Research Principles Revealed

Jennifer Widom
Stanford University
But First, Some Thanks

★ Four Extra-Special People
★ Superb Students
★ Terrific Collaborators
Extra-Special #1

Laura Haas

- Hired a PL/logic person with minimal DB experience
- The Perfect Manager
 - Mentored instead of managed
 - Ensured I could devote nearly all of my time to research
 - Sported a great button
Extra-Special #2

Stefano Ceri

- Incredible run of summer collaborations (IBM and Stanford)
- Jennifer \land Stefano \Rightarrow Success

Details

Intuition
Extra-Special #3 and #4

Hector Garcia-Molina and Jeff Ullman

• Colleagues, mentors, book co-authors

• Neighbors, baby-sitters, sailing crew, kids sports photographers, ...

{ Hector, Jeff, Jennifer }

• Research collaborations in all 2^3 subsets
Superb Ph.D. Students
Terrific Collaborators*

Serge Abiteboul
Brian Babcock
Elena Baralis
Omar Benjelloun
Sudarshan Chawathe
Bobbie Cochrane

Shel Finkelstein
Alon Halevy
Rajeev Motwani
Anand Rajaraman
Shuky Sagiv
Janet Wiener

* Significant # co-authored papers in DBLP
Now to the “Technical” Part ...
Research Principles Revealed

1. Topic Selection
2. The Research
3. Dissemination

Disclaimer
These principles work for me. Your mileage may vary!
Major Research Areas

Active Databases
- Constraints
- Triggers
- Incremental View Maintenance

Data Warehousing
- Incremental View Maintenance
- Lineage

Semistructured Data
- "Lore"

Data Streams
- Incremental View Maintenance
- Triggers

Uncertainty and Lineage
- "Trio"
Major Research Areas

- Active Databases
- Data Warehousing
- Data Streams
- Semistructured Data “Lore”
- Uncertainty and Lineage “Trio”

- Constraints
- Incremental View Maintenance
- Triggers
- Lineage

Stanford Lab
Finding Research Areas

I’m not a visionary
(In fact, I’m “anti-visionary”)

- Never know what my next area will be
- Some combination of “gut feeling” and luck
Finding Research Areas

Active Databases

Data Warehousing

Semistructured Data

Data Streams

Uncertainty and Lineage
Finding Research Topics

One recipe for a successful database research project

• Pick a simple but fundamental assumption underlying traditional database systems
 Drop it

• Must reconsider all aspects of data management and query processing
 – Many Ph.D. theses
 – Prototype from scratch
Finding Research Topics

Example “simple but fundamental assumptions”

- Schema declared in advance
- Persistent data sets
- Tuples contain values

Reconsidering “all aspects”

- Data model
- Query language
- Storage and indexing structures
- Query processing and optimization
- Concurrency control, recovery
- Application and user interfaces
The Research Itself

Critical triple for any new kind of database system

- Do all of them
- In this order
- Cleanly and carefully (a research luxury)

⇒ Solid foundations, then implementation
Nailing Down a New Data Model

Cleanly and carefully
Nailing Down a New Data Model

Example: “A data stream is an unbounded sequence of [tuple timestamp] pairs”

Temperature Sensor 1:

Temperature Sensor 2:

Example: “A data stream is an unbounded sequence of \[\text{tuple timestamp}\] pairs”

Temperature Sensor 1:
\[
\begin{array}{l}
(72, 2:05) \ (75, 2:20) \ (74, 2:21) \ (74, 2:24) \ (81, 2:45) \\
\end{array}
\]

Temperature Sensor 2:
\[
\begin{array}{l}
(73, 2:03) \ (76, 2:20) \ (73, 2:22) \ (75, 2:22) \ (79, 2:40) \\
\end{array}
\]

🌟 Duplicate timestamps in streams?
🌟 If yes, is order relevant?
Example: “A data stream is an unbounded sequence of [tuple timestamp] pairs”

Temperature Sensor 1:

Temperature Sensor 2:

🌟 Are timestamps coordinated across streams? Duplicates? Order relevant?
Nailing Down a New Data Model

Example: “A data stream is an unbounded sequence of [tuple timestamp] pairs”

Temperature Sensor 1:

Temperature Sensor 2:

Sample Query (continuous)

“Average discrepancy between sensors”

Result depends heavily on model
Data Model for Trio Project

- Only “complete” model
- Closure properties
- Relative expressiveness
- Only understandable models

In the end, lineage saved the day

Possible models
The Research Triple

Data Model → Query Language → System

Stanford Lab
Query Language Design

- Notoriously difficult to publish
- But potential for huge long-term impact
- Semantics can be surprisingly tricky

- Cleanly and carefully
 - Solid foundations, then implementation
Developing an active rule (trigger) system

“Write Code!”

“We finished our rule system ages ago”

Transition tables, Conflicts, Confluence, ...

Stanford University
The IBM-Almaden Years

Developing an active rule (trigger) system

“We finished our rule system ages ago”

“Yes, but what does it do?”

“We finished our rule system ages ago”
The IBM-Almaden Years

Developing an active rule (trigger) system

“Yeah, but what does it do?”

