Higher-Order Inference for Multi-class Log-supermodular Models

Jian Zhang, Josip Djolonga and Andreas Krause
Department of Computer Science, ETH Zurich
jizhang@student.ethz.ch {josipd,krausea}@inf.ethz.ch

Abstract

Higher-order models have been shown to be very useful for a plethora of computer vision tasks. However, existing techniques have focused mainly on MAP inference. In this paper, we present the first efficient approach towards approximate Bayesian marginal inference in a general class of high-order, multi-label attractive models, where previous techniques slow down exponentially with the order (clique size). We formalize this task as performing inference in log-supermodular models under partition constraints, and present an efficient variational inference technique. The resulting optimization problems are convex and yield bounds on the partition function. We also obtain a fully factorized approximation to the posterior, which can be used in lieu of the true complicated distribution. We empirically demonstrate the performance of our approach by comparing it to traditional inference methods on a challenging high-fidelity multi-label image segmentation dataset. We obtain state-of-the-art classification accuracy for MAP inference, and substantially improved ROC curves using the approximate marginals.

1. Introduction

Dealing with uncertainty is a central challenge in computer vision and pattern recognition. Probabilistic modeling and inference have consequently received much attention in these fields. However, general purpose approximate inference algorithms such as belief propagation, mean-field [1] and variants slow down exponentially with the size of the largest interaction (number of variables per clique) in the model. Hence, their application has been mostly restricted to low-order models of limited expressive power. For the purpose of MAP (Maximum A Posteriori) inference, capturing richly parameterized interactions between large sets of variables has been shown to be very beneficial to computer vision tasks, e.g., in semantic segmentation [2]. The resulting energy minimization problems – even though involving large cliques – remain tractable, as long as the energy functions are submodular. The downside of MAP inference is that all uncertainty is collapsed into a single configuration. A variety of scenarios, such as computing gradients for conditional random field training, integrating estimation into more complex probabilistic models and quantifying the uncertainty in estimations, require (approximated) marginal inference. Given that submodularity has profound implications for MAP inference, what are its consequences for marginal inference?

Related work. Most methods for inference in high-order models focus on MAP inference. For example, Kohli et al. [2] show how to minimize the energy of robust P^n potentials by move-making using graph cuts. Tarlow et al. [3] demonstrate how to compute the max-product messages for a family of potentials. Zhang et al. [4] utilize parallelization to achieve constant acceleration for both MAP and marginal inference, but with exponential complexity in terms of model order. A recent primal-dual method [5] employs move-making-like MAP inference for arbitrary higher-order potentials while the iteration-wise complexity is still pro-
hibitively exponential in the clique size. In the case of nest-
ed cardinality-based potentials, Tarlow et al. [6] develop a
fast algorithm for the exact computation of the factor-to-
variable messages for marginal inference. The strategy of
Krähenbühl et al. [7] to speed up the mean-field updates by
filtering has been extended to higher-order models by Vi-
nee et al. [5], for a family of potentials different from the
ones considered in this paper. However, the two families of
potentials partially overlap on representative vision models
such as higher order Potts model.

Submodularity, as a discrete analogue of convexity, has
profound consequences for optimization, with many appli-
cations in computer vision, machine learning and beyond
[9, 10, 11]. In vision, submodular functions have been pri-
marily utilized for efficient MAP inference as they have the
remarkable property that they can be minimized in poly-
nomial time. The most notable case is MAP inference in
the attractive Ising model using graph cuts [12], but the problem
remains tractable regardless of the cardinality of the poten-
tials. Jegelka et al. [13] use submodularity to model coopera-
tive behavior between edges for image segmentation. The
consequences of submodularity for (approximate) marginal
inference, however, have not been investigated until very re-
cently. Djolonga et al. [14] present a variational inference
scheme, which yields a bound on the

Our contributions. We introduce a class of multi-label
log-supermodular models, which generalizes the Potts
model [16], but allows to capture attractive interactions of
arbitrary order. Extending the approach of [14] on infer-
ence in probabilistic submodular models, we propose a nov-
el variational inference scheme, which yields a bound on the
partition function. The resulting optimization problem is
convex, and can be solved efficiently using the Frank-Wolfe
(conditional gradient) algorithm with low per-iteration com-
plexity. At every step, it produces a completely factorized
distribution that approximates the true posterior. For the
special case of two labels, thresholding this approximate
distribution as being defined over

Random vectors vs. sets. To draw connections to com-
binatorial optimization, it will be very important to state
the distribution as being defined over subsets of a ground
set \(V = \{1, 2, \ldots, N\} \). We can construct a bijection be-
tween the set of all possible states \(\{1, 2\}^N \) and the set
of all subsets of \(V \) by identifying any configuration \(x = (x_1, x_2, \ldots, x_N) \) \(\in \{1, 2\}^N \) with
the set \(A_x = \{i \mid x_i = 2\} \). Please see figure 2 for an illustration. With this perspec-

Submodular minimization and MAP. A very important
problem is to compute the MAP configuration, i.e., finding
a set \(A^* \) such that \(F(A^*) \) is minimal (and hence \(F(A^*) \) is
maximal). While generally very challenging, a well-studied
class of functions for which this can be done in poly-
nomial time are submodular functions [17]. A set function
\(F: 2^V \to \mathbb{R} \) is said to be submodular with ground set \(V \) if
it satisfies the following property

\[
F(i \mid A) \geq F(i \mid B)
\]

for all sets \(A \subseteq B \) and \(i \notin B \), where we define the marginal

This definition states the diminishing returns property —
the benefit of any item \(i \) decreases as the context \(A \) grows.
We will also assume that \(F \) is normalized so that \(F(\emptyset) = 0 \).
However, note that this is no restriction as the distributions

Figure 2: The binary (two-label) case. The set consisting of the
green elements correspond to the configuration \(X_1 = X_3 = 2 \) and
\(X_2 = X_4 = X_5 = X_6 = 1 \).

- Experiments demonstrating the scalability and effective-
ness on a natural scene segmentation task.

