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ABSTRACT
Navigating information spaces is an essential part of our everyday
lives, and in order to design efficient and user-friendly information
systems, it is important to understand how humans navigate and
find the information they are looking for. We perform a large-scale
study of human wayfinding, in which, given a network of links be-
tween the concepts of Wikipedia, people play a game of findinga
short path from a given start to a given target concept by following
hyperlinks. What distinguishes our setup from other studies of hu-
man Web-browsing behavior is that in our case people navigate a
graph of connections between concepts, and that the exact goal of
the navigation is known ahead of time. We study more than 30,000
goal-directed human search paths and identify strategies people use
when navigating information spaces. We find that human wayfind-
ing, while mostly very efficient, differs from shortest paths in char-
acteristic ways. Most subjects navigate through high-degree hubs
in the early phase, while their search is guided by content features
thereafter. We also observe a trade-off between simplicityand ef-
ficiency: conceptually simple solutions are more common buttend
to be less efficient than more complex ones. Finally, we consider
the task of predicting the target a user is trying to reach. Wede-
sign a model and an efficient learning algorithm. Such predictive
models of human wayfinding can be applied in intelligent browsing
interfaces.

Categories and Subject Descriptors:H.5.4 [Information Inter-
faces and Presentation]: Hypertext/Hypermedia—Navigation.
General Terms: Algorithms, Experimentation, Human Factors.
Keywords: Navigation, browsing, information networks, Wikipe-
dia, Wikispeedia, human computation.

1. INTRODUCTION
There is no such thing as an isolated piece of knowledge. Bitsof

information are interconnected in giant networks, and we are daily
navigating and finding paths through such networks. Browsing the
Web is an important example, but by far not the only one: we fol-
low leads in citation networks to find work that is related to our
own research; when we reason or try to find explanations for the
phenomena around us, we are implicitly disentangling a network
of relations between concepts, with the goal of finding a pathof
connections between the ‘cause’ and the ‘effect’; and we constantly
look things up in cross-referenced dictionaries and encyclopedias,
be it in the form of books or online resources such as Wikipedia.
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Figure 1: A human example path between the conceptsDIK -
DIK and ALBERT EINSTEIN . Nodes represent Wikipedia arti-
cles and edges the hyperlinks clicked by the human. Edge labels
indicate the order of clicks, the framed numbers the shortest-
path length to the target. One of several optimal solutions
would be 〈DIK -DIK , WATER , GERMANY , ALBERT EINSTEIN 〉.

This last example is particularly interesting, since Wikipedia is
not just a regular website but a rich network representing human
knowledge as well as the connections between single pieces of
knowledge, by means of hyperlinks. This distinguishes Wikipedia-
browsing from navigation on typical Web resources. By observing
humans finding their ways between articles in Wikipedia, we are
watching them navigate a large information network, using their
mental maps of relationships in order to find the paths that connect
concepts.

There are two aspects—analytic and pragmatic—of this view of
human wayfinding in information networks.

From an analytic perspective, it is important to understandwhat
strategies and clues people use to find paths in the Wikipediainfor-
mation network. In particular, as humans are navigating informa-
tion networks, they might switch between various strategies. The
interplay between the topical relatedness of concepts and the un-
derlying network structure could give us important insights about
the methods used by efficient information seekers. Also, thelatter
often face trade-offs: there may be wayfinding strategies that are
safe but also inefficient; on the other hand, by trying to find only
the shortest paths, the searcher might get lost more easily.

From a pragmatic perspective, there is useful information in the
trail an information seeker has navigated so far, even before reach-
ing the target. We see such trails playing an important role in the
development of methods that can analyze the path taken so farand
provide information seekers with navigational aids. One useful di-
rection for this is in predicting what piece of information the in-
formation seeker is trying to locate. Another is in automatically
detecting if the user has gotten lost. Given that human navigation
of information networks is so ubiquitous, a better understanding
of the methods according to which humans find connecting paths



would have applications in improving the design of information
spaces [15], more intuitive and navigable link structures [8], and
new intelligent information navigation systems [16].

Present work. These broad issues suggest a wide range of inter-
esting open questions. We take a step in this direction by compu-
tationally analyzing how people navigate to specific targetpages in
the Wikipedia information network. As a tool we use the online
human-computation game Wikispeedia [24, 23], in which players
(i.e., information seekers) are given two random articles and aim
to solve the task of navigating from one to the other by clicking
as few hyperlinks as possible. Players have no knowledge of the
global network structure but must rely solely on the local informa-
tion they see on each page—the outgoing links connecting thecur-
rent article to its neighbors—and on their expectations about which
articles are likely to be interlinked. In this respect, the task humans
are trying to solve at each visited article is that of guessing which of
the outgoing links to follow in order to eventually reach thetarget
article.

What makes our study unique is that we have been collecting de-
tailed data on more than 30,000 instances of human wayfindingin
an information network describing general human knowledge(the
data came from around 9,400 distinct IP addresses). This allows
us to computationally analyze human wayfinding on a large scale.
Even more important, for every instance we know the startingarti-
cle and the given target article the user is trying to reach. Hence, we
do not have to infer or guess the information need of the informa-
tion seeker, but can base our methods on the ground truth instead.

To illustrate the dynamics of the Wikispeedia game, as well as
potential reasoning schemes and classes of strategies humans might
use, Fig. 1 gives the example of a human path between thestart ar-
ticle DIK -DIK and thetarget ALBERT EINSTEIN. (We call such a
pair amission.) Note that using the browser’s back button is al-
lowed. In the example, the information seeker clicked fromELEC-
TRON to ATOM, but backed up after not finding the link to the tar-
get that he/she had expected there. We call the sequence including
ATOM and theback-clickthefull path, while referring to〈DIK -DIK ,
WATER, ELECTRON, QUANTUM MECHANICS, ALBERT EINSTEIN〉
as theeffective path. The shortest-path length(SPL) from every
article to the target is shown in squares in the picture. If a click
decreases the SPL, we call itlucrative. Note that, in the example,
not every click is lucrative; rather, the information seeker makes
progress at first, but then orbits at a distance of 2 fromALBERT

EINSTEIN, before finally gravitating towards it with the choice of
QUANTUM MECHANICS. We also emphasize the special role the
article onWATER plays in the example. It connects to many parts
of the network—hence we call it ahub—and marks the transition
between getting away from the animal kingdom and homing in on
the realm of physics.

