section 3 presents the relevant work that uses the
same external resources. In Section 4 we describe our approach,
the results of which are presented in Section 5. Finally, Sec-
tion 6 concludes the paper.

2. Relation detection using knowledge
graphs and query click logs

In this section, we describe the relation detection task and the
resources we use to tackle the task: large-scale semantic knowl-
edge graphs (e.g., Freebase [4]) and search query click logs.

2.1. Knowledge graphs

We focus on the relations that are present in graphical knowl-
edge bases, or knowledge graphs for short. A knowledge graph,
as illustrated in Figure 1, is a directed graph where each node
represents an entity (e.g., Avatar or James Cameron) and each
labeled edge represents a relation between two entities (e.g.,
directed by). Each entity belongs to one or more types (e.g.,
Avatar belongs to the film type), and each type has a schema
specifying which relations should originate from the entities of
that type (e.g., an entity of type film will have a directed by re-
lation to an entity of type film director).

2.2. Relation detection task

We consider the relation detection task: given a transcribed
natural language query, we want to determine all relations ex-
pressed in the query [3]. For example, both “Show me movies



by James Cameron” and “Who directed Avatar” contain the
relation directed by, but only the first query contains the rela-
tion director name. These relations can be regarded as building
blocks toward full language understanding, since more complex
representations of the query, such as SPARQL knowledge graph
queries or semantic logical forms, will contain these relations.

2.3. Query click logs

To obtain natural language queries in an unsupervised fashion,
we use query click logs (QCLs), which record the URL that
each user chose in a search engine after issuing a query. Along
the line of [5], we represent QCLs as a weighted undirected
bipartite graph: the queries and the URLs form two sides of
nodes, and the weight of the edge between a query node and a
URL node indicates the number of users who issued the query
and then clicked on the URL.

3. Related work

Earlier work on statistical spoken language understanding
(SLU) employs supervised learning, typically treating intent de-
tection as multi-class classification and slot filling as sequence
labeling [6, 7]. The training data for these tasks is annotated
according to a task-specific semantic representation [8]. To de-
crease the cost of acquiring and labeling training data, a group
of studies has investigated methods to adapt generic semantic
representations, associated annotated data, and clustering meth-
ods for training task-independent models [9, 10, 11].

Another research trend is the application of pre-existing
structured data in language understanding. In particular, with
the emergence of large knowledge bases (Freebase, Yago2, DB-
Pedia, Satori), many systems rely on knowledge graphs for
distant supervision. For example, given large text corpora
(e.g., Wikipedia or ClueWeb), information extraction systems
can find sentences containing pairs of entities with some tar-
get knowledge graph relation, and then use the extracted sen-
tences to train a high-precision relation extractor [12, 13, 14].
Instead of large corpora, the Web can also be used to supply
relevant sentences by scraping the search engine snippets when
the pairs of entities are used as search queries [3]. The align-
ments between the sentences (surface forms) and the underlying
knowledge graph relations can also be utilized in downstream
tasks such as classifying relations for answering factoid ques-
tion [15, 16, 17].

Besides knowledge graphs, query click logs have also been
used to build SLU systems in an unsupervised fashion. QCLs
were originally used to improve search results or suggest sim-
ilar search queries [18, 19, 20], but as QCLs contain a large
amount of text (search queries) with noisy semantic annotation
(URLs), they are also used in many language understanding
tasks such as acquiring related entities [21], clustering entities
into semantic classes [22, 23], user intents detection [24], en-
tity type classification [25], and knowledge acquisition [26]. In
our previous work, the queries mined from QCLs are used as
examples to classify query domains [27] and detect new query
intents [28]. This work extends from the previous work by (1)
using the relation model, which encompasses both intents and
slots, (2) proposing methods for mining queries that require
only one pivot entity instead of two, and (3) using aggregate
pattern statistics of the queries in a novel way to detect both
explicit and implicit relations.