2. Review: Binary Models & Submodularity

We now review relevant background for the binary
(two-label) case and defer the discussion for the multi-label case
to section 3. Formally stated, we seek to model a joint dis-
tribution for a random vector \(X = [X_1, X_2, \ldots, X_N] \) such
that each component \(X_i \) takes on values in \(\{1, 2\} \).

\[
P(A) = \frac{1}{Z} \exp(-F(A)),
\]

where \(F: 2^V \to \mathbb{R} \) and \(Z = \sum_{A \subseteq V} \exp(-F(A)) \) is the
so-called partition function that normalizes the distribution.
Hereby, \(F \) is often called the energy function.
\(P(A) \propto \exp(-F(A))\) and \(P(A) \propto \exp(-F(A) + \beta)\) are identical for any constant \(\beta\).

Very often the energy function \(F(\cdot)\) decomposes and can be written as sum of simpler functions, i.e., \(F(A) = \sum_{i=1}^{R} F_i(A \cap U_i)\), where \(U_i \subseteq V\) is the domain of the \(i\)-th component \(F_i\). For these functions, \(\max_i |U_i|\) is called the order of the model. As an important example, the widely used cut function is of this form:

\[
F(A) = \sum_{u \in A, v \notin A} w_{u,v} = \sum_{u,v \in V} w_{u,v}[A \cap \{u,v\} = 1].
\]

Hereby, \(w_{u,v}, u,v \geq 0\) are non-negative weights, and \([\cdot]\) denotes the indicator function of the event encoded by its argument. The cut function can be used to obtain the attractive Ising model when the ground set can be organized on a grid and we add weights between immediate neighbors. Then, the resulting probability distribution is

\[
P(A) \propto \prod_{u \in V, v \in V} \exp(-w_{u,v}[A \cap \{u,v\} = 1]).
\]

We can immediately see the attractive behavior as it prefers neighbors to be assigned to the same class (so that the above intersections are of size 0 or 2). The cut function is of order 2. In this paper, we will consider functions of much higher order, discussed in more details in section 7.

A special family of submodular functions that we will make extensive use of are modular functions (which are of order 1). A function \(s: 2^V \rightarrow \mathbb{R}\) is modular if \(s(A) = \sum_{i \in A} s(\{i\})\). Note that their corresponding distributions completely factorize as \(P(A) \propto \prod_{i \in A} \exp(-s(\{i\}))\), and the factors are often called unary potentials. Modular functions are essentially linear functions in the discrete world and can be represented by the values \(s_i = s(\{i\})\) for \(i \in V\). We will thus treat modular functions \(s(\cdot)\) as vectors \(s \in \mathbb{R}^N\) with coordinates \(s_i = s(\{i\})\).

3. Modeling for the Multi-label Case

We will now show how to handle the more general case where each variable can take one of \(L\) different values \(\{1, 2, \ldots, L\}\).\(^1\) We will represent each random variable \(X_i\) by \(L\) distinct elements \(V_i = \{v_{i,1}, v_{i,2}, \ldots, v_{i,L}\}\) corresponding to the values it can take. The idea is that if for example \(v_{i,5}\) is chosen, then this corresponds to \(X_i\) taking on the value 5. This is also known as the 1-of-\(L\) encoding. To make sure that the variable can take only a single value, we will add a constraint \(M_i\) that forces the distribution to assign non-zero mass only to those configurations that select exactly one element from \(V_i\). Formally stated, \(M_i = \{A: |A \cap V_i| = 1\}\) and our final constraint is \(M = \cap_{i=1}^{N} M_i\). In the combinatorial optimization literature, these constraints are known as the bases of the partition matroid [18][§2.1] and we will use the shorter name partition constraints. Note that the final ground set is equal to \(V = \cup_{i=1}^{N} V_i\) and has a total of \(NL\) elements. We depict this with an example in figure 3. In our experiments we will define one energy function for each set of elements of the ground set that correspond to the same label. We thus also define the sets \(V_j = \{v_{i,j} | i = 1, 2, \ldots, N\}\) for \(j = 1, 2, \ldots, L\).

With this set-based view at hand, we will consider distributions of the form

\[
P(A) = \begin{cases} \frac{1}{Z} \exp(-F(A)) & \text{if } A \in M \\ 0 & \text{otherwise} \end{cases}
\]

for some submodular function \(F: 2^V \rightarrow \mathbb{R}\). We call such models multi-label log-supermodular models.

Using our modeling methodology we can also obtain\(^2\) the Potts model [16], which extends the Ising model to multiple labels. The idea is to use one cut function \(F_j\) as in the Ising model for each subset of elements that belong to some label, i.e., \(F_j\) is a cut on the elements \(V_j\). Then, the Potts model corresponds to \(P(A) \propto \exp(-\sum_{j=1}^{L} F_j(A))\).

Another family of submodular functions that are useful in modeling are concave-over-modular functions, i.e., those of the form \(F(A) = h(s(A))\), where \(s\) is a non-negative modular function and \(h\) is concave. We will make use of (sums of) such functions in section 7 for modeling label-consistency over superpixels. Note that models of this form have very high order (usually \(O(N)\)).

4. Probabilistic Inference

Given the log-supermodular model we have just introduced, we are interested in marginal inference, i.e., computing the marginal probabilities \(P(X_i = j) = P(v_{i,j} \in A)\).\(^3\) Here we just sketch the construction and a formal proof can be found in the appendix.
for every $i = 1, 2, \ldots, N$ and $j = 1, 2, \ldots, L$. The central challenge here is the computation of the normalizer

$$Z = \sum_{A \in \mathcal{M}} \exp(-F(A))$$

without exhaustive enumeration. Unfortunately, even for the attractive Ising model, which has only pairwise interactions and a tractable MAP problem, computing the normalization constant is known to be #P-hard [19]. It is also hard to even approximate it, as shown in [20].

