Caffe con Troll:

Shallow Ideas to Speed Up Deep Learning

Stefan Hadjis¹, Firas Abuzaid¹, Ce Zhang¹,², Christopher Ré¹

¹Stanford University, ²University of Wisconsin-Madison

github.com/HazyResearch/CaffeConTroll
Outline

Motivation
- CPU / GPU gap?

4 Shallow ideas for FLOP-proportional scheduling
- Order of magnitude speedup on CPU
 - Close CPU / GPU gap
 - Operate all devices proportional to their FLOPS
- Lets us use CPUs + GPUs together!

What’s next
- New optimizations
Convolutional Neural Nets

- 70-90% of time spent doing **Convolutions**

Input Images \[\ast\] **Kernel** (Convolution Weights) = Output Images

Kernel (Convolution Weights)
Convolutional Neural Nets

- 70-90% of time spent doing **Convolutions**
Convolutional Neural Nets

- 70-90% of time spent doing Convolutions
Convolutional Neural Nets

- 70-90% of time spent doing **Convolutions**
CPU or GPU?

Existing software, e.g., Caffe, 10x slower on CPU than GPU.
CPU or GPU?

Existing software, e.g., Caffe, 10x slower on CPU than GPU.
CPU or GPU?

Existing software, e.g., Caffe, 10x slower on CPU than GPU.

Why is the CPU so relatively slow?
CPU or GPU?

Existing software, e.g., Caffe, 10x slower on CPU than GPU.

Why is the CPU so relatively slow?

EC2: c4.4xlarge
8 cores@2.90GHz
0.7TFlops

EC2: g2.2xlarge
1.5K cores@800MHz
1.2TFlops

Not a 10x gap? Can we close this?
CPU or GPU?

Existing software, e.g., Caffe, 10x slower on CPU than GPU.

Why is the CPU so relatively slow?

Goal: Achieve speeds on all devices proportional to their FLOPS

Then use CPU + GPU together!

Not a 10x gap? Can we close this?
4 shallow ideas described in 4 pages

github.com/HazyResearch/CaffeConTroll
4 Simple Ideas

1. Understanding “Lowering”

2. Fusion of Lowering and GEMM

3. Parallel Batching, Blocking, SIMD

4. FLOP-Proportional Scheduling
 → Use both CPU + GPU for further speedups
Lowering: Tensors to Matrix Multiply
Lowering: Tensors to Matrix Multiply

1. Lowering
 - Data D
 - Kernel K

2. Matrix Multiplication
 - Lowered Data D'
 - Lowered Kernel K'

3. Lifting
 - Output R
 - Lowered Output R'

Convolution

$D_{c,r,i} \times K_{c,r,i} \rightarrow R_{c,r}$
Lowering: Tensors to Matrix Multiply

Shallow Idea 1. 3 ways: Replicate on lowering, Replicate lifting, or a little of both.
Lowering: Tensors to Matrix Multiply

Shallow Idea 1. 3 ways: Replicate on lowering, Replicate lifting, or a little of both.
Lowering: Tensors to Matrix Multiply

Shallow Idea 1. 3 ways: Replicate on lowering, Replicate lifting, or a little of both.
Lowering: Tensors to Matrix Multiply

Shallow Idea 1. 3 ways: Replicate on lowering, Replicate lifting, or a little of both.
3 Types of Lowering

Replicating Input (Type 1) is faster than replicating output (Type 3) when

#Input Channels < #Output Channels

Most conv layers increase depth

Replicating Input is usually fastest
3 Types of Lowering

Replicating Input (Type 1) is faster than replicating output (Type 3) when

#Input Channels < #Output Channels

Shallow idea 2:

Preliminary results also show 60% speedup by fusing lowering and GEMM
CPU Speedup: Batching

If the amount of data in GEMM call is too small, BLAS is not at peak FLOPS.

Shallow idea 3: Batch more data to give a chance to effectively block in GEMM (“fill” the L2 and L3 of all cores), and lower batches in parallel.

→ Not always possible to batch on GPU
CPU Speedup: Batching

If the amount of data is small, BLAS is not CPU bound.