Despite the lack of global knowledge, humans are good at con-
necting the dots: the median human game path is only one click
longer than the median optimal solution. We explain this effect by
showing that certain properties of Wikipedia’s hyperlink structure
make it easily navigable. For instance, our Wikipedia graph(we use
a version containing about 4,000 articles and 120,000 links[27])
has a skewed degree distribution (median/mean/max degree 19/26/
294) and contains a few high-degree hubs that contribute to every-
thing being connected to everything else by short chains (median/
mean/max shortest-path length 3/3.2/9; note that this is the case
although no ‘meta pages’, such as category indices, are available
to players). This makes our network a typical ‘small world’.Our
analysis shows that people commonly find their way in it by first lo-
cating a hub and by constantly decreasing the conceptual distance

to the target thereafter. While approaching the target through a se-
ries of conceptually very related articles is safer and often humans’
preferred solution (cf. the example of Fig. 1), it is typically not the
most efficient: we find that thinking ‘out of the box’ often allows
information seekers to find shorter paths between concepts—at the
risk of getting lost. A strategy that is both popular and often suc-
cessful is to connect concepts in terms of their geographical com-
monalities. In the above example,〈DIK -DIK , AFRICA, EUROPE,
GERMANY, ALBERT EINSTEIN〉 would have been such a solution.

Following this analysis, we formulate a task that captures some
of the key motivating issues discussed above. We show how in-
formation from a short prefix of the navigation path can be used
to predict what the information seeker is looking for. We design
a ranking-based machine learning model and an efficient parame-
ter estimation algorithm. Our method is informed by the lessons
learned in our analysis and is trained on real human paths. The ex-
perimental evaluation shows that it can predict humans’ intended
targets with high accuracy.

Overall, our results provide insights into how people navigate
and solve the task of wayfinding in information networks. From the
practical perspective, our findings can be applied in order to make
better sense of observed human search paths. Our performance
on the target prediction task suggests that features of the underly-
ing path can provide useful information beyond simply predicting
the next action of the user. We therefore think that results of our
research can be incorporated into intelligent systems to facilitate
human information browsing and navigation.

2. RELATED WORK
The work related to our explorations here can be separated into

three parts: Web click-trail analysis, systems that aid users in Web
navigation, and decentralized search in networks. Next, webriefly
review each of these three lines of related work.

Information retrieval has focused on analyzing Web-browsing
click trails of millions of users mainly for the purpose of improving
Web search results. Click trails can be used as endorsementsto rank
search results more effectively [4, 20], trail destinationpages can
themselves be used as search results [26], and the concept oftele-
portation can be used to navigate directly to the desired page [21].
Similarly, large-scale studies of Web-page revisitation patterns [2]
focus on how often users revisit the same page, while ignoring
how people get there. In contrast, our work focuses on understand-
ing how people reach information by navigating through networks.
Another important difference is that, in our case, we know the ex-
act target of human search and can thus quantitatively analyze the
strategies people use when navigating information spaces,as well
as their efficiency.

Observational and laboratory studies have conducted small-scale
controlled experiments about users’ thought processes during Web
search by having them think aloud as they search [14], and about
their interaction with Web information [18]. These studiesspawned
sophisticated descriptive models, like information scent[5] and in-
formation foraging [17], which uses the metaphor of how animals
forage for food. Other analogies, such as orienteering [15]and
berrypicking [3], have also been used to describe users’ informa-
tion-seeking strategies. Systems like ScentTrails [16] and guided
tours [22] have been proposed to create annotations to indicate
where other users have navigated in the past, all with the goal of
helping people find information faster. Our present work differs
in two important ways: First, our goal is not to formulate an anal-
ogy for human wayfinding, but rather to analyze it computationally
using a large-scale collection of real search traces. Second, we ad-
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Figure 2: Distribution of game length, according to different
path-length metrics. Black circles: shortest possible paths.Blue
X’s: effective human paths (i.e., ignoring back-clicks).Red dots:
complete human paths (i.e., including back-clicks).Green plus
signs: complete human paths, corrected for drop-out rates.

path-length metric mode median mean
shortest possible paths 3 3 2.9
human, effective 4 4 4.9
human, incl. back-clicks 4 5 5.8
human, drop-out–corrected 4 6 8.9

Table 1: Summary statistics of the distributions of Fig. 2.

dress the task of predicting the actual target of human search, not
just the next action [7].

The last line of related work can be traced back to Milgram’s
small-world experiment [13] and the algorithmic problem ofdecen-
tralized search in networks [10]. Decentralized search considers a
scenario in which a starting nodes is trying to send a message to a
given target nodet by forwarding the message to one of its neigh-
bors, where the process continues in the same way until eventually
t is reached. This process has been investigated both experimen-
tally as well as through simulations [6, 11, 1, 9, 19]. Each game of
Wikispeedia may be considered an instance of decentralizedsearch
in a network, where players try to navigate between given start and
target pages using only the local information provided on the cur-
rent page (i.e., players can only follow hyperlinks of the current
page). In the small-world experiment, search is in a sense even
more decentralized, since each node—i.e., human—on the path in-
dependently forwards the message and then forfeits control. While
in Wikispeedia the information seeker also has only local knowl-
edge about the unknown network, he/she stays in control all the
way and can thus form more elaborate strategies than in the multi-
person scenario. Moreover, as previous empirical studies of search
behavior had very few completed paths (e.g., only 384 [6]), we
work with more than 30,000 completed chains.

Our study is unique in several respects. We collected large-scale
data about human navigation in a network of real-world concepts,
where we know the precise target node humans are trying to reach.
We focus on computationally investigating and modeling howhu-
mans navigate information networks and what strategies they use.
This allows us to build accurate predictive models of where the
users are trying to navigate.