Avatar

James
CameronAction

Sci-fi

2009-12-10

Sam Worthington Jake Sully

directed bygenre
genre initial

release
date

starring

actor character

Figure 1: A small portion of the knowledge graph. The gray
circle is a mediator node representing an (actor, character) pair.
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Figure 2: Query mining. From a property entity e, we find
the corresponding URLs from either the seed queries (left) or
the knowledge graphs (right), and then mine the corresponding
search queries from the QCL.

4. Approach
We now describe our approach to unsupervised relation de-
tection, which includes three major steps. First, we mine the
queries related to the entities of interest from the query click
logs (Section 4.1). Then, we use the queries to infer two types
of relations, explicit (Section 4.2) and implicit (Section 4.3).
Finally, the queries with inferred relations are used to train a
combined relation classifier (Section 4.4).

4.1. Mining entities and queries

The first step of the pipeline is finding knowledge graph entities
in the domain of interest. For example, in the movie domain,
we want to find the list of all movies as well as their attributes
(e.g., directors, actors, characters). We start by listing all enti-
ties of the central type corresponding to the desired dialog do-
main (e.g., Freebase film type for the movie domain). Then,
for each entity ec of the central type (e.g., from Figure 1, ec =
Avatar), we compute the property list P (ec) of entities that are
related to ec. Formally, P (ec) includes:

• entities e with an incoming relation from ec (e.g., e =
James Cameron via the relation directed by)

• entities e reachable from ec within two relations via a
mediator node (e.g., e = Jake Sully via the relations star-
ring and character)

• e = ec itself (e.g., e = Avatar)
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Figure 3: Bootstrapping an
explicit relation dataset DE .
When e′ is contained in the
query q, we infer that q has ex-
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Figure 4: Bootstrapping an
implicit relation dataset DI .
When e is not contained in
query q, we infer that q has im-
plicit relation p.

By combining the property lists P (ec) over all ec, we get
the list

⋃
ec

P (ec) of all entities related to the dialog domain.
To find spoken-language sentences for training relation

classifiers, we mine queries about each entity e ∈
⋃

ec
P (ec)

from a query click log (QCL) using one of the two strategies as
illustrated in Figure 2:

1. Using URLs from seed queries. For each entity e, we
use simple templates to formulate seed queries qs based
on e (e.g. the entity Action of type film genre results in
“action movies”, “action films”, etc.) and then retrieve
the corresponding clicked URLs u from the QCL. After-
ward, we find other queries q that link to the same URLs
u in the QCL. By traversing from seed queries to URLs
and then to other queries, we effectively perform a two-
step random walk on the QCL graph [5].

2. Using URLs from knowledge graphs. Instead of get-
ting URLs from seed queries, we observe that in knowl-
edge graphs, most entities have several relations pointing
to the URLs of either the official websites or the encyclo-
pedic pages about the entities (e.g., Wikipedia pages).
For each entity e, we mine such URLs u from Freebase
and Bing Satori, and then find the queries q in the QCL
that connect to the mined URLs u.

With either method, using the QCL as the query source has
an advantage that a large amount of search queries are in ques-
tion format, which is stylistically similar to spoken language
queries. Unfortunately, a significant fraction of search queries
turn out to be “keyword” queries composed of noun phrases
entities [29]. To filter out such queries, one could employ a
classifier that separates natural language queries from keyword
queries [30]. In this work, we use a simpler technique derived
from [31] by choosing only the queries with either stop words or
words that signal spoken queries (e.g., “show”, “list”, “want”).

In the next sections, we explain how the filtered queries are
used to create datasets for training relation classifiers.

4.2. Inferring explicit relations

Most queries explicitly specify the objects of some relations
they contain. For example, the query “Who played Jake Sully in
Avatar” specifies that the value of the relation character name
is Jake Sully. We refer to such relations where the objects are
explicitly specified as explicit relations. Our goal in this step is
to automatically annotate explicit relations in the mined queries.

