How Users Evaluate Each Other in Social Media

Jure Leskovec
Stanford University
Including joint work with Ashton Anderson, Dan Huttenlocher, Dan Jurafsky, Jon Kleinberg, and Julian McAuley
Recommended Systems drive the Web!

Anything can be recommended:

- Advertising messages
- Investment choices
- Restaurants
- News articles
- Music tracks
- Movies
- TV programs
- Books
- Clothes
- Tags

- Future friends (Social network sites)
- Courses in e-learning
- Online mates (Dating)
- Supermarket goods
- Drug components
- Research papers
- Citations
- Code modules
- Programmers
Success of recommender systems heavily depends on people expressing their attitudes and opinions

- Through consumption:
 - Buying
 - Clicking

- Through actions:
 - Rating a product
 - Pressing a “like” button

- Through text:
 - Writing a comment, a review
A Common View

- The most common and traditional form of evaluations: **Users evaluate items**
 - Movies, books, music, products, ...

- **Traditional view of Recommender Systems:** Systems then attempt to predict how much you may like a certain product
 - **Collaborative filtering** [Resnick et al. ‘94]
 - **Latent space models** [Koren-Bell-Volinsky ’09]
The Social Transformation of Computing

- Social Transformation of Computing
 - Technological networks intertwined with social
 - Profound transformation in:
 - How information is produced and shared
 - How people interact and communicate
 - The scope of CS as a discipline
A different view of Recommender Systems:
Systems that help people find information that will interest them, by facilitating social and conceptual connections

Recommendations in online communities

In communities people express opinions:
- About other community members
- About content created by other members of the community
Many on-line settings where one person expresses an opinion about another (or about another’s content)

- I trust you [Kamvar-Schlosser-Garcia-Molina ‘03]
- I agree with you [Adamic-Glance ’04]
- I vote in favor of admitting you into the community [Cosley et al. ‘05, Burke-Kraut ‘08]
- I find your answer/opinion helpful [Danescu-Niculescu-Mizil et al. ‘09, Borgs-Chayes-Kalai- Malekian-Tennenholtz ‘10]
Natural analogies to how evaluation works in scientific communities:

- Acceptance of papers to conferences and journals
- Funding of grant proposals
- Who gets hired, who receives awards, …
U-U Evaluations: Some Issues

- Need to understand ways in which humans evaluate each other
 - What factors play role?
 - What biases arise?
- New forms of evaluations & feedback
 - Allowing for interactions between users
 - Computing composite opinion of a community
 - Using audience composition as a way to extract (implicit) evaluations
People evaluate each other:

- **Direct:** User to user [ICWSM ’10]
- **Indirect:** User to content (created by another member of a community) [WSDM ’12]

Where online does this explicitly occur on a large scale?
This Talk: Data

- **Wikipedia adminship elections**
 - Support/Oppose (120k votes in English)
 - 4 languages: EN, GER, FR, SP

- **Stack Overflow Q&A community**
 - Upvote/Downvote (7.5M votes)

- **Epinions product reviews**
 - Ratings of others' product reviews (13M)
 - 5 = positive, 1-4 = negative
Questions:

1) Factors: What ingredients/factors lead people when they evaluate each other?

2) Synthesis: How do we create a composite description that accurately reflects cumulative opinion of the community?

3) Implicit feedback: How to use audience composition as a way to extract evaluations?
What drives human evaluations?

How do properties of evaluator A and target B affect A’s vote?

- Status and Similarity are two fundamental drivers behind human evaluations.
Definitions

- **Status**
 - Level of recognition, merit, achievement, reputation in the community
 - Wikipedia: # edits, # barnstars
 - Stack Overflow: # answers

- **User-user Similarity**
 - Overlapping topical interests of A and B
 - Wikipedia: Cosine similarity of the articles edited
 - Stack Overflow: Cosine similarity of users evaluated
How do properties of evaluator A and target B affect A’s vote?

Two natural (but competing) hypotheses:

1. Prob. that B receives a positive evaluation depends primarily on the characteristics of B
 - There is some objective criteria for user B to receive a positive evaluation
How do properties of evaluator A and target B affect A’s vote?

Two natural (but competing) hypotheses:

- (2) Prob. that B receives a positive evaluation depends on relationship between the characteristics of A and B
 - User A compares herself to user B and then makes the evaluation
How does status of B affect A’s evaluation?

- Each curve is fixed status difference: $\Delta = S_A - S_B$

Observations:

- **Flat curves:** Prob. of positive eval. $P(+)\) doesn’t depend on B’s status
- **Different levels:** Different values of Δ result in different behavior

Status difference remains salient even as A and B acquire more status
Effects of Similarity

How does prior interaction shape evaluations? 2 hypotheses:

(1) Evaluators are more supportive of targets in their area
 “The more similar you are, the more I like you”

(2) More familiar evaluators know weaknesses and are more harsh
 “The more similar you are, the better I can understand your weaknesses”
Effects of Similarity

Prior interaction/similarity boosts positive evaluations
Status & Similarity

Status is a proxy for quality when evaluator does not know the target.
Who shows up to evaluate?

Selection effect in who gives the evaluation

- If $S_A > S_B$ then A and B are highly similar
What is $P(+) \text{ as a function of } \Delta = S_A - S_B$?

- Based on findings so far: Monotonically decreasing
What is $P(\cdot)$ as a function of $\delta = S_A - S_B$?

- Especially negative for $S_A = S_B$
- Rebound for $S_A > S_B$

How can we explain this?
Why low evals. of users of same status?