3. EFFICIENCY OF HUMAN SEARCH
The Wikipedia graph is an example of a ‘small world’ in which

most pairs of nodes are connected by short chains, with a mean/
median/max shortest-path length (SPL) across all pairs of 3.2/3/9.
A natural first question to ask is, How good are humans at finding
such short chains?
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All games of SPL 3
Pyramid → Bean
Brain → Telephone
Asteroid → Viking
Theatre → Zebra

Figure 3: Distribution of game length for four specific missions
with an optimal solution of 3 clicks. We recorded between 216
and 376 paths per mission. The gray curve shows the length
distribution for all games with an optimal solution of 3 clicks.

Fig. 2 gives a good impression of how the paths found by hu-
mans compare to optimal solutions (summary statistics of the dis-
tributions in the figure are provided in Table 1). The red lineshows
the distribution of human path lengths (where clicks that were later
undone and back-clicks are counted as regular clicks), while effec-
tive paths were used for the blue line. For each human game we
also computed an optimal solution, and the resulting path length
distribution is plotted as a black line. We make three observations:

1. The variance in search time is much larger for human than
for optimal solutions. While the distribution of optimal path
length is tight around 3 clicks, the human distribution ex-
poses a heavy tail.

2. Nonetheless, the effective paths found by humans (the blue
line in Fig. 2) are typically not much longer than shortest
paths. Both mode and median search times differ from op-
timal by just 1 click (3 vs. 4 clicks), mean search time by 2
clicks (2.9 vs. 4.9 clicks). (See Table 1.)

3. When considering full path length with undone and back-
clicks (the red line in Fig. 2), the mode search time is still 4,
and the mean and median search times are 1 click more than
for effective paths (5 vs. 4, and 5.8 vs. 4.9 clicks). That is,
humans click back on average once every other game.

Two questions arise: First, what is the reason for the large vari-
ance in human search time? Second, why is human search still so
efficient on average?

The first question permits two potential answers. Either some
missions are inherently harder than others, or some information
seekers are better than others. Some missions have longer opti-
mal solutions than others, so necessarily some games are inherently
harder. However, even when restricting ourselves to missions of a
fixed SPL, the numbers stay virtually unchanged (e.g., for games
with a SPL of 3 clicks, the mode/mean/median is 4/5/6.0, as op-
posed to 4/5/5.8 for all games). Of course, even among missions
of a fixed SPL, some are harder for humans because the lucrative
links might be less obvious. To control such effects, we posted four
missions—all of SPL 3—on the game website with increased fre-
quency. This allows us to find out how different humans perform
on the exact same task. The search time distributions for thefour
frequent missions are plotted in Fig. 3. We see that for each sepa-
rate mission there is considerable search time variance, but also that
some missions allow for shorter games on average than others. This
leads us to conclude that both hardness of mission and individual
skill play a roll in explaining the large search time variance.
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Figure 4: Drop-out rate as a function of path position (with
95% confidence intervals). At each step, players give up witha
probability of around 10%.

Regarding the second question, too,—Why is human search so
efficient on average?—several answers are conceivable. Onemight
argue that the efficiency of observed games is caused by a sam-
pling bias. In studies that collect data from human volunteers, one
always faces the problem of participants dropping out before fin-
ishing the task assigned. In our case, this might result in a bias
towards observing shorter chains than what we would observeby
forcing participants to finish all tasks, since the longer the game
takes, the more likely the subject is to give up at some point.For
instance, 54% of all games in our data set were canceled before fin-
ishing. Fig. 4 shows that the drop-out rateRi , i.e., the probability
of giving up at thei-th step, is roughly constant at around 10%.

Using drop-out rates, we can correct for the aforementionedbias
and compute an ideal search time histogram, for the hypothetical
case that participants never give up [6]. The result is shownas the
green line in Fig. 2. Although longer games are more frequentun-
der the ideal than under the observed distribution, the distributions
still look similar qualitatively, with mode 4 and a power-law–like
tail. The median search time is only 1 click higher (6 vs. 5 clicks),
and mean search time rises by 3 clicks (8.9 vs. 5.8 clicks). Wecon-
clude that the observed human efficiency in Wikispeedia playis not
explicable by a sampling bias alone.

Instead, we conjecture that, even without knowing the set of
all existing links, the Wikipedia graph is efficiently navigable for
humans because they have an intuition about what links to ex-
pect. Clearly, the probability of two articles linking to each other is
higher the more related they are. This can lead to efficient naviga-
tion even in the absence of global knowledge. In particular,Liben-
Nowell et al. [11] have shown analytically that short search times
(technically defined as polylogarithmic in the number of nodes) can
be expected under their model of ‘rank-based friendship’, viz., if
the probability of a node linking to itsr-th closest fellow node
decays as 1/r. Intuitively, such a scenario is desirable because it
constitutes an appropriate mix of many short- and a few long-range
links. The latter are helpful for getting somewhat close to the target,
while the former are necessary for fully reaching it.

We strive to investigate whether the Wikipedia graph satisfies
rank-based friendship. Humans may tap into all their knowledge
and reasoning skills during play, so it is hard to formalize their node
distance measure. In the present analysis, we therefore coarsely
approximate the human by a standard text-based distance measure
and define the similarity of two articles as the cosine of their TF-
IDF vectors [12] (and distance as one minus similarity). Fig. 5
plots the link probabilityP(r) as a function of rankr. The black
line was added to show an ideal slope of−1, as postulated by the
rank-based friendship model. Note that, althoughP(r) does not
fully follow a power law, the overall slope of the curve comesclose
to −1, which leads us to conclude that Wikipedia is conducive to
efficient navigation because its links represent an appropriate mix
of long- and short-range connections across concept space.
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Figure 5: Link probability P(r) as a function of rank r. Given
r, consider all node pairs(u,v) such that v is the node that is
r-th closest tou among all nodes. ThenP(r) is defined as the
fraction of these nodes for whichu links to v. Blue: P(r). Red:
P(r)+ ǫ, with ǫ= 0.005. Black: ideal slope of−1 (not a fit; only
for orientation).

Also note the red, upper curve in Fig. 5: after adding a small
constantǫ = 0.005 toP(r), the plot looks considerably more like
the required power law. We take this as an indication that there is
slight underlinking in the Wikipedia graph: if every node linked to
even its furthest fellow nodes with a small background probabil-
ity ǫ, then Wikipedia could become even more easily navigable (at
least under the TF-IDF distance measure).