In this paper, we pursue a variational approach that optimizes a bound on Z by approximating the distribution P by simpler distributions with analytical normalization constants. Before we present our approximation scheme, we have to introduce the base polytope $B(F)$ of the submodular function F, which is defined as

$$B(F) = \{ s \in \mathbb{R}^{NL} | \forall A \subseteq V: s(A) \leq F(A) \}$$

where s denotes the modular function $s(\cdot)$ when seen as a vector. It is exactly the set of all modular lower bounds of F that are tight at the ground set V. We build on the approach of [14] (who addressed the case of two labels) and bound the partition function as follows. For any $s \in B(F)$ we have that for all $A \subseteq V$ it holds that $s(A) \leq F(A)$, which implies the following inequality

$$Z = \sum_{A \in \mathcal{M}} e^{-F(A)} \leq \sum_{A \in \mathcal{M}} e^{-s(A)}. \quad (1)$$

Hence, we can upper-bound the partition function by the partition function of the distribution $Q(A) \propto \exp(-s(A))$. Moreover, because $s \in B(F)$ is a free parameter, we have a variational bound that we can optimize. For any $s \in B(F)$ we also have an approximative distribution $Q(A) \propto \exp(-s(A))$, which can be easily used in lieu of $P(A)$ as it fully factorizes and has an analytical partition function. Specifically, its partition function is $\prod_{i=1}^{N} \sum_{j=1}^{L} \exp(-s_{i,j})$, which we can plug into (1) to arrive (after taking logs) at the following convex problem

$$\min_{s \in B(F)} \sum_{i=1}^{N} \log \sum_{j=1}^{L} \exp(-s_{i,j}). \quad (2)$$

The question that remains is how to tackle the above problem. The most remarkable fact about $B(F)$ is that even though it is defined by exponentially many inequalities, we can efficiently optimize linear functions over it due to the celebrated result of Edmonds [17]. To maximize a linear function $\langle w, s \rangle$ over $s \in B(F)$, we first have to sort the elements of w. Specifically, let $\sigma : \{1, 2, \ldots, NL\} \rightarrow V$ be a bijection so that $w_{\sigma(1)} \geq w_{\sigma(2)} \geq \ldots \geq w_{\sigma(NL)}$, and construct the sets $S_0 = \emptyset$ and $S_i = \{ \sigma(1), \sigma(2), \ldots, \sigma(i) \}$ for $i = 1, 2, \ldots, NL$. Then, the optimizer is the vector s^* with coordinates $s^*_{\sigma(i)} = F(S_i) - F(S_{i-1})$. Hence, we need $O(NL \log NL)$ operations to sort the vector w and at most NL function evaluations to obtain the function differences. Below, we show how this result can be used as a key subroutine for efficient variational inference.

As linear programming over the base polytope $B(F)$ is very cheap, a natural candidate for solving eq. (2) is the Frank-Wolfe algorithm, which only needs access to such a procedure. The algorithm has a $O(1/k)$ convergence rate [21], requires no parameter tuning and provides an easily computable duality gap at each iteration.

In the common case of decomposable functions, i.e., $F(A) = \sum_{r=1}^{R} F_r(A)$, we can easily parallelize the computation of the linear optimization oracle, due to the fact that $B(F) = \bigcup_{r=1}^{R} B(F_r)$ [22][4.2]. The complete procedure is provided as algorithm 1, where we have denoted the objective of eq. (2) as $g(\cdot)$. Note that computing $\nabla g(s)$ is very efficient, as it amounts to the computation of the marginal probabilities under the distribution $Q(A) \propto \exp(-s(A))$. Specifically, $[\nabla g(s)]_{i,j} = e^{-s_{i,j}} / \sum_{k=1}^{L} e^{-s_{i,k}}$.

Algorithm 1 Inference with Frank-Wolfe

1: Initialize $s = s_0 \in B(F)$
2: for $k = 1$ to MAX_STEPS do
3: $x_r = \arg\min_{y \in B(F_r)} \langle \nabla g(s), y \rangle$ in parallel for r
4: $x = \sum_{r=1}^{R} x_r$
5: if $\langle x - s, \nabla g(s) \rangle \leq \epsilon$ then
6: break
7: end if
8: $s = s + \gamma (x - s)$ with $\gamma = 2/ (k + 2)$
9: end for
10: return $Q(s_{i,j} \in A) \propto \exp(-s_{i,j})$

5. Special Properties in the Binary Case

For the binary case there are in fact two approaches one could take. First, we can simply use a ground set of size N without any constraints, as discussed in section 2. Then, the distribution will be equal to

$$P(A) \propto \exp(-G(A)) \quad \text{for } A \subseteq \{1, 2, \ldots, N\}. \quad (3)$$

This class of models has been considered by [14], who presented a variational inference scheme for it. Alternatively, we can use our partition constraint construction from section 3 with a ground set of size $2N$. Then, the model is

$$P(A) = \begin{cases} \exp(-F(A)) & \text{if } A \in \mathcal{M} \\ 0 & \text{otherwise} \end{cases}. \quad (4)$$
defined on the ground set

\[V = \{v_{i,j} \mid i = 1, 2, \ldots, N \text{ and } j = 1, 2\}. \]

The two models can be seen to be equivalent if in the latter case the function \(F \) splits across the labels, which can be formalized as follows. Note that we can write \(V = V^1 \cup V^2 \), where \(V^j \) are the elements corresponding to label \(j \). What we mean by the splitting condition is that the energy can be written as \(F(A) = F_1(A \cap V^1) + F_2(A \cap V^2) \) for some functions \(F_1 : 2^{V^1} \to \mathbb{R} \) and \(F_2 : 2^{V^2} \to \mathbb{R} \). To define the equivalent model of the form eq. (3) we define for \(k = 1, 2 \)

\[G_k : 2^{\{1, 2, \ldots, N\}} \to \mathbb{R} \text{ as } G_k(A) = F_k(\{v_{i,k} \mid i \in A\}). \]

Then, the equivalence of these models is immediate if we use \(G(A) = G_1(A) + G_2(\overline{A}) \), where we have denoted by \(\overline{A} \) the complement of \(A \). Note that it is easy to go in the other direction (from eq. (3) to eq. (4)) by defining

\[F(A) = G(\{i \mid v_{i,2} \in A\}). \]

The natural question that arises if the two inference procedures, the one of [14] and ours from eq. (2) will yield the same result when ran on their respective models. The problem from [14] is equal to

\[
\min_{s \in B(G)} \sum_{i \in V} \log(1 + e^{-s_i}), \tag{5}
\]

which is not immediately equivalent to eq. (2). However, in the setting we have outlined above they do yield exactly the same probabilities.

Claim 1. The inference problems eq. (2) and eq. (5) will yield the same marginal probabilities if \(F \) and \(G \) are in the above correspondence.