“Umm ... I’ll need to run it to find out”
The IBM-Almaden Years

Developing an active rule (trigger) system

Disclaimer
These principles work for me. Your mileage may vary.

“Umm ... I’ll need to run it to find out”
Tricky Semantics Example #1

Semistructured data (warm-up)

Query: SELECT Student WHERE Advisor='Widom'

• Error?
• Empty result?
• Warning?

<Student>
 <ID> 123 </ID>
 <Name> Susan </Name>
 <Major> CS </Major>
</Student>
<Student>
 ...
</Student>
Semistructured data (warm-up)

Query: SELECT Student WHERE Advisor=‘Widom’

```
<Student>
  <ID> 123 </ID>
  <Name> Susan </Name>
  <Major> CS </Major>
</Student>
<Student>
  ...  
</Student>
```

Lore
- Empty result
- Warning
Tricky Semantics Example #1

Semistructured data (warm-up)

Query: SELECT Student WHERE Advisor=‘Widom’

```xml
<Student>
  <ID> 123 </ID>
  <Advisor> Garcia </Advisor>
  <Advisor> Widom </Advisor>
</Student>

<Student>
  ...
</Student>
```

Lore
Implicit \exists
Tricky Semantics Example #2

Trigger 1: WHEN X makes sale > 500
THEN increase X’s salary by 1000

Trigger 2: WHEN average salary increases > 10%
THEN increase everyone’s salary by 500

Inserts: Sale(Mary,600) Sale(Mary,800) Sale(Mary,550)

- How many increases for Mary?
- If each causes average > 10%, how many global raises?
- What if global raise causes average > 10%?
Temperature Sensor:

[(72) 2:00] [(74) 2:00] [(76) 2:00] [(60) 8:00] [(58) 8:00] [(56) 8:00]

Query (continuous):
Average of most recent three readings
Tricky Semantics Example #3

Temperature Sensor:
[(72) 2:00] [(74) 2:00] [(76) 2:00] [(60) 8:00] [(58) 8:00] [(56) 8:00]

Query (continuous):
Average of most recent three readings

System A: 74, 58
Tricky Semantics Example #3

Temperature Sensor:

[(72) 2:00] [(74) 2:00] [(76) 2:00] [(60) 8:00] [(58) 8:00] [(56) 8:00]

Query (continuous):
Average of most recent three readings

System A: 74, 58
System B: 74, 70, 64.7, 58
The “It’s Just SQL” Trap

Tables: **Sigmod**(year,loc,...) **Climate**(loc,temp,...)

Query: Temperature at SIGMOD 2010

```
SELECT S.temp
FROM Sigmod S, Climate C
WHERE S.loc = C.loc AND S.year = 2010
```

<table>
<thead>
<tr>
<th>Sigmod (year, loc)</th>
<th>Climate (loc, temp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York</td>
<td>[64 – 79]</td>
</tr>
</tbody>
</table>
The “It’s Just SQL” Trap

• Syntax is one thing (actually it’s nothing)
• Semantics is another, as we’ve seen
 – Semistructured
 – Continuous
 – Uncertain
 – <Insert future new model here>
Taming the Semantic Trickiness

- Reuse existing (relational) semantics whenever possible

Uncertain data — semantics of query Q

Possible instances of D can be represented as D_1, D_2, \ldots, D_n. Applying Q on each instance results in $Q(D_1), Q(D_2), \ldots, Q(D_n)$. This process has been refined over 30 years.

Result
Taming the Semantic Trickiness

- Reuse existing (relational) semantics whenever possible

Semantics of stream queries

Streams → Window → Relations → Istream / Dstream

30 years of refinement
Taming the Semantic Trickiness

- Reuse existing (relational) semantics whenever possible
 - Active databases: “transition tables”
 - Lore: semantics based on OQL

3 years of refinement
The Research Triple

Data Model → Query Language → System

Impact

“Write Code!”
Truth in Advertising

- As research evolves, always revisit all three
- Cleanly and carefully!
Disseminating Research Results

🌟 If it’s important, don’t wait
 - No place for secrecy (or laziness) in research
 - Every place for being first with new idea or result

• Post on Web, inflict on friends
• SIGMOD/VLDB conferences are not the only place for important work
 Send to workshops, SIGMOD Record, ...
• Make software available and easy to use
 Decent interfaces, run-able over web
Summary: Five Points

1. Don’t dismiss the intuition types (intuition ≠ visionary)
 And don’t forget the details.

2. Data Model + Query Language + System
 Solid foundations, then implementation.

3. QL semantics: surprisingly tricky
 Reuse existing (relational) semantics whenever possible.
Summary: Five Points

4. Don’t be secretive or lazy
 Disseminate ideas, papers, and software

5. If all else fails, try stirring in the key ingredient:
 Incremental View Maintenance
Thank You

Serge Abiteboul
Brian Babcock
Elena Baralis
Omar Benjelloun
Sudarshan Chawathe
Bobbie Cochrane
Shel Finkelstein
Alon Halevy
Rajeev Motwani
Anand Rajaraman
Shuky Sagiv
Janet Wiener