4. ELEMENTS OF HUMAN WAYFINDING
In the previous section, we have argued that human search in the

Wikipedia network is made possible by the statistical properties of
its link structure. Next we turn our attention to a detailed analysis
of how people actually exploit these properties.

4.1 Anatomy of typical paths
In our analysis, we investigate how some key quantities of arti-

cles and clicks change as games progress from the start towards the
target article. To facilitate the analysis, we restrict ourselves to all
games whose start and target articles are optimally connected by
exactly 3 clicks and consider only effective paths.

Fig. 6 contains a graphical summary of the findings we are about
to discuss. Each subfigure tracks one quantity along game paths;
each curve is computed from all games of the same effective path
length, the leftmost curve representing games of length 8, the next
one games of length 7, etc. (to avoid clutter, we consider only
games of a maximum length of 8 clicks). Thex-axes show the
human-path distance, i.e., the number of clicks to the target on the
effective path (i.e., paths may be thought of as running fromleft to
right), while they-axes represent the mean of the respective quan-
tity over all games, alongside 95% confidence intervals. Thebold
gray curves plot the given quantity for the average optimal solution.
To compute it, we found an optimal solution for every human game
instance and averaged. We refer to the figure in rowr and column
c as plot(r,c).

Making progress is easiest far from and close to the target.
Plot (1,1) shows how the shortest-path length (SPL) to the tar-
get changes as a function of human-path distance. Necessarily, the
shorter the game, the steeper the curve. Additionally, all curves
share a typical anatomy: with the first click, the information seeker
gets significantly closer to the target on average, then the curve
flattens out and becomes steeper again towards the endgame. In
short games, the players blasts straight through to the target, mak-
ing progress with nearly every step, while in long games the player
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Figure 6: The evolution of article properties along search paths,
for games of optimal length 3. Only games of between 3 and 8
clicks are shown. Each colored line represents games of the
same length. Thex-axis shows the distance-to-go to the target,
the y-axis the average value of the respective property (with
95% confidence intervals). The bold gray curve is computed
based on optimal solutions for the considered human paths.

goes through a phase of inefficient circling around the target be-
fore finally gravitating towards it. Another perspective ofthe same
phenomenon is afforded by plot(2,3), which shows the fraction of
times humans picked a lucrative link, i.e., one that led themcloser
to the goal in terms of SPL. We observe a down–up pattern in the
curves: information seekers are more likely to make progress with
the first click than with the second. Later on, in the endgame,clicks
become again ever more likely to be lucrative. In long games,the
phases of progress in the opening and endgame are separated by
a phase of stagnation where the probability of picking a goodlink
stays roughly constant, a manifestation of the circling effect de-
scribed above.1

Hubs are crucial in the opening.The initial progress with the first
click is afforded by leaping to a ‘hub’ article, i.e., a high-degree
node that is easily reachable from all over the graph and thathas
connections to many regions of it. This makes sense intuitively,
since a good hub gives the information seeker more options tocon-
tinue the search, and is demonstrated by plots(1,2), (1,3), and
(2,1). While the start article has an average degree of only about
30 (cf. plot(1,2)), the first click leads to an article with an average
degree of between 80 and 100. After the sudden degree increase
with the first click, the quantity decreases slowly as the target is
approached.

Note that the shorter the game, the higher the degree of the hub
(and of any given position, for that matter). This could mean(1)

1The fact that the probability is not 100% even when humans
achieve the optimal path length (the blue curve) is due to thefact
that players might have later undone clicks taken from articles
along the effective path by means of the browser’s back button,
such that they may have taken suboptimal links while still achiev-
ing the optimal effective path length.
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Figure 7: Hub quality as a function of search time (with 95%
confidence intervals). Hub quality is defined as the degree ofthe
second article, divided by the degree of the maximum-degree
neighbor of the start article.

that better information seekers pick better hubs, or (2) that some
missions are easier because the start articles have links tobetter
hubs. While the availability of good hubs certainly helps, Fig. 7
demonstrates that the first alternative plays a role as well.We plot
the ratio deg(u2)/deg(u∗2) of the degree of the second article and
that of the highest-degree neighbor of the start article, averaged
over all games of the respective length. The quantity decreases with
increasing game length, implying that better information seekers
tend to start games with relatively higher-degree hubs.

Let the term ‘lucrative degree’ stand for the number of outgoing
links that decrease the SPL to the target. Plot(1,3) shows that,
just like the plain degree, the lucrative degree, too, increases sig-
nificantly with the first click—the hub article typically offers more
lucrative options than the start article. Also, the mean lucrative de-
gree then decreases as the games continue (necessarily, since there
are more articles far from the target than close to it). We do not see
a correlation between the hub’s lucrative degree and game length.
However, the start article itself has higher lucrative degree for very
short games than for longer ones, an indicator that some games are
inherently easier than others, even if the optimal number ofclicks
is held fixed. This certainly is a factor in the aforementioned neg-
ative correlation between search time and hub degree: if there are
many good hubs it is easier to find one of them.

An interesting additional insight is afforded by looking athow
the average of the ratio of lucrative degree and degree changes dur-
ing games (cf.(2,1)). The resulting quantity, which we call ‘lu-
crative ratio’, corresponds to the probability of getting closer to the
target when randomly choosing an outgoing link. While both de-
gree and lucrative degree achieve their maximum with the second
article, their ratio drops drastically between the first andsecond ar-
ticles. From this we conclude that the second article is a true hub,
in that it does not only have many outlinks leading closer to the
target, but has even more that lead further away from it, i.e., that it
has connections into many different regions of the graph.

Conceptual distance to the target decreases steadily.Plots(3,1)
and(3,2) show that articles get ever more related textually to the
target as the latter is approached (in other words, textual distance
decreases). We verify this using two distinct measures of concep-
tual relatedness, (1) the cosine of the TF-IDF vectors of thetwo
respective articles, as in Section 3, and (2) the number of edges that
have to be traversed in the category tree that comes with our Wi-
kipedia version, in order to reach one article from the other(‘cate-
gory tree distance’). The fact that the conceptual distanceto the
target decreases strictly along paths corroborates our conjecture
from Section 3 that humans approximately perform a decentralized
search using a distance measure between concepts. Also, note that
the very intuition that the distance between concepts alongthe path



and targets decreases was the originalraison d’êtreof the game of
Wikispeedia [24].