The proof of Claim 1 is provided in the supplement. This result has two important consequences. First, it shows that our approach strictly generalizes that of [14]. Second, it proves that the theoretical guarantees from [23] also hold for our procedure in the binary case. For example, thresholding the approximate marginals at 1/2 will give us an exact MAP solution. Furthermore, the authors in [23] show that eq. (5) is equivalent to minimizing the following divergence over all factorized distributions \(Q \)

\[
D_\infty(P \parallel Q) = \log \sup_{A \subseteq V} \frac{P(A)}{Q(A)}. \tag{6}
\]

This divergence-centric view gives us a hint of the qualitative behavior of the approximative distribution. Namely, due to the penalization by the worst case ratio, we would expect approximative distributions \(Q \) that try to avoid being over-confident and spread the probability over a larger family of sets. In section 7, we will see how this results is in expressive approximate marginals with rich dynamic range.

6. Probabilistic Inference as Smoothed MAP

In many applications, marginals are important and useful. In other settings, a single MAP configuration might suffice. In this section, we discuss how one can interpret our marginal inference technique as solving a smoothed MAP problem which provides computational benefits. Smoothing (using the \(\ell_2 \) norm) has been used in the case of submodular optimization by [24], and entropy-based smoothing has been used for LP-based MAP inference, e.g., [25, 26].

The MAP problem, i.e. finding the most probable configuration for our model is easily seen to be equivalent to the following discrete optimization problem

\[
\begin{align*}
& \text{minimize} & & f(A) \\
& \text{subject to} & & |A \cap V_i| = 1, \quad \forall i = 1, \ldots, N.
\end{align*}
\]

To explain the connection with our approach we need the Lovász extension \(f \) of \(F \) [27], which is defined as

\[
\left\langle p, s \right\rangle = \sup_{s \in B(F)} f(p).
\]

It is called an extension as it agrees with \(F \) on the vertices of the unit cube. Formally, for any \(A \subseteq V \) we have that \(F(A) = f(1_A) \), where \(1_A \) is the characteristic vector of \(A \) with 1 in those positions corresponding to the elements of \(A \) and 0 elsewhere. Thus, we can see the above problem as the following binary minimization problem

\[
\begin{align*}
& \text{minimize} & & f(p) \\
& \text{subject to} & & 1^T p = 1, \quad \forall i = 1, \ldots, N,
\end{align*}
\]

where \(p_i \in \{0, 1\}^L \) are the components of \(p \) corresponding to the \(i \)-th random variable. A natural approach (c.f. [28]) to solve this problem is to relax \(p_i \) to the probability simplex (the convex hull of the feasible vectors)

\[
\Delta = \{ p_i \in \mathbb{R}_+^L \mid p_i \geq 0 \text{ and } 1^T p_i = 1 \}.
\]

Now the connection is clear from the following claim.

Claim 2. The Fenchel dual of the problem in eq. (2) is equal to the following.

\[
\begin{align*}
& \text{minimize} & & f(p) - \sum_{i=1}^N H[p_i], \\
& \text{subject to} & & p_i \geq 0, \quad \forall i = 1, \ldots, N.
\end{align*}
\]

where \(H[p_i] \) denotes the Shannon entropy. There is zero duality gap and the pair \((s^*, p^*)\) is primal-dual optimal iff \((s^*, p^*) = f(p^*)\) and

\[
p_i^* = \exp(-s_i^*)/\sum_{j=1}^L \exp(-s_{i,j}^*).
\]

\[3\text{Specifically, those entries correspond to } V_i\]
A natural step is to instead smooth the objective using \(\varepsilon \mathcal{H} [\cdot] \) for some smoothing parameter \(\varepsilon > 0 \), which allows to control the level of smoothness \(^4\). More precisely, we can solve the following problem for some \(\varepsilon \geq 0 \)

\[
\text{minimize } f(p) - \varepsilon \sum_{i=1}^{N} \mathcal{H}[p_i].
\]

If we reduce \(\varepsilon \) the objective will get closer to the MAP relaxation (which corresponds to \(\varepsilon = 0 \)), but the optimization procedure will become more challenging, since the Lovász extension is non-smooth. We formalize this relationship in the following claims, while in section 7 we conduct experiments with different smoothing strengths \(\varepsilon \).

Claim 3 (from [21]). For smoothing parameter \(\varepsilon > 0 \) the Frank-Wolfe algorithm converges at a rate of \(O\left(\frac{1}{\varepsilon \alpha} \right) \).

Claim 4. Let us denote with \(p^*(\varepsilon) \) the optimum of eq. (9) when using smoothing parameter \(\varepsilon \geq 0 \). Then, we have that

\[
f(p^*(\varepsilon)) - f(p^*(0)) \leq \varepsilon N \log L.
\]

Moreover, for any \(\varepsilon, N \) and \(L \), we can always construct a submodular function \(F \) so that

\[
f(p^*(\varepsilon)) - f(p^*(0)) \leq \frac{1}{2} \varepsilon N \log(L - 1).
\]

The first part of Claim 4 has been used before, see e.g., [26]. Hence, the bound on the convergence rate grows linearly with \(1/\varepsilon \) and the suboptimality decreases linearly with \(\varepsilon \). Moreover, this convergence bound can be very close to tight for an adversely chosen \(F \).

7. Experiments

We now report our experimental setup and results on a challenging semantic segmentation task.

Higher-order modeling. As standard components, our energy function consists of unary terms specified as a modular function \(m(A) \) and pairwise terms (a Potts model) \(F_{\text{Potts},p} \), \(p \) which capture pairwise interactions of neighboring pixels\(^1\). We first generate multiple layers of superpixels \(\mathcal{P}_\ell \subseteq \{1, 2, \ldots, N\} \) with the mean-shift algorithm [29]. I.e., for each layer \(\ell \), \(\mathcal{P}_\ell \) is a collection of connected regions of pixels with homogeneous appearance. See figure 1b and 1c for an illustration. For every generated superpixel \(S \in \mathcal{P}_\ell \), \(S \subseteq \{1, 2, \ldots, N\} \) and label \(j \in \{1, 2, \ldots, L\} \), we define \(V^j_S = \{ v_{i,j} \mid i \in S \} \). Note that \(V^j_S \) are the elements of the ground set that have to be chosen if the variables in \(S \) take on value \(j \). To encourage label consistency in each superpixel \(S \), we introduce a concave-\(\varepsilon \)-of-cardinality potential

\[
\sum_{S \in \mathcal{P}_\ell} \alpha \left(\left| S \right| - \left| V^j_S \right| \right)
\]

function of the form \(F_S(A) = \sum_{j=1}^{L} |V^j_S \setminus (A \cap V^j_S)|^\alpha \) for some \(\alpha \in (0, 1) \), which is illustrated in figure 4. The overall energy is then given by

\[
F(A) = m(A) + \beta_1 F_{\text{Potts},p}(A) + \beta_2 \sum_{S \in \mathcal{P}_\ell} F_S(A),
\]

with \(\beta_2 \) and \(\alpha \) as the higher-order parameters.

