SemEval-2013 Task 13:
Word Sense Induction for Graded and Non-Graded Senses

David Jurgens
Dipartimento di Informatica
Sapienza Universita di Roma
jurgens@di.uniroma1.it

Ioannis Klapaftis
Search Technology Center Europe
Microsoft
ioannisk@microsoft.com
• Introduction
• Task Overview
• Data
• Evaluation
• Results
John sat on the *chair*.

1. a seat for one person, with a support for the back
2. the position of professor
3. the officer who presides at the meetings of an organization

Which meaning of the word is being used?
John sat on the **chair**.

1. a seat for one person, with a support for the back
2. the position of professor
3. the officer who presides at the meetings of an organization

Which meaning of the word is being used?

This is the problem of **Word Sense Disambiguation (WSD)**
What are the meanings of a word?

It was too dark to see

I light candles when it gets dark

It was dark outside

These are some dark glasses

The dark blue clashed with the yellow

Her dress was a dark green

The project was made with dark designs

We didn’t ask what dark purpose the knife was for
What are the meanings of a word?

It was too dark to see
I light candles when it gets dark
It was dark outside
These are some dark glasses
The dark blue clashed with the yellow
Her dress was a dark green
The project was made with dark designs
We didn’t ask what dark purpose the knife was for

This is the problem of Word Sense Induction (WSI)
• Introduction
• Task Overview
• Data
• Evaluation
• Results
Task 13 Overview

Induce senses

or

Use WordNet

WSD system

Lexicographers

Annotate the same text and measure the similarity of annotations
Why another WSD/WSI task?
Why another WSD/WSI task?

Application-based
(Task 11)

Annotation-focused
(this task)
WSD Evaluation is tied to Inter-Annotator Agreement (IAA)

Lexicographers

If lexicographers can’t agree on which meaning is present, WSD systems will do no better.
Why might humans not agree?
He **struck** them with full force.
He **struck** them with full force.

He’s probably fighting so

strike "deliver a sharp blow"
He struck them with full force.

He’s clearly playing a piano!

strike#v#10 “produce by manipulating keys”
He **struck** them with full force.

I thought he was minting coins the old fashioned way

strike#v#19 “form by stamping”
He struck them with full force.

- strike#v#1 “deliver a sharp blow”
- strike#v#10 “produce by manipulating keys”
- strike#v#19 “form by stamping”

Only one sense is correct, but contextual ambiguity makes it impossible to determine which one.
She handed the paper to her professor.
Multiple, mutually-compatible meanings

She handed the paper to her professor

- paper#n#1 - a material made of cellulose
- paper#n#2 - an essay or assignment
Multiple, mutually-compatible meanings

She handed the paper to her professor

- a physical property

- paper#n#1 - a material made of cellulose
- paper#n#2 - an essay or assignment
Multiple, mutually-compatible meanings

She handed the **paper** to her professor.

- **paper\#n\#1** - a material made of cellulose
- **paper\#n\#2** - an essay or assignment
Parallel literal and metaphorical interpretations

We commemorate our births from out of the dark centers of women

- dark#1 – devoid of or deficient in light or brightness; shadowed or black
- dark#5 – secret
Annotators will use multiple senses if you let them

- Véronis (1998)
- Murray and Green (2004)
- Erk et al. (2009, 2012)
- Jurgens (2012)
- Passoneau et al. (2012)
- Navigli et al. (2013) - **Task 12**
- Korkontzelos et al. (2013) - **Task 5**
New in Task 13: More Ambiguity!

Induce senses or Use WordNet

WSD system

Annotate the same text and measure the similarity of annotations

Lexicographers
Task 13 models explicitly annotating instances with:

- Ambiguity
- Non-exclusive property-based senses in the sense inventory
- Concurrent literal and metaphoric interpretations
Task 13 annotation has lexicographers and WSD systems use *multiple* senses with *weights*

The student handed her *paper* to the professor
Task 13 annotation has lexicographers and WSD systems use **multiple** senses with **weights**

The student handed her **paper** to the professor

- **paper%1:10:01::** – an essay

Definitely! 100%
Task 13 annotation has lexicographers and WSD systems use *multiple* senses with *weights*