Big leaps first, followed by smaller steps.While plots(3,1) and
(3,2) track the textual distance between the current article and the
target, plot(3,3) does so for the distance between the current and
the next articles. This ‘textual step size’ is monotonically decreas-
ing: first, information seekers make big leaps, with adjacent articles
being rather unrelated (e.g., when jumping to the hub); then, as they
home in on the target, they straddle ever smaller ‘gaps’. This pro-
gression is possible because Wikipedia’s link structure trades off
long- versus short-range connections in a favorable manner, as laid
out in our discussion of rank-based friendship in Section 3.We
also see the aforementioned circling effect for long games again:
between the initial getting-away and the final homing-in, both the
textual distance to the target and the textual step size stagnate, as
the player stumbles around on the graph.

Clicks are most predictable far from and close to the target.Fi-
nally, consider plot(2,2), which attempts to capture the agreement
between different humans. Consider a target articlet. For each ar-
ticle u, we define a click probability distribution overu’s outlinks,
which counts for each outlink how often it was taken when hu-
mans were searching for the targett (with add-0.1 smoothing, to
mitigate the effect of zero counts). The entropy of this distribution
provides us with a measure of how predictable human clicks are,
lower entropy meaning higher predictability. We let the term ‘in-
formation gain’ refer to the difference between the prior entropy of
the uniform click distribution before observing any clicksand the
posterior entropy given all game data. It measures how much more
predictable clicks at a given articleu are after seeing the game data
than before. ‘Relative information gain’ is the ratio of information
gain and prior entropy, or in other words, the percentage-wise de-
crease in uncertainty afforded by observing the game data. This
quantity exposes a characteristic pattern, as shown in plot(2,2).
The relative information gain at the start article is typically around
23% on average and much lower (around 10%) for the following
article. The leap to the hub is much more predictable than the
ways in which people continue from there. (This is compounded
by the fact that, given a start article, not all humans choosethe
same hub, such that for each hub we have fewer samples than for
the start article and the respective click distribution stays more uni-
form, resulting in higher posterior entropy and thus lower informa-
tion gain.) As information seekers approach the target, their behav-
ior becomes again more coherent and predictable, with information
gain increasing.

Comparison of human with shortest paths.To conclude our dis-
cussion of typical human search paths, we compare them to the
optimal solutions found by a shortest-path algorithm (the bold gray
curve in each plot). Most of the curves are qualitatively similar
to those for human paths, which follows from the structural con-
straints imposed by the link graph. However, there are quantitative
differences with respect to all quantities we investigate.For in-
stance, for shortest paths, too, the average degree goes up with the
first click, but this is purely statistically so because the shortest-path
finder is more likely to pick high–betweenness-centrality nodes,
which in turn tend to have high degree; note that nonethelessthe
hub has about 20 fewer outlinks than for optimal humans. The lu-
crative degree of the hub is about 3.5 for optimal solutions found by
humans, while it is and only 2 for solutions found by the shortest-
path finder.

The relative information gain is nearly zero for the second arti-
cle, much smaller than the 10% typical for humans. The reasonis

that shortest paths are often entirely different from humanpaths,
such that the second article itself is often one that humans never
picked. Since the information gain is computed solely basedon
human paths, the entropy at the second article stays very uniform
(i.e., information gain close to zero).

The curves for TF-IDF similarity to the target and to the next
article are qualitatively similar to those for human paths,in that
the distance values decrease as games progress. This is due to the
fact that closeness in the Wikipedia graph is correlated with textual
similarity (cf. Fig. 5). Therefore, as the graph distance tothe tar-
get decreases, so does the textual distance (plots(3,1) and(3,2)).
Note, however, that the decrease is much more pronounced forhu-
man paths: humans explicitly navigate according to the content of
articles, while the shortest-path finder does so only because it is
implicitly constrained by the statistical properties of the hyperlink
graph.

4.2 Trade-off between similarity and degree
Given the findings of the previous section, degree and similar-

ity seem to be the most important factors in human wayfinding in
Wikipedia. We hypothesize that humans navigate more strongly
according to degree in the early game phase, when finding a good
hub is important, and more strongly according to textual similarity
later on, in the homing-in phase. The goal of this section is to test
this hypothesis.

We conduct the following experiment to gauge the trade-off be-
tween similarity and degree. Consider only the games with anop-
timal solution of 3 clicks. Then divide the set of all human trajec-
tories into subsets according to the number of clicks taken by the
player (the maximum length we consider is 8).2 Each of these sub-
sets is divided into balanced training (70%) and test (30%) sets. For
each training set and each path position in the training set,we train
a logistic regression classifier, using two features (and a constant
bias term), representing degree and similarity to the target, respec-
tively. The positive examples consist of all human clicks contained
in the respective training set. The negative examples have to be
contrived (since we have no ground truth of clicks a human will
never make). We do so by randomly (with replacement) sampling
clicks that were never observed, until there are as many negative as
there are positive examples. Once the classifiers for all combina-
tions of path length and path position have been trained, we inspect
the resulting feature weights to infer how important each feature is
in humans’ click choice at each position.

Before presenting the results, we add some notes about the two
features. When regression is used for the purpose of featureanaly-
sis, it is important to have uncorrelated features. The natural choice
for similarity would be the TF-IDF cosine that we have also used
in previous sections of this paper. However, this similarity measure
is highly correlated with degree: the higher a node’s degree, the
higher its average TF-IDF similarity with all other articles. This
happens because high-degree articles are typically long, and long
articles are more likely to have some text overlap with the target
article. (The effect is noticeable even in the face of the length-
normalization implicit in cosine similarity.) On the contrary, no
such correlation with degree is exhibited by the category tree dis-
tance. We therefore adopt the latter to quantify similarityin our
regression analysis. To be able to compare the weights for features
that can take on very different values, we also have to normalize.
We do so by adopting a rank-based approach. Consider an article u
and a given feature. The neighbors ofu get values from the inter-

2We use complete paths including back-clicks. However, while
back-clicks themselves are neglected, we do consider the forward
clicks that the player undoes later on.
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Figure 8: Logistic regression weights for classifying human vs.
non-human clicks (with standard errors). Green: textual simi-
larity. Red: degree. There is one plot per human path length;
the x-axes show path positions, they-axes weights.

val [0,1], such that the highest-ranking neighbor, according to the
feature, gets value 1, and the lowest-ranking neighbor value 0.