We consider the following log-supermodular models.

- **SUBMODPAIR**: Potts model on a grid (\(\beta_2 = 0 \)).
- **SUBMOD2-LAYER**: Higher-order with 2 layers (\(\beta_1 = 0 \)).
- **SUBMOD3-LAYER**: Higher-order with 3 layers (\(\beta_1 = 0 \)).
- **SUBMOD2-LAYER-PAIR**: SUBMOD2-LAYER plus pairwise interactions (both \(\beta_1 > 0 \) and \(\beta_2 > 0 \)).

To concretely specify the super pixels, denote by \(s_p, s_r \) and \(m_r \) the spatial bandwidth, the range bandwidth and the minimum size of regions for mean-shift segmentation respectively. We generate superpixels with \((s_p, s_r, m_r) = (7, 4, 500), (7, 7, 300) \) and \((7, 10, 100) \). Models with two layers of superpixels use the first and last configurations.

Experimental setup. We evaluate our approach on the MSRC-21 dataset. As the original dataset has only coarse-grain annotations, we use the fine-grain annotations for a subset of 93 images by [7]. For all the experiments we use the TextonBoost unary features [7]. We report the results using 5-fold cross-validation with the parameters chosen using grid search (exact numbers provided in the appendix). For **SUBMOD2-LAYER-PAIR**, which uses both pairwise and higher-order interactions, we set the pairwise parameters to those selected for **SUBMODPAIR**, and cross-validate the higher-order parameters.

In addition to our models, we do experiments on the Potts model with the mean-field and belief-propagation algorithms from \texttt{libDAI} [30]. We also report the performances of \texttt{ROBUST-PN} [2] and the fully connected pairwise model \texttt{CRFFULLY} [7] as computed by [7]. Our inference procedure runs on 4 threads on an Intel Core-i5 quad-core 3.2 GHz processor. The algorithms using \texttt{libDAI} run on a single core of the same processor.
7.1. Evaluating inference

Estimation of marginals. Because computing the true marginals is intractable due to the size and order of the model, we use the area under the ROC curve (AUC) as a proxy to quantitatively measure the quality of marginals. As we work in a multi-class setting, we first generate one ROC curve per class using the 1-vs-all strategy, which are then averaged to yield the overall curve, as implemented in scikit-learn [31]. In addition to the AUC, we evaluate the pixel-wise average KL divergence to quantify the quality of the estimated marginals. As the marginals from BP, MF, SUBMOD, SUBMODPAIR, SUBMOD2-LAYER, SUBMOD2-LAYER-PAIR, and CRF are intractable to compute, we approximate them using the Lovász extension and the discrete energy after a fixed number of iterations.

Efficiency-accuracy trade-off
To better understand the effects of the smoothing parameter ϵ (see section 6), we plot on figures 5c and 5d the values of the Lovász extension and the discrete energy after a fixed number of iterations. First, it is evident from both plots that with weak smoothing one obtains very bad results, as postulated by Claim 3. Large values of ϵ seem to hurt the optimization of the Lovász extension, but the effect on the discrete energy seems much more benign. We believe that this is due to the fact that to minimize the discrete energy you just need the right marginal to be largest, which can be achieved even when distribution is close to uniform (as preferred by large values of ϵ). Moreover, note that using our inference approach ($\epsilon = 1$) we do minimally worse in terms of MAP performance, but we also obtain a bound on the partition function and well-motivated approximate marginals.

Table 1: Results for the AUC and KL divergence metrics across several trimaps. The pixel-wise accuracies are computed across the full image. The running times and accuracies of the last two rows are as reported by [7].

<table>
<thead>
<tr>
<th>Smoothing strength ϵ</th>
<th>Area under ROC curve</th>
<th>KL-divergence</th>
<th>Pixel-wise accuracy</th>
<th>Running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submod3-layer</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Submod2-layer</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Submod2-layer-pair</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>CRF</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Robust-PN</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
7.2. Qualitative results

To better understand the resulting segmentations, we visualize several examples in figure 6. Comparing with UNARY, the pairwise model SUBMODPAIR is able to only eliminate small noisy spots, while the higher-order factors in SUBMOD3-LAYER also smooth out relatively larger noisy regions. As the generated superpixels usually preserve the fine semantic boundaries, our higher-order prior preserves these region boundaries better than simple pairwise smoothing. As shown on the figure, SUBMOD3-LAYER can indeed produce good segmentations even if the unary potentials do not align well with the true boundaries.

To understand the behavior of the resulting approximate posterior, we show in figure 6 the entropies of the estimated marginals. In our visualization darker colors correspond to higher entropy (higher uncertainty). BP\textsubscript{PAIR} is rather overconfident and produces high uncertainty only in a very narrow range while SUBMODPAIR reports uncertainty with much higher dynamic range. Both pairwise models reduce the entropy in uncertain regions resulting from the noisy unary features. The uncertainty in the estimates from SUBMOD3-LAYER follows a different pattern and similar uncertainty levels are typically observed within single regions. In addition, and most importantly, we can also see from the hard examples in figure 7 that our approach is uncertain in the regions where it produces wrong estimates, which is what is desired when the data is noisy.

8. Conclusion

In this paper, we proposed a log-supermodular model for multi-class probabilistic modeling with higher-order interactions. We posed a variational inference procedure as a convex optimization problem over the base polytope, and showed how to solve it efficiently using the Frank-Wolfe algorithm. We also made a connection to a smoothed convex MAP relaxation and discussed the trade-off obtained by changing the smoothing parameter. In comparison with multiple pairwise and higher-order baselines, our model achieved state-of-the-art performance for both estimating the MAP and the marginals on the challenging MSRC-21 dataset. We believe that our multi-class framework includes a large family of richly parameterized models, and our very easy-to-implement inference algorithm makes them highly accessible. Together, these results present a step towards building a more powerful toolbox for modeling and quantifying uncertainty under complex data dependencies.