The student handed her *paper* to the professor

- paper%1:10:01:: – an essay

 Definitely! 100%

- paper%1:27:00:: – a material made of cellulose pulp

 Sort of? 30%
Potential Applications

• Identifying “less bad” translations in ambiguous contexts

• Potentially preserve ambiguity across translations

• Detecting poetic or figurative usages

• Provide more accurate evaluations when WSD systems detect multiple senses
• Introduction
• Task Overview
• Data
• Evaluation
• Results
Task 13 Data

- Drawn from the Open ANC
- Both written and spoken
- 50 target lemmas
 - 20 noun, 20 verb, 10 adjective
- 4,664 Instances total
Annotation Process

1. Use methods from Jurgens (2013) to get MTurk annotations
Annotation Process

1 Use methods from Jurgens (2013) to get MTurk annotations
2 Achieve high (> 0.8) agreement
Annotation Process

1. Use methods from Jurgens (2013) to get MTurk annotations
2. Achieve high (> 0.8) agreement
3. Analyze annotations and discover Turkers are agreeing but are also wrong
Annotation Process

1. Use methods from Jurgens (2013) to get MTurk annotations
2. Achieve high (> 0.8) agreement
3. Analyze annotations and discover Turkers are agreeing but are also wrong
4. Annotate the data ourselves
Annotation Setup

- Rate the applicability of each sense on a scale from one to five
 - One indicates doesn’t apply
 - Five is exactly applies
Multiple sense annotation rates

- Face-to-face
- Telephone
- Fiction
- Journal
- Letter
- Non-fiction
- Technical
- Travel Guides

Senses Per Instance

Spoken
Written
• Introduction
• Task Overview
• Data
• Evaluation
• Results
Evaluating WSI and WSD Systems

Lexicographer Evaluation

WSD Evaluation
It was dark outside

Her dress was a dark green

We didn’t ask what dark purpose the knife was for
It was too dark to see. I light candles when it gets dark.

It was dark outside.

Dark nights and short days.

The dark blue clashed with the yellow.

These are some dark glasses.

Her dress was a dark green.

Make it dark red.

The project was made with dark designs.

We didn’t ask what dark purpose the knife was for.

He had that dark look in his eyes.
It was dark outside

I light candles when it gets dark

Her dress was a dark green

These are some dark glasses

The dark blue clashed with the yellow

Make it dark red

The project was made with dark designs

We didn’t ask what dark purpose the knife was for

He had that dark look in his eyes
WSI Evaluations

Lexicographer
WSI Evaluations

Lexicographer

WSI System

How similar are the clusters of usages?
The complication of fuzzy clusters
The complication of fuzzy clusters

Lexicographer

WSI System

Overlapping

Partial membership
Evaluation I: Fuzzy B-Cubed

Lexicographer

WSI System

How similar are the clusters of this **item** in both solutions?
Evaluation 1: Fuzzy Normalized Mutual Information

How much information does this cluster give us about the cluster(s) of its items in the other solution?
Why two measures?

B-Cubed: performance with the same sense distribution

NMI: performance independent of sense distribution
WSD Evaluations
WSD Evaluations

Induce senses

or

WSD system

Use WordNet
Learn a mapping function that converts an induced labeling to a WordNet labeling

- 80% use to learn mapping
- 20% used for testing
- Used Jurgens (2012) method for mapping
WSD Evaluations

1. Which senses apply?
2. Which senses apply more?
3. How much does each sense apply?
1 Which senses apply?

Gold = \{wn_1, wn_2\}
Test = \{wn_1\}

Jaccard Index
\[
\frac{|\text{Gold} \cap \text{Test}|}{|\text{Gold} \cup \text{Test}|}
\]
WSD Evaluations

2 Which senses apply more?

Gold = \{w_{n1}:0.5, w_{n2}:1.0, w_{n3}:0.9\} \quad \Rightarrow \quad w_{n2} > w_{n3} > w_{n1}

Test = \{w_{n1}:0.6, w_{n2}:1.0,\} \quad \Rightarrow \quad w_{n2} > w_{n1} > w_{n3}

Kendall’s Tau Similarity
with positional weighting
WSD Evaluations

How much does each sense apply?