Fig. 8 plots the resulting weights for the two features. There is
one plot for each game length between 3 and 8. Thex-axes show
path positions, and each data point represents one feature weight.
The red curves are the degree and the green ones the similarity
weights. The weight of the bias term was omitted from the plots,
since it is not informative. Note that, for visibility’s sake, we do
not show the weights for the last click. There, similarity becomes a
nearly perfect indicator for the target article, since the target has
maximum similarity with itself, so the similarity feature gets a
very large weight, and the interesting part of the plots would get
squished and hard to read.

Interpreting the plots, our expectation is confirmed. Both fea-
tures obtain positive weights everywhere, which means thatboth
high degree and high similarity with the target are characteristics
of the click choices made by humans. More interesting, as hypoth-
esized, degree dominates in the beginning of games, but as games
progress, similarity becomes ever more important, superseding de-
gree starting with the second or third click. Furthermore, similarity
starts dominating earlier in more efficient games.

We emphasize that the purpose of this experiment is an analy-
sis of the fitted feature weights, not maximizing the accuracy of the
classifiers. Still, to justify our conclusions, we need to show that the
classifiers perform better than chance (50%) on a statistically sig-
nificant level. Evaluating the classifiers on the held-out test set, we
find that this is the case. Accuracy is similar for all game lengths. It
drops from around 90% for the first path position to about 65% for
the second and then stays in the regime of between 55% and 65%.
When maximum accuracy is the goal, more powerful features, such
as TF-IDF cosine, perform better, but as mentioned earlier,feature
correlation does not permit us to use this feature in our analysis.

4.3 Endgame strategies
The main finding of the previous section is that in the opening

of games it is common to navigate through hubs. Next we take a
closer look at the strategies players adopt in endgames, in order to
home in on the target.

In the present analysis, we define anendgameas the last 3 arti-
cles (i.e., 2 clicks) of a path. To make sure the endgames we analyze
do not contain artifacts from the game openings, we consideronly
games of a full length of at least 5 articles (i.e., 4 clicks).We also
neglect all games above the length threshold of 20 articles.The
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Figure 9: Overhead with respect to optimal solutions, for
single-category(red) and most popular multi-category (blue)
strategies, with one group per target category. Thegreen
bars show means over all games of the respective target cat-
egory. From left to right: PEOPLE, MUSIC , IT , LANGUAGE

AND LITERATURE , HISTORY , SCIENCE, RELIGION , DESIGN

AND TECHNOLOGY , CITIZENSHIP , ART , BUSINESS STUDIES,
MATHEMATICS , EVERYDAY LIFE , GEOGRAPHY .

endgame strategycorresponding to an endgame〈un−2,un−1,un〉 is
defined as〈C(un−2),C(un−1),C(un)〉, whereC(u) is u’s top-level
category in the hierarchy that comes with our Wikipedia version.
For instance, the full category ofDIK -DIK is SCIENCE/BIOLOGY/
MAMMALS , andC(DIK -DIK) = SCIENCE. All 14 valuesC can take
on are listed in the caption of Fig. 9.

We divide the set of all Wikispeedia games into subsets accord-
ing to target categories, such that all games with target articles from
the same category are placed in the same subset. For each tar-
get category, we observe between 29 and 104 distinct strategies,
out of the possible 142 = 196. For all target categories, the dis-
tribution over strategies is highly non-uniform, with mostgames
following one of only a few top strategies. As a consequence,for
each target category, the top 10 strategies typically coverbetween
60% and 90% of all games. Furthermore, the distributions over ar-
ticles within each category are also non-uniform; e.g., 14%of all
instances ofGEOGRAPHYareUNITED STATES and 6.1%UNITED

KINGDOM.
In 12 out of the 14 target categories, the most popular strategy

is the one that consists of the target category only, which wecall
the ‘simple’ strategy: people tend to approach the target through
articles from the same category as the target. In the remaining two
categories, the simple strategy has very high rank, too: it is second
most frequent when the target is fromDESIGN AND TECHNOL-
OGY, and fourth most frequent when it is fromPEOPLE. In the
former case, the more frequent strategy is〈GEOGRAPHY, GEOG-
RAPHY, DESIGN AND TECHNOLOGY〉; in the latter case, the three
more frequent strategies are〈GEOGRAPHY, GEOGRAPHY, PEO-
PLE〉, 〈GEOGRAPHY, CITIZENSHIP, PEOPLE〉, and〈GEOGRAPHY,
HISTORY, PEOPLE〉.

In these examples,GEOGRAPHYseems to play a prominent role.
And indeed this is a general property of human paths. To demon-
strate this, we count, for each categoryc, how often articles from it
appear in endgames in which the target isnotalso of categoryc. We
find that GEOGRAPHY accounts for 20% of articles in endgames
of which GEOGRAPHY is not the target. The next most common
categories according to this metric areSCIENCE (7.5%) andHIS-
TORY (5.1%). One might argue that certain categories area priori
more likely, since they contain more articles. We can correct for
this bias by considering the ratio of the above-introduced frequency
and thea-priori category frequency, i.e., the number of articles in
the category, divided by the overall number of articles. In the re-
sulting ranking,GEOGRAPHY is still top, now followed byCITI-
ZENSHIP (mostly about politics and culture) andRELIGION. This
finding might imply that humans organize their knowledge strongly



according to geographical lines, and that they often associate con-
cepts with their countries of origin.