Acknowledgements. This research was supported in part by SNSF grant 200021_137528, ERC StG 307036, Microsoft Research Faculty Fellowship and a Google European Doctoral Fellowship.
References

[36] Sham Kakade, Shai Shalev-Shwartz, and Ambuj Tewari. On the duality of strong convexity and strong smoothness: Learning applications and matrix regularization. 13

A. Proof of Claim 1

We want to show an equivalence between the inference procedures for the models

\[P(A) = \begin{cases}
\exp(-F_1(A \cap V^1) - F_2(A \cap V^2)) & \text{if } A \in \mathcal{M} \\
0 & \text{otherwise}
\end{cases}, \tag{10} \]

and

\[P(A) \propto \exp(-G_1(A) - G_2(\overline{A})), \tag{11} \]

where

\[G_k : 2^{\{1,2,\ldots,N\}} \rightarrow \mathbb{R} \quad \text{as} \quad G_k(A) = F_k(\{v_{i,k} \mid i \in A\}). \]

We will denote the Lovász extensions of \(F_1, F_2, G_1 \) and \(G_2 \) by \(f_1, f_2, g_1 \) and \(g_2 \) respectively (they are all maps \(\mathbb{R}^N \rightarrow \mathbb{R} \)). Note that \(f_1 = g_1 \) and \(f_2 = g_2 \) if we assume the natural ordering of the respective ground sets. The Lovász extension of \(F(A) = F_1(A \cap V^1) + F_2(A \cap V^2) \) is equal to \(f(p) = f_1(p^1) + f_2(p^2) \), where \(p^k \in [0,1]^N \) are the entries corresponding to \((v_{1,k}, v_{2,k}, \ldots, v_{N,k})\), and \(p \) is the concatenation of \(p^1 \) and \(p^2 \). Hence, the marginals that we obtain using our method are the optimum of the following problem.

\[
\begin{align*}
\text{minimize} & \quad f_1(p^1) + f_2(p^2) - \sum_{j=1}^{N} \mathbb{H}[p_j^1, p_j^2] \\
\text{subject to} & \quad p^1 + p^2 = 1 \\
& \quad p^1 \geq 0 \\
& \quad p^2 \geq 0
\end{align*}
\]

This problem is equivalent to (substituting \(p^2 = 1 - p^1 \))

\[
\begin{align*}
\text{minimize} & \quad f_1(p^1) + f_2(1 - p^1) - \sum_{i=1}^{N} \mathbb{H}[p_i^1, 1 - p_i^1].
\end{align*}
\]

Moreover, because \(f_2(1 - p^1) = f_2(-p^1) + \text{const.} \) \([32][\text{Prop. 3.1 (d)}]\), we have that the above is equivalent to

\[
\text{minimize} \quad f_1(p^1) + f_2(-p^1) - \sum_{i=1}^{N} h(p_i^1),
\]

where \(h(z) = -z \log z - (1-z) \log(1-z) \) is the binary entropy. On the other hand, if we apply the technique from \([14]\) to eq. (11), we obtain as marginals the optimizer \(q^* \) of the problem

\[
\text{minimize} \quad g(q) - \sum_{i=1}^{N} h(q_i), \tag{12}
\]

where \(g \) is the Lovász extension of \(G(A) = G_1(A) + G_2(\overline{A}) - G_2(\{1,2,\ldots,N\}) \). We have to subtract the constant \(G_2(\{1,2,\ldots,N\}) \) to make sure that \(G \) is normalized, but this has no effect on the distribution. To show the equivalence between these two approaches, we have to prove that \(g(q) = f_1(q) + f_2(-q) \). As we have already observed that \(g_1 = f_1 \), it remains to be shown that the Lovász extension of \(G_2(A) = G_2(\overline{A}) - G_2(\{1,2,\ldots,N\}) \) is equal to \(f_2(-q) \). This can be immediately seen as \(B(G_2) = -B(G_2) \) \([32][\text{Appendix B}]\) and \(f_2 = g_2 \), which completes the proof.

B. Proof of Claim 2

Before showing the lemma, we would like to point out an alternative way of looking at the objective in eq. (9). Note that the Lovász extension of \(F(A) = \frac{1}{\epsilon} F(A) \) is equal to \(\tilde{f}(p) = \frac{1}{\epsilon} f(p) \) \([32][\text{Prop. 3.1 (a)}]\). Hence, we would have obtained the same objective if we had simply changed the temperature of the model and used our inference approach on that, i.e. if we used the energy \(\frac{1}{\epsilon} F(A) \) instead of \(F(A) \). Thus, varying the smoothing strength is equivalent to changing the temperature.

We will now prove a stronger result, from which the claim follows by setting \(\epsilon = 1 \).
Claim 5. For any $\epsilon > 0$, the objective in eq. (9) is the Fenchel dual of

$$\min_{s \in B(F)} \sum_{i=1}^{N} \epsilon \log \sum_{j=1}^{L} e^{-\frac{s_{i,j}}{\epsilon}}.$$ \hspace{1cm} (13)

There is zero duality gap at the primal-dual pair (s^*, p^*) if and only if $p^*_{i,j} = \frac{\exp(-s^*_{i,j}/\epsilon)}{\sum_{j=1}^{L} \exp(-s^*_{i,j}/\epsilon)}$ and $(p^*, s^*) = f(p^*)$.