To infer explicit relations, we use the following observa-
tion: in a query q that links to a URL of an entity e, it is likely

that q mentions either e or some other entities e′ closely related
to e. For instance, the query q = “Who played Jake Sully in
Avatar”, which is mined from the entity e = ec = Avatar, con-
tains the entities e = Avatar and e′ = Jake Sully. The presence
of e and e′ can be used to infer explicit relations. In the exam-
ple above, since e′ = Jake Sully is related to Avatar via the path
(starring, character), we can infer that the query contains the
explicit relation character name. Similarly, the presence of e =
Avatar in q invokes the movie name relation.

From this intuition, we create a dataset DE for training
an explicit relation classifier. Figure 3 illustrates our method.
For each query q mined for entity e, we use approximate string
matching to find all related entities e′ ∈ P (e) such that the
name of e′ appears in q. Then, we translate the paths p′ from
e to e′ into explicit relations (e.g., p′ = (starring, character)
translates to character name). Note that by the definition of
P (e), we also allow e′ to be e itself, in which case the corre-
sponding explicit relation is the type of e (e.g., e = e′ = Avatar
gives the relation movie name). As a by-product of this align-
ment process, we can also derive an automatic slot annotation
of the query by annotating the occurrences of e′ in q with the
translated relations (e.g., “Who played [Jake Sully](character name)

in [Avatar](movie name)”).
We use 200,000 automatically labeled examples in our ex-

periments. To balance the relation labels, we impose that half
of the examples have the movie name relation while the other
examples do not.

4.3. Inferring implicit relations

Implicit relations are the relations whose objects are being
asked about and thus are left unspecified. For example, the
query “Who directed Avatar” has the implicit relation directed
by because it asks about the unspecified director’s name.

To infer implicit relations, we use a property of the QCL
illustrated by the following example. Consider queries of the
form “Who directed [movie name].” Most of the time, users
who enter such queries will click on the official or encyclopedic
pages about the movie; however, occasionally some users will
click on web pages about the director of the movie. In this case,
we may infer that the query pattern “who directed . . . ” has
the implicit relation directed by. More generally, if the entity e
corresponding to the clicked URL does not appear in the query
q, we may infer that the entity is likely the (missing) object of
an implicit relation in the query.

Using the intuition above, we create a dataset DI for train-
ing an implicit relation classifier as illustrated in Figure 4. Con-
sider an entity e ∈ P (ec) and a query q mined for e. If the name
of e does not appear in q, then we translate the path p from ec to
e into an implicit relation (e.g., p = directed by in the example
above translates to the directed by relation). To reduce noise,
we filter out some out-of-domain queries by removing queries
q that do not contain any entity related to e.

The implicit relation dataset DI contains 340,000 exam-
ples. In addition to creating the dataset, we can also derive a
list of generic query patterns for each implicit relation by col-
lapsing entities e′ ∈ P (e) that appear in the queries into place-
holders based on the path between e and e′ (e.g., “Who directed
Avatar” becomes “who directed [film]”). Table 1 shows several
examples of good query patterns.

4.4. Combined classifier

After we obtain training data DE for explicit relations and DI

for implicit relations, we train a combined relation classifier



movie type acted by
[actor] and [actor] movie [profession] in [film]

who played [character] in [film] [character] from [film]
[film] [profession] who played [character]

[actor] as [character] cast of [film]
directed by has character

director of [film] characters in [film]
who directed [film] [actor] in [film]

[film] the movie girl from [film]
[film] director the cast of [film]

Table 1: Several derived query patterns for implicit relations.

URL Classifier n-grams n-grams
source + w-gaz

- Majority 27.6
- [33] 43.3*

seed Explicit (DE ) 34.0 36.2
seed Implicit (DI ) 16.8 17.0
seed Combined 43.1 43.0
KG Explicit (DE ) 39.6 42.7
KG Implicit (DI ) 29.3 29.3
KG Combined 53.8 55.5

- Supervised 84.6 86.0
- Semi-supervised - 86.5

Table 2: Micro F-measure of the each experiment setting. (KG
= knowledge graph, w-gaz = weighted gazetteer, * = uses a
different set of features)

with the following steps:

1. Train an implicit relation classifier on DI .

2. Apply the implicit relation classifier on the queries in
DE and augment the predicted implicit relations to DE .

3. Train a combined classifier on the augmented DE .

The reason we train the final model on DE is that from our
observation, the queries in DE have a more diverse distribution
of both explicit and implicit relations. Step 2 above transfers
the knowledge about implicit relations from DI to DE .