Previously, we saw that simple single-category endgames are
typically most popular with players. Next, we investigate how ef-
ficient they are compared to other, more complex strategies.Let
l be the length (number of clicks) of a human game, andl∗ the
number of clicks in an optimal solution. We define theoverhead
of a game as(l − l∗)/l∗, i.e., the percentage of the optimal solution
length that the information seeker needed extra. For each endgame
strategy, we compute the mean overhead over all games of that
strategy. As a baseline, we consider the mean overhead across all
games of the given target category. We find that the overhead of the
simple strategy is on average (over the 14 target categories) 12%
higher than that of the mean game; i.e., games using the simple
strategy are typically worse than average. Now consider, instead
of the simple strategy, the most frequent multi-category strategy.
Averaged across all target categories, its overhead is 18% smaller
than that of the mean game; i.e., games using the most frequent
multi-category strategy are typically considerably better than aver-
age. Fig. 9 shows that this is not only true on average but for nearly
every target category taken by itself. One of only three categories
for which the simple strategy is, on the contrary, most efficient is
GEOGRAPHY(the rightmost group in the bar chart). This is in tune
with our previous findings: sinceGEOGRAPHYplays a prominent
role even when it is not the target, it makes sense that it allows for
efficient paths when it is.

Our interpretation of these findings is that information seekers
face a trade-off between efficiency and simplicity. Whilst reaching
the target through very related articles from the same category is
conceptually simple, the steps taken this way can be small and pro-
long the game. It often pays off to think out of the box—or to think
in geographic terms.

5. TARGET PREDICTION
In the previous sections, we have conducted an in-depth analysis

of how people navigate Wikipedia towards a given target article.
Our next goal is to apply the lessons learned, in order to design
a learning algorithm for predicting an information seeker’s target,
given only a prefix of a few clicks. Our method explicitly takes the
characteristic features of human search into account and istrained
on real human trajectories.

There are many potential use cases of such a method. For in-
stance, an intelligent browsing interface could use the algorithm for
tracking the user’s goal and adapt accordingly, e.g., by suggesting
useful shortcuts, thus making human search more efficient. Given
the scope of this paper, we evaluate our method only in the context
of Wikipedia, but we believe it is general enough to extend toother
search scenarios, if appropriate features are used.

Human Markov model. We cast our task as a ranking problem.
Given the observed path prefixq, rank all articlest according to
how plausible they are as targets of the current search. At the heart
of our approach is a Markov model of human search, the parameters
Θ of which are learned. To make the prediction, we order candidate
targetst according to a ranking functiong(t|q;Θ), defined as the
likelihood of t given the prefixq, i.e., asP(q|t;Θ).

Let q = 〈u1, ...,uk〉 be a prefix ofk− 1 clicks. Given targett
and model parametersΘ, the probability of seeingq is obtained
by multiplying the local click probabilities, and we aim to find the
most likely target, i.e.,

argmax
t

P(q|t;Θ) = argmax
t

P(u1)
k−1∏

i=1

P(ui+1|ui , t;Θ), (1)

whereP(u1)=1/N is constant, withN the number of articles (since
start articles are picked randomly). Note that we will work with the
prefix log-likelihood L(t|q;Θ) := logP(q|t;Θ) instead.

In our analysis of humans, we saw that people trade off features
differently at different steps. We mimic this by learning a separate
set of weights for each step, such thatΘ= (θ1, ...,θk−1) is in fact
a collection of weight vectors, withθi being the weights for stepi.

We next propose and test two alternative models of click proba-
bility P(ui+1|ui , t;Θ), each with its own model fitting algorithm.

Binomial logistic model. The first, simpler model is similar in
spirit to the regression of Section 4.2 (but using stronger features),
where we fit a model to predict whether humans would pick a given
link. The model specifies, for any given click triple(ui ,ui+1, t) sep-
arately, the probability that a human would choose it.3 Formally,
we define thebinomial logistic modelas

P(ui+1|ui , t;Θ) =
σ(θ⊤i f(ui ,ui+1, t))∑
v∈Γ(ui)

σ(θ⊤i f(ui ,v, t))
, (2)

whereσ(x) = (1+e−x)−1; f(ui ,ui+1, t) is a feature vector for the
click from ui to ui+1 given targett; andΓ(ui) the set ofui ’s neigh-
bors. The model parametersΘ are fitted as in standard logistic
regression using gradient descent.

Learning-to-rank model. Since the task is to rank target candi-
dates, we also explore a different setup in which we fitΘ explicitly
to optimize a ranking objective we refer to ascumulative recipro-
cal rank. This metric is defined asℓ(r) :=

∑r
j=1 1/ j , wherer is

the rank of the true target [25]. Minimizing this objective implies
ranking the true target as high as possible; additionally, cumulative
reciprocal rank has the desirable property of putting more empha-
sis on the top of the ranking (e.g.,ℓ(20)−ℓ(1)≫ ℓ(120)−ℓ(101)),
and is therefore a sensible choice for evaluating rankings.

Notice that, unlike assumed by the simplistic binomial logis-
tic model, humans really face a multinomial choice at each step.
Therefore, we now represent click probabilities in amultinomial
logistic model:

P(ui+1|ui , t;Θ) =
exp(θ⊤i f(ui ,ui+1, t))∑
v∈Γ(ui)

exp(θ⊤i f(ui ,v, t))
. (3)

Another advantage of this framework is that we may use other
features in addition to the likelihood. Some important factors de-
pend on the entire prefix and cannot be encoded naturally intothe
Markov model (e.g., How often did the player not take a directlink
to the target although this was possible?), which considersonly lo-
cal clicks. Thus, in the learning-to-rank setup, our final ranking
functiong consists of a linear combination of prefix log-likelihood
and those additionalprefix-global features.As our prediction, we
select the targett that maximizesg, i.e.,

argmax
t

g(t|q;Θ,β) = argmax
t

β1F1(q, t)+ ...+βmFm(q, t), (4)

whereF1 = L(t|q;Θ), andF2, ...,Fm are the prefix-global features,
the details of which are provided below (note that they do notde-
pend onΘ).

We fitΘ andβ using an approach inspired by a method proposed
recently by Westonet al. [25]. The algorithm minimizes cumula-
tive reciprocal rank via stochastic gradient descent, using a novel
sampling trick to speed up learning. In our case, this is necessary
since we would otherwise have to iterate over all target candidates

3One might be tempted to phrase the problem as multinomial lo-
gistic regression instead, but this is not possible, since the degree
of ui and hence the number of classes is variable.