Weighted Normalized Discounted Cumulative Gain
WSD Evaluations

- All measures are bounded in $[0,1]$
WSD Evaluations

- All measures are bounded in $[0,1]$.
- Extend Recall to be average across all answers.

- Avg: 0.9
 - Recall: 0.675

- Avg: 0.825
 - Recall: 0.825
Teams

AI-KU (WSI)
Lexical Substitution
+ Clustering
Teams

AI-KU (WSI)
Lexical Substitution
+ Clustering

Unimelb (WSI)
Topic Modeling
Teams

AI-KU (WSI)
Lexical Substitution
+ Clustering

Unimelb (WSI)
Topic Modeling

UoS (WSI)
Graph Clustering
Teams

AI-KU (WSI)
Lexical Substitution + Clustering

UoS (WSI)
Graph Clustering

Unimelb (WSI)
Topic Modeling

La Sapienza (WSD)
PageRank over WordNet graph
WSI Baselines

One cluster per instance (1clinst)

One cluster
WSD Baselines

- **MFS** - All instances labeled with MFS from SemCor
- **Ranked Senses** - All instances labeled with *all senses*, proportionally weighted by their frequency in SemCor
• Introduction
• Task Overview
• Data
• Evaluation
• Results
WSI Results

- One Cluster
- AI-KU (add 1000)
- Unimelb (50k)
- Iclinst
- AI-KU (add 1000, remove 5)
- Unimelb (5p)
- UoS (WN)
- UoS (Top)

The diagram plots the Fuzzy B-Cubed (Y-axis) against the Fuzzy NMI (X-axis) for various datasets and configurations.
WSD Results
WSD Results

Detection

- AI-KU (add+rem)
- Unimelb (5000k)
- UoS (Top)
- La Sapienza #2
- One Cluster
- 1c1inst
- SemCor MFS
- SemCor Ranked

Ranking

- AI-KU (add+rem)
- Unimelb (5000k)
- UoS (Top)
- La Sapienza #2
- One Cluster
- 1c1inst
- SemCor MFS
- SemCor Ranked
WSD Results

Detection

Ranking

Weighting

AI-KU (add+rem) Unimelb (5000k) UoS (Top) La Sapienza #2 One Cluster IcInst SemCor MFS SemCor Ranked

Unimelb (5000k) UoS (Top) La Sapienza #2 One Cluster IcInst SemCor MFS SemCor Ranked

One cluster (WSI) IcInst (WSI) SemCor MFS SemCor Ranked

0 0.175 0.35 0.525 0.7
Issues with Evaluation

Multi-sense Annotation Rate

<table>
<thead>
<tr>
<th></th>
<th>Trial</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>11%</td>
<td></td>
</tr>
</tbody>
</table>

Task 13 evaluation measures specifically designed for multiple senses
Evaluation #2

- Modify the WSI mapping procedure to only produce a single sense
- Modify WSD systems to retain only highest-weighted sense
WSD Results for single-sense instances

- AI-KU: 0.641
- Unimelb (5000k): 0.605
- UoS (Top): 0.6
- La Sapienza (#2): 0.217
- One Cluster: 0.569
- One Cluster Per Instance
- SemCor MFS: 0.477

F-1 Score
Conclusions

• Multiple sense annotations offers a way to improve annotation by making ambiguity explicit

• WSI offer some hope for creating highly accurate semi-supervised systems
Future Work

• Embed this application in a task
• Task 11 extension with multiple labels?
• Have systems annotate why an instance needs multiple senses
• Build WSI sense mapping on an external tuning corpus
Summary

• All resources released on the Task 13 website: http://www.cs.york.ac.uk/semeval-2013/task13/

• All evaluation scoring and IAA code is released on Google code https://code.google.com/p/cluster-comparison-tools/

• Annotations (hopefully) being folded into MASC
SemEval-2013 Task 13: Word Sense Induction for Graded and Non-Graded Senses

Any questions?

David Jurgens and Ioannis Klapaftis
jurgens@di.uniroma1.it ioannisk@microsoft.com