5. Experiments
5.1. Dataset

To evaluate our approach, we use the movie domain relation
dataset from [32]. The dataset contains 3,338 training and 1,084
test examples. However, except for the supervised learning up-
per bound, we ignore the training examples and train the classi-
fiers from the mined queries instead.

As mentioned earlier, we treat relation detection as a multi-
class, multi-label classification problem. Each dataset example
contains a transcribed query and one or more relations extracted
from the annotated SPARQL database query. The dataset con-
tains a total of 70 relations in total. The average number of re-
lations per query is 2.58, and 9.5% of the queries are marked as
out-of-domain. The original paper includes more information
about the specifics of the dataset [32].

5.2. Results and discussions

Table 2 shows the micro F-measure of our experiments. Unless
stated otherwise, we train classifiers using icsiboost [34], an
adaptive boosting framework, with 10,000 iterations. We use
common features for text classification including n-gram fea-
tures (n = 1, 2, 3) and weighted gazetteer features calculated
using the populated semantic graph [32].

Upper bound and baseline. As a crude upper bound, we
perform supervised learning on the labeled training data, which
unsurprisingly gives a high F-measure of 86.0%.

As a simple baseline, we only output the most frequent re-
lation (movie type), which gives an F-measure of 27.6%. An-
other baseline is the previously published best result on this
dataset [33], using web search snippets that include two related
entities to mine data for explicit relations. The main focus of
that work is weighing knowledge graph entity types and enrich-
ing relation patterns by using word embeddings based on de-
pendency parses. The F-measure with that approach is reported
as 43.3%.

Comparing URL sources. Using URLs from knowledge
graphs gives slightly better results than using URLs from seed
queries. During error analysis, we discover that many seed
queries qs point to irrelevant URLs due to the ambiguity of the
entity name. For example, the comic character Flash produces
the seed query “flash movie,” which generally refers to Adobe
Flash movies and not the comic character. In future work, we
want to investigate the ways to obtain more accurate URLs from
seed queries using, for example, the click statistics from QCL.

We will now discuss the results where the URLs come from
knowledge graphs.

Single relation type. The explicit relation classifier gives
around 15% absolute increase in F-measure over the majority
baseline. On the contrary, the implicit relation classifier gives
relatively lower scores. This is mainly because there are fewer
implicit relations than explicit ones, and the implicit relation
classifier only covers 10 out of all 70 relations in the dataset.

Combined model. The combined model achieves the F-
measure of 55.5%, which is significantly higher than the score
from the explicit relation classifier. This means both explicit
and implicit relation datasets help boost the performance of the
classifier.

While the explicit relation classifier trained with the search
query logs data results in a similar F-measure to the previous
work that targeted explicit relations [33] (with an F-measure of
42.7% versus 43.3%), our combined model achieved a signif-
icantly better F-measure, showing the contribution of implicit
relation classifier.

Semi-supervised learning. The bootstrapped classifier can
also be used to improve the accuracy of the fully supervised
model. By applying the best unsupervised classifier on the
queries in the supervised learning dataset and use the predic-
tions as additional features for supervised learning, we are able
to slightly increase the F-measure from 86.0% to 86.5%.

6. Conclusions
In this work, we proposed an unsupervised method to bootstrap
a relation classifier from knowledge graphs and query click
logs. To mine natural language queries, we link the knowledge
graph entities of interest to URLs using either the URL rela-
tions in knowledge graphs or the seed queries. Subsequently,
we mine search queries from those URLs, label the queries with
either explicit or implicit relations using different techniques,
and then train relation classifiers with adaptive boosting. Apart
from the classifier, we also get automatically labeled slots for
explicit relations and query patterns for implicit relations as
by-products. Our approach performs a significantly better F-
measure (55.5%) than a natural baseline as well as previously
published best results.
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