Proof. Let us denote the objective in eq. (13) as $h(s)$. From [33][Ex. 3.25], the conjugate of $h_i(s_i) = \log \sum_{j=1}^{L} e^{s_{i,j}}$ is

$$h^*_i(w_i) = -\mathbb{H}(w_i) = \begin{cases} \sum_{j=1}^{L} w_{i,j} \log w_{i,j} & \text{if } w_i \in \Delta, \\ +\infty & \text{otherwise}. \end{cases} \hspace{1cm} (14)$$

Hence $eh^*_i(-w_i) = -e\mathbb{H}(-w_i)$ and $eh_i(-\frac{s_i}{\epsilon})$ are conjugate. As h_i and h_j are independent (share no variables) for $i \neq j$,

$$h^*(w) = \sum_{i=1}^{N} eh^*_i(-w_i) = -\epsilon \sum_{i=1}^{N} \mathbb{H}(-w_i).$$

In addition, the convex conjugate of the indicator $I_{B(F)}(s) = \log \sum_{j=1}^{L} e^{s_{i,j}}$ is the convex conjugate of $g^*(w) = -f(-w)$. From the Fenchel duality theorem [34][Prop. 7.2.2], we have that

$$\max_{w_i \in \Delta} -f(-w) + \epsilon \sum_{i \in I} \mathbb{H}(-w_i)$$

is the Fenchel dual problem of

$$\min_{s \in \mathbb{R}^{NL}} \epsilon \sum_{i=1}^{N} h_i(-\frac{s_i}{\epsilon}) + I_{B(F)}(s). \hspace{1cm} (15)$$

According to Theorem 1 in [35], as $h(s)$ is continuous on the whole domain, strong duality holds at some pair (s^*, w^*). From Theorem 2 in [35], zero duality gap is achieved if and only if $w^* \in \partial h(s^*) \cap \partial \{-g(s^*)\}$. As $h(s)$ is differentiable, we have $w^*_i = -\exp(-\frac{s^*_{i,j}}{\epsilon}) / \sum_{j=1}^{L} \exp(-\frac{s^*_{i,j}}{\epsilon})$. To ensure that $w^* \in \partial \{-g(s^*)\}$, we also need $\langle w^*, s^* \rangle = g(s^*) + g^*(w^*)$, i.e. $\langle w^*, s^* \rangle = -f(-w^*)$.

By reparameterizing with $p = -w$, we can verify the equivalence of the problem in eq. (9) and the one in eq. (15). Then, the optimality condition is $(p^*, s^*) = f(p^*)$ and $p^*_{i,j} = \exp(-\frac{s^*_{i,j}}{\epsilon}) / \sum_{j=1}^{L} \exp(-\frac{s^*_{i,j}}{\epsilon})$. \hfill \Box

C. Parallelization of Algorithm 1

In algorithm 1 we solve $\min_{y \in B(F)} \langle c, y \rangle$ in parallel. As $F(A) = \sum_{i=1}^{R} F_i(A)$ we have that $B(F) = \sum_{i=1}^{R} B(F_i)$ is the Minkowski sum of the base polytopes $B(F_i)$ [22][4.2], we can write any $s \in B(F)$ as $s = \sum_{i=1}^{R} s_i$, where $s_i \in B(F_i)$. Conversely, for any $s_i \in B(F_i)$, we have $\sum_{i=1}^{R} s_i \in B(F)$. Thus we can conclude

$$\min_{s \in B(F)} \langle c, s \rangle = \min_{s_i \in B(F_i)} \sum_{i=1}^{R} \langle c, s_i \rangle = \sum_{i=1}^{R} \min_{s_i \in B(F_i)} \langle c, s_i \rangle,$$

so that we can solve each of the R optimization problems separately and combine their solutions.
D. Proof of Claim 3

Claim 3. For smoothing parameter $\epsilon > 0$, Frank-Wolfe converges at a rate of $O(\frac{1}{T})$.

Proof. Let us denote the relative interior of the domain by $\hat{\Delta} = \{ p \mid 1^T p = 1, p_i > 0 \}$. On $\hat{\Delta}$ the Hessian $H_{\epsilon}(p)$ of the entropy term $h_{\epsilon}(p) = -\epsilon \sum_{i=1}^{N} \mathbb{H}(p_i) = \sum_{i=1}^{N} \sum_{j=1}^{L} p_{i,j} \log p_{i,j}$ is diagonal with entries $\frac{1}{p_{i,j}}$ and is thus ϵ-strongly convex. From Theorem 6 in [36], we know that the conjugate h_{ϵ}^* is $1/\epsilon$-smooth. This implies that the objective (eq. (13)) of the Frank-Wolfe problem is thus $1/\epsilon$-smooth, as it is the conjugate of h_{ϵ} when restricted to $\hat{\Delta}$.

E. Proof of Claim 4

Remember that we have defined $p^*(\epsilon)$ to be the optimal solution of the program in eq. (9) with $\epsilon \geq 0$. In order to prove Claim 4 we first construct a family of functions (one for each triplet (ϵ, N, L)) that satisfy the provided lower bound.

Lemma 1. Given $\epsilon > 0$, N and L, we define the modular function $F(A) = s(A)$ with entries

$$s_{i,j} = \begin{cases} -\epsilon \log (L - 1) & \text{if } j = 1 \\ 0 & \text{otherwise} \end{cases}.$$

Then $f(p^*(\epsilon)) - f(p^*(0)) = \frac{1}{2} \epsilon N \log (L - 1)$.

Proof. As s is the only feasible point in $B(F)$ it has to be optimal, and according to Claim 5 the optimal $p^*(\epsilon)$ is

$$p^*_{i,j}(\epsilon) = \frac{\exp(-\frac{s_{i,j}}{\epsilon})}{\sum_{k=1}^{L} \exp(-\frac{s_{i,k}}{\epsilon})} \quad \text{if } j = 1$$

$$= \frac{1}{2} \epsilon \frac{1}{2L-2} \quad \text{otherwise}.$$

As the Lovász extension is equal to $f(p) = \langle s, p \rangle$, we have that $f(p^*(\epsilon)) = \sum_{i=1}^{N} s_{i,1} p^*_{i,1}(\epsilon)$. Because $p_i \in \Delta$, we easily see that $f(p^*(0)) = \sum_{i=1}^{N} \min_{j=1,2,...,L} s_{i,j} = \sum_{i=1}^{N} s_{i,1} = -N \epsilon \log (L - 1)$, which gives

$$f(p^*(\epsilon)) - f(p^*(0)) = \sum_{i=1}^{N} s_{i,1} p^*_{i,1}(\epsilon) - \sum_{i=1}^{N} s_{i,1} = \frac{1}{2} \epsilon N \log (L - 1).$$

Claim 4. Let us denote with $p^*(\epsilon)$ the optimum of eq. (9) when using smoothing parameter $\epsilon \geq 0$. Then, we have that

$$f(p^*(\epsilon)) - f(p^*(0)) \leq \epsilon N \log L. \tag{17}$$

Moreover, for any ϵ, N and L, we can always construct a submodular function F so that

$$f(p^*(\epsilon)) - f(p^*(0)) = \frac{1}{2} \epsilon N \log (L - 1). \tag{18}$$

Proof. We have just proved the second part (18) in Lemma 1. To prove the first part (17), note that

$$f(p^*(0)) \geq f(p^*(\epsilon)) - \epsilon \sum_{i=1}^{N} \mathbb{H}(p^*_i(0)) \geq f(p^*(\epsilon)) - \epsilon \sum_{i=1}^{N} \mathbb{H}(p^*_i(\epsilon)) \geq f(p^*(\epsilon)) - \epsilon N \log L.$$

The last inequality follows from the fact that the entropy for discrete distributions over L atoms is maximal for the uniform distribution, and equals to $\log L$.