- Not due to users being tough on each other
- But due to the effects of similarity

So: High-status evaluators tend to be more favorably disposed
Aggregating Evaluations

- **So far:** Properties of individual evaluations
- **But:** Evaluations need to be “summarized”
 - Determining rankings of users or items
 - Multiple evaluations lead to a group decision
- **How to aggregate user evaluations to obtain the opinion of the community?**
 - Can we guess community’s opinion from a small fraction of the makeup of the community?
Ballot-blind Prediction

- Predict Wikipedia adminship election results without seeing the votes
 - Observe identities of the first k (=5) people voting (but not how they voted)
 - Want to predict the election outcome
 - Promotion vs. no promotion

Why is it hard?
- Don’t see the votes (just voters)
- Only see first 5 voters (out of ~50)
Ballot-blind: The Model

- Want to model prob. user A votes + in election of user B

- Our model:
 \[
P(A = + | B) = P_A + d(\Delta_B, S_B)
 \]
 - P_A ... empirical fraction of + votes of A
 - $d(S, \Delta)$... avg. deviation in fraction of + votes
 - When As evaluate B from a particular (S, Δ) quadrant, how does this change their behavior

- Predict ‘elected’ if: $\sum_{i=1}^{k} P(A_i = + | B) > w$
Ballot-blind Prediction

- Based on only who showed to vote, predict the outcome of the election

<table>
<thead>
<tr>
<th>Number of voters seen</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>71.4%</td>
</tr>
<tr>
<td>10</td>
<td>75.0%</td>
</tr>
<tr>
<td>all</td>
<td>75.6%</td>
</tr>
</tbody>
</table>

- Other methods:

Theme: Learning from implicit feedback

Audience composition tells us something about their reaction
Evaluations form a signed network

- Network provides a context in which signed edges are formed
- What can we say about the edges?
Status in a network [Davis-Leinhardt ’68]

- A $\rightarrow^+ B :: B$ has higher status than A
- A $\rightarrow^- B :: B$ has lower status than A
 - (Note the notion of status is now implicit)

Apply this principle transitively over paths

- Can replace each A $\rightarrow^- B$ with A $\leftarrow^{+} B$
- Obtain an all-positive network with same status interpretation
Start with the intuition [Heider ’46]

- The friend of my friend is my friend
- The enemy of enemy is my friend
- The enemy of friend is my enemy
- The friend of my enemy is my enemy

Look at signed triangles:
At a global level:

- **Status \(\Rightarrow\) Hierarchy**
 - All-positive directed network should be (approximately) **acyclic**

- **Balance \(\Rightarrow\) Coalitions**
 - Balance ignores directions and implies that subgraph of negative edges should be (approximately) **bipartite**
Aggregate tendency toward Status

- Theories are at work at different levels:
 - Balance more applicable on reciprocated links

- Design implication:
 “I agree with you” vs. “I respect you.”
Global Structure

- Intuitive picture of social network in terms of densely linked clusters
- How do link structure and signs interact?
- **Embeddedness** of an edge (A,B): number of shared neighbors

9/10/2012 Jure Leskovec, Stanford University
Embeddedness

- **Embeddedness of ties:**
 - Embedded ties tend to be more positive

- A natural connection to triadic closure based social capital [Coleman ’88]
 - Public display of signs (votes) in Wikipedia further strengthens this
How will A evaluate B?

- Predicting edge signs

Model:

- Count the triads in which edge $A \rightarrow B$ is embedded: 16 features:

- Train Logistic Regression

- Predictive accuracy: \(~90\%\)

Evaluations can be modeled from the local network structure alone!
Application: Predicting Signs

- How generalizable are the results across the datasets?
 - Epinions: Trust/Distrust

Nearly perfect generalization of the models even though evaluations have very different meaning

<table>
<thead>
<tr>
<th>All23</th>
<th>Epinions</th>
<th>Slashdot</th>
<th>Wikipedia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epinions</td>
<td>0.9342</td>
<td>0.9289</td>
<td>0.7722</td>
</tr>
<tr>
<td>Slashdot</td>
<td>0.9249</td>
<td>0.9351</td>
<td>0.7717</td>
</tr>
<tr>
<td>Wikipedia</td>
<td>0.9272</td>
<td>0.9260</td>
<td>0.8021</td>
</tr>
</tbody>
</table>
Suppose we are only interested in predicting whether there is a **positive edge** or **no edge**

Does knowing negative edges help? **YES!**

<table>
<thead>
<tr>
<th>Features</th>
<th>Epinions</th>
<th>Slashdot</th>
<th>Wikipedia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive edges</td>
<td>0.5612</td>
<td>0.5579</td>
<td>0.6983</td>
</tr>
<tr>
<td>Positive and negative edges</td>
<td>0.5911</td>
<td>0.5953</td>
<td>0.7114</td>
</tr>
</tbody>
</table>
General challenge: In many situations, opinions and evaluations are expressed, but the underlying principles driving them may not be obvious.

Basic models provide a vocabulary for dissecting the fundamental ingredients:
- Relative assessment: Status
- Prior interaction: Similarity
Dimensions of an opinion:
- Status vs. Similarity
- Agreement with the statement vs. Statement is technically correct

On-line domains: People are applying multiple dimensions of evaluation, but the interfaces they use collapse them to a single dimension
How communities form collective judgments in social applications?

Model outcomes of group decisions from small set of evaluations

- Predict outcomes without explicit user feedback
- Audience composition predicts audience's reaction
Evaluations create incentives (and sometimes unfair evaluations can produce better outcomes)

- Status and reputation mechanisms

- **Trust issues**: Why should I trust another user, or the community as a whole?

An opportunity to understand the range of forces at work, and use this to inform the design of new applications
THANKS!
Data + Code:
http://snap.stanford.edu
References

