
© Nick Parlante, 1996.Free for non-commerical use.

The 10 Truths of Debugging
• Intuition and hunches are great— you just have to test them out. When a hunch and a fact

collide, the fact wins. The values of the variables are never wrong.

• Don't look for complex explanations. Even the simplest omission or typo can lead to very
weird behavior. Everyone is capable producing extremely simple and obvious errors
from time to time. Look at code critically— don't just sweep your eye over that series of
simple statements assuming that they are too simple to be wrong.

• The clue to what is wrong in your code is in the values of your variables. Try to see what
the facts are pointing to. Be systematic and persistent. The bug is not moving around in
your code, trying to trick or evade you. It is just siting in one place, doing the wrong
thing in the same way every time

• If you code was working a minute ago, but now it doesn't— what was the last thing you
changed? Note: this incredibly reliable rule of thumb is the reason your section leader
told you to test your code as you go rather than all at once. If you run your program each
time you've added 50 more lines of code, then you'll almost always know which 50
lines are responsible as soon as things begin to not work.

• Do not change your code haphazardly trying to track down a bug. This is sort of like a
scientist who changes more than one variable at a time. It makes the observed much
more difficult to interpret, and you tend to introduce new bugs.

• If you find some wrong code which does not seem to be related to the bug you were
tracking, fix the wrong code you found anyway. Many times the wrong code was
related to or obscuring the bug in a way you had not imagined.

• If you have a bug but can't pinpoint it, then you should be able to give an argument to a
critical third party detailing why each one of your functions cannot contain the bug. One
of these arguments will contain a flaw since one of your functions does in fact contain a
bug. Trying to construct the arguments may help you to see the flaw.

• Be critical of your beliefs about your code. It's almost impossible to see a bug in a
function when your instinct is that the function is innocent. In that case, only when the
facts have proven without question that the function is the source of the problem will
you be able to see the bug.

• You need to be systematic, but there is still an enormous amount of room for beliefs,
hunches, guesses, etc…. Use your intuition about where the bug probably is to direct
the order that you check things in your systematic search. Check the functions you
suspect the most first. Good instincts will come with experience.

• Debugging depends on an objective and reasoned approach. It depends on overall
perspective and understanding of the workings of your code. Debugging code is more
mentally demanding than writing code. The longer you try to track down a bug without
success, the less perspective you tend to have. Realize when you have lost the
perspective on your code to debug. Take a break. Get some sleep. You cannot debug
when you are not seeing things clearly. Many times a programmer can spend hours late
at night hunting for a bug only to finally give up at 4:00 a.m. The next day, they find the
bug in 10 minutes. What allowed them to find the bug the next day so quickly? Maybe
they just needed some sleep and time for perspective. Or maybe their subconscious
figured it out while they were asleep. In any case, the "go do something else for a while,
come back, and find the bug immediately" scenario happens too often to be an accident.



2

Show me where your code hurts
When you write a program, you have a mental plan in mind of what you are trying to compute.
The program itself is an extremely unambiguous plan of some computation. A bug is when these
two plans diverge. Unfortunately, you do not observe the bug directly. Instead you see a symptom
produced by the underlying bug. Your job is to work backward from the symptom to find the bug
which produced it. The line in your code which contains the bug will have the following property.
Before that line, the values of your variables were ok. After that line executes, some of the values
are wrong.

There are three basic themes in trying track down the bug. You can work backward linearly from
the symptom trying to find the line which took in good values but produced bad values. You can
trace forward from the beginning of your program, looking for the values to go bad. Or you can do
a sort of "binary search" in your code with break points, narrowing in on the bug by seeing if it
lays before or after each trial breakpoint. People develop a personal craft for how they like to
debug— the key is to be methodical.

What you want to avoid is the worst case: you've probed around in your code for a few hours
without success. You've looked at a lot of your functions but can find nothing wrong. You begin
to change around the code in functions in an effort to fix the elusive bug. The problem here is that
you are not really getting any closer to finding the bug. It's sort of like looking for a diamond ring
on a football field. If you just stroll around at random you may find it. But if after a couple hours
you haven't found it-- then are not much better off than when you started since you don't know
where you've looked and where you haven't. The most important quality about the following
strategy is that by being systematic, you always know which part of the field you've checked.

The Solution
Identify the line which corresponds to the symptom. This is typically is very simple. For the above
example the symptom corresponds to the line where the variable went out of bounds or to the
printfs which produced the garbage output. The incorrect behavior will correspond to a variable
with a bad value. Identify the variable(s) with bad values. For this example, suppose that the
program crashes on line 112 because i is -1 and tries to index an array.

The critical question is: where did i get its value? There are basically three ways a variable can get a
value: the variable appears on the left hand side of a =, a reference to the variable is passed to
somebody who changes it, or there is a bad pointer reference somewhere which is accidentally
scribbling on the variable. Arguably a fourth way is if the variable is never initialized and so gets a
random value. Writing your code with good style: sensibly used parameters, no global variables
should make it easier to identify what bit of code could be changing your variable.

In this example, i is wrong on line 112. Look above line 112 searching for the most recent line
which changes i. Suppose line 108 passes i as a reference and so is suspect. Put a breakpoint or
printf just before line 108 to examine i. If i is correct before 108 but wrong after, then 108 is the
problem. If i was already wrong, then you must probe further backward. If working backwards
doesn't reveal the good values/bad values transition, it can be easier to sprinkle prints or asserts at
the very beginning of a few functions just to find the general area where things are going wrong.

One starting strategy which doesn't require any breakpoints is to step over the functions in main()
without stepping into any one. Keep an eye on your data state after each step to see which function
messes things up. Of course, if you didn't decompose out the basic phases of your program, then
this won't work.

Deer in the Headlights
The key is not to lock up in deer-in-the-headlights mode when overwhelmed with the enormity of
the problem. You are never more than a couple well-placed break point examinations away from
seeing the problem. Try think about which breakpoint will implicate/exonerate the largest amount
of code with the least work.