6 According to Theorem 12.2 in [37], the conjugate is the same whether we restrict h to its interior or not, as the later function is the closure of the former.
We will show that the models P marginal for each pixel. These values have been normalized and averaged in the same way as the Lovász extension.

We consider the dual variables in Claim 5 as approximated marginals and choose the label with highest extension, we pick for each sample the largest and smallest observed values and set them to 1 and 0 respectively. To compute ϵ different offsets. For relatively large F, we complete the proof.

Experiments

F.1. Representing the Potts model

In this subsection we show how to represent the Potts model using our modelling approach. Assume the pairwise graphical model is represented by a graph $G(U, E)$ with random variables $X_u \in \{1, 2, ..., L\}$ for $u \in U = \{1, 2, \ldots, N\}$. Note that there is no assumption about the structure of the graph G. We define the pairwise Potts energy as

$$\phi(x) = \sum_{\{u, u\} \in E} \phi_{u, w}(x_u, x_w) = \sum_{\{u, u\} \in E} \lambda_{u, w}[x_u \neq x_w],$$

for some weights $\lambda_{u, w} \geq 0$. For each factor $\phi_{u, w}(x_u, x_w)$, we define

$$F_{u, w}(A) = \sum_{j=1}^{L} \frac{1}{2} \lambda_{u, w}[|A \cap \{v_{u, j}, v_{w, j}\}| = 1].$$

(19)

We will show that the models $P(x) \propto \exp(-\phi(x))$ and

$$P(A) = \begin{cases} \frac{1}{Z} \exp(-F(A)) & \text{if } A \in \mathcal{M} \\ 0 & \text{otherwise} \end{cases}$$

give the same probabilities, where $F(A) = \sum_{(u, w) \in E} F_{u, w}(A)$ and $A_x = \{v_{i, x_i} | i = 1, 2, \ldots, N\} \in \mathcal{M}$. Consider any $(u, w) \in E$. If $x_u = x_w = l$, then this edge will have no contribution in $\phi(x)$. Similarly $F_{u, w}(A_x)$ will equal to zero as all intersections in the sum are empty, except for $j = l$, in which case the intersection equals 2. If $x_u \neq x_w$, then the contribution in $\phi(x)$ will be equal to $\lambda_{u, w}$. In $F_{u, w}(A_x)$ all intersections will be empty, except for $j = x_u$ and $j = x_w$ in which case the intersections are of size 1. Hence, each of them will contribute $\frac{1}{2} \lambda_{u, w}$, so that the total contribution towards the energy is again $\lambda_{u, w}$. Finally, note that the sets of the form A_x for some $x \in \{1, \ldots, L\}^N$ are exactly the elements in \mathcal{M}, which completes the proof.

F.2. Parameter grid

To model the multi-label pairwise smoothness for directly neighboring pixels, we use in eq. (19) the weights $w_{i, j} = \exp(-\theta |I_i - I_j|^2/255^2)$. The full parameter grid is shown in table 2.

F.3. Additional experimental results.

ROC curves over trimaps. Due to lack of space in the paper, we show the ROC curves for trimap bandwidths 5 and 20 in figures 8b and 8c. Note that the areas under them were reported in table 1.

Empirical analysis of Claim 3. We report in figure 8a the curves showing the duality gap averaged over all data samples using the model SUBMOD_3-LAYER. We have normalized the gaps, so that for every image the maximum observed gap across all runs (for different ϵ) is equal to 1. As expected from Claim 3, the curves for different ϵ are roughly linear functions with different offsets. For relatively large ϵ we can see bigger values of ϵ do produce lower curves. However, for small values for ϵ the ordering of the curves is not as expected and thus the analysis on the convergence rate might not be always be tight.

Note that the curves in figure 5c and figure 5d are also averaged from 93 samples. To normalize the values of the Lovász extension, we pick for each sample the largest and smallest observed values and set them to 1 and 0 respectively. To compute the discrete energy, we consider the dual variables in Claim 5 as approximated marginals and choose the label with highest marginal for each pixel. These values have been normalized and averaged in the same way as the Lovász extension.

<table>
<thead>
<tr>
<th></th>
<th>Pairwise</th>
<th>Higher-order</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ</td>
<td>β_1</td>
<td>α</td>
</tr>
<tr>
<td>(0.01, 0.1, 1, 10, 100)</td>
<td>(0.1, 0.5, 1, 5)</td>
<td>(0.8, 0.9)</td>
</tr>
<tr>
<td>β_2</td>
<td></td>
<td>(25, 37.5, 50, 62.5, 75)</td>
</tr>
</tbody>
</table>

Table 2: The parameter grid used. The best parameters were chosen using cross-validation.
Figure 8: Additional experimental results. (a) shows the duality gaps for different ϵ in a log-log scale. (b, c) show the ROC curves for trimap bandwidths 5 and 20 respectively.

F.4. Qualitative results

In the remaining of the appendix we show (same as in figure 6) the estimated MAP configurations and entropies on the complete set of 93 images.
Figure 9: MAP estimates and the entropy of the estimated marginals (higher entropy for darker regions) (cont).
Figure 9: MAP estimates and the entropy of the estimated marginals (higher entropy for darker regions) (cont).
Figure 9: MAP estimates and the entropy of the estimated marginals (higher entropy for darker regions) (cont).
Figure 9: MAP estimates and the entropy of the estimated marginals (higher entropy for darker regions) (cont).
Figure 9: MAP estimates and the entropy of the estimated marginals (higher entropy for darker regions) (cont).
Figure 9: MAP estimates and the entropy of the estimated marginals (higher entropy for darker regions) (cont).
Figure 9: MAP estimates and the entropy of the estimated marginals (higher entropy for darker regions) (cont).