Effect on more threads and batch size on CPU GEMM kernel:

![Graph showing speedup vs. number of threads with batch size 256](image1)

![Graph showing speedup vs. batch size with 8 threads](image2)
CPU Speedup: Parallel Batch Partitions

input * kernel = output
Batching -- Caffe

Lowering
- 1 image at a time
Batching -- Caffe

Lowering
- 1 image at a time

GEMM
- All cores

kernel
Batching -- Caffe

Lowering
- 1 image at a time

GEMM
- All cores

Output
Batching -- Caffe

Lowering
- 1 image at a time

GEMM
- All cores

Output
Batching -- Caffe

Lowering
- 1 image at a time

GEMM
- All cores

Output
Batching -- Caffe

Lowering
• 1 image at a time

GEMM
• All cores

Output
Batching -- Caffe

Lowering
- 1 image at a time

GEMM
- All cores

Output
Batching -- Caffe

Lowering
• 1 image at a time

GEMM
• All cores

Output

kernel
Batching -- Caffe

Lowering
- 1 image at a time

GEMM
- All cores

Output
Batching -- CcT
Batching -- CcT

- **Partition** data and lower in parallel
- Use **batching** within each partition
 - All matrices are larger, enabling blocking optimizations and making GEMM CPU bound
Each GEMM uses a single core. Equivalent to a large GEMM with many cores.
Batching -- CcT
Batching -- C c T

Final step to remap the output
EC2 c4.4xlarge instance ($0.68/hour), end-to-end “AlexNet”, batch size 256
CPU Batching Speedup (full AlexNet)

Relative Speed

<table>
<thead>
<tr>
<th>Caffe CPU</th>
<th>CcTCPU</th>
<th>Caffe GPU</th>
<th>Caffe CPU</th>
<th>CcTCPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>c4.4x_large ($0.68/h)</td>
<td>c4.4x_large ($0.68/h)</td>
<td>g2.2x_large ($0.47/h)</td>
<td>c4.8x_large ($1.37/h)</td>
<td>c4.8x_large ($1.37/h)</td>
</tr>
</tbody>
</table>
CPU Batching Speedup (full AlexNet)

Relative Speed

- Caffe CPU c4.4x_large ($0.68/h)
- CcTCP CPU c4.4x_large ($0.68/h)
- Caffe GPU g2.2x_large ($0.47/h)
- Caffe CPU c4.8x_large ($1.37/h)
- CcTCP CPU c4.8x_large ($1.37/h)
CPU Batching Speedup (full AlexNet)

Speed is now proportional to FLOPS offered by device!
CPU + GPU (Data Parallel)

Shallow idea 4: FLOP Proportional Scheduling.

Run on EC2 g2.2xlarge instance ($0.47/hour) for Layer 1 of popular “AlexNet”
Multiple GPUs and Multiple Machines.

Flop Proportional Scheduling allows us to distribute the computation in a device-agnostic way.

<table>
<thead>
<tr>
<th>Layer Category</th>
<th>1 GPU</th>
<th>2 GPUs</th>
<th>4 GPUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (seconds)</td>
<td>0.4</td>
<td>0.3</td>
<td>0.1</td>
</tr>
</tbody>
</table>

We have applied CcT to a single **4-GPU EC2 instance** (announced last month!)

Next we are working on a cluster of these instances!

Run on EC2 g2.8xlarge instance
Multiple GPUs and Multiple Machines.

Flop Proportional Scheduling allows us to distribute the computation in a device-agnostic way.

AlexNet End-To-End

Run on EC2 g2.8xlarge instance
Trying CcT

- VMs (EC2 + Azure) available with CcT installed

- What’s next?
 - Multiple Machines
 - New optimizations

github.com/HazyResearch/CaffeConTroll
Summary

- CPU + GPU can work together!
 - Close CPU gap
 - Operate both near peak FLOPS

- FLOP proportional scheduling
 - Next: Scale to distributed setting

- Questions?

github.com/HazyResearch/CaffeConTroll