(i.e., all articles) for every training example. We refer the reader
to Westonet al.’s paper regarding the details of the framework and
restrict ourselves to highlighting how we adapt their algorithm:

The learning algorithm requires computing the derivative of g
with respect toΘ andβ. While ∂

∂β j
g(t|q;Θ,β) = Fj(q, t) is obvi-

ous, ∂
∂Θg(t|q;Θ,β) is trickier. We forgo a derivation and simply

state that

∂

∂θi
g(t|q;Θ,β) = β1

∂

∂θi
L(t|q;Θ)

= β1

[

f(ui ,ui+1,t)−
∑

v∈Γ(ui )
P(v|ui ,t;Θ) f(ui ,v,t)

]

.

That is, the likelihood gradient with respect to the weightsfor prefix
position i is equal to the difference of the feature vector of clicki
and the expected feature vector under the current weightsΘ.

Features for learning. So far, we have only described the abstract
framework of our algorithms but have not yet discussed the con-
crete features we use. As mentioned, our choice of features is in-
spired by the results of our study of human behavior: if we design
features that capture the characteristics of human paths, the algo-
rithms can learn weights to predict targets under which the seen
prefix resembles human behavior most. Specifically, these are the
entries of the likelihood feature vectorf(ui ,ui+1, t) (recall that we
learn a separate weight vector for eachi):

1. TF-IDF(ui+1, t): as we have seen, articles become ever more
related to the target as human games proceed (Fig. 6(3,2));

2. TF-IDF(ui ,ui+1): ‘textual step size’ is large at first and be-
comes ever smaller (Fig. 6(3,3));

3. deg(ui+1): humans commonly navigate through hubs in the
beginning, so we expect the weight for this feature to be large
for early and small for later stepsi;

4. deg(ui)×deg(ui+1): if ui already is a hub, there is no more
need for the player to search for another one, which can be
captured by this interaction feature;

5. TF-IDF(ui , t)×deg(ui+1): if the player is already close tot
textually, finding a hub is less important;

6. TF-IDF(ui , t)×TF-IDF(ui ,ui+1): close tot, the step size is
typically also smaller;

7. the indicator SPL(ui+1, t) > SPL(ui , t): if a click increases
the shortest-path length tot, then it is less likely to be chosen
by a player;

8. |TF-IDF(ui , t)−TF-IDF(ui+1, t)|+: a click is also less likely
if it decreases the textual similarity tot.

In the learning-to-rank approach, we additionally have thefol-
lowing prefix-global features (cf. (4)):

1. Number of times the player could have taken a direct link to
t yet did not;

2. Number of clicks through which the SPL tot increased;
3. Sum (over all clicks) of decreases in textual similarity tot.

The last two prefix-global features are similar to likelihood features
7 and 8, but here they can modify the ranking function explicitly
rather than merely via the likelihood term. We expected the first
prefix-global feature to receive a large negative weight, guided by
the intuition that humans would always go directly to the target
as soon as this is possible. However, a weight of nearly zero is
learned for this feature, which indicates that informationseekers
often miss the best links because they do not expect them and hence
do not notice them in the often long article text. This emphasizes
the usefulness of the task of target prediction: if the algorithm can
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Figure 11: Sibling precision of our target prediction algo-
rithms. Bold solid: multinomial ranking model. Thin solid:
binomial logistic regression.Dashed: TF-IDF baseline.

infer the intended target, it could highlight the most useful links so
they become more salient to the user.

Evaluation. For training our models, we use prefixes of 3 clicks,
taken from human games of at least 4 clicks. The weights converge
quickly for the multinomial ranking model, after seeing a few thou-
sand examples, which takes only some minutes.

We also compare our algorithms to a baseline that simply pre-
dicts as the target the article with the largest TF-IDF similarity to
the last article of the prefix.

We use a test set not seen during training to evaluate the algo-
rithms on two tasks: (1) given a prefixq= 〈u1, ...,uk〉 and a choice
of two targets, pick the true targett; the false target is picked ran-
domly from the set of articles that ever occurred as targets and have
the same SPL fromuk ast; (2) givenq, rank the set ofall articles
such that the true target is ranked high. The second task is much
harder but also more useful than the first; e.g., if the methodis to
be implemented for an intelligent browsing tool, reasonable targets
must be picked from all candidates, not just from a set of two.

In the first task, we use accuracy as a metric; in the second, we
measure ranking loss according to cumulative reciprocal rank, the
objective we also use for training. While this captures ranking qual-
ity objectively, it might be overly strict; e.g., ift = WINE, then
predictingBEER is much better than, say,GASOLINE. We account
for this by measuring ‘sibling precision@m’, which is the same as
precision@m, with the difference that not onlyt but all articles from
the same category ast are counted as relevant (we use the leaves of
the hierarchy of our Wikipedia version as categories).

We vary two parameters of the test prefixes:k, the number of
articles in the prefix; andn, the length of the entire human path. The
results are summarized in Fig. 10 and 11. In all plots, the bold solid



line represents the multinomial ranking (MR) model, the thin solid
line the binomial logistic regression (BLR) model, and the dashed
line the TF-IDF baseline. First note that MR is at least as good
as, and often better than, both BLR and TF-IDF according to every
metric. Now consider Fig. 10. As expected, our methods work
better when prefixes are longer (cf. the order of the bold curves) and
when full paths are shorter (cf. the slopes of the curves). Notably,
on the task of picking the correct one of two targets, MR achieves
an accuracy of 80% when 3 clicks are seen, regardless of whether
the entire game is 4, 5, or 6 clicks long. Interestingly, while BLR
has higher accuracy on the binary task, the simple TF-IDF baseline
achieves better ranking performance. We take this as an indicator
that MR combines the better properties of both.

Finally, consider Fig. 11, which shows sibling precision@m. For
the sake of brevity, we display only the casek = 4, but in relative
terms the results are the same for all prefix lengths. The preci-
sion@30 of MR is 20% forn= 5, which means that 6 of the top 30
targets are of the same category as the true target, when we see 3
clicks and the full game has 1 more click. Even when there are 2(3)
more clicks, we still see 5 (3) top-ranked articles that are very close
to the true target (for comparison, in a random ranking, precision
is only 1% on average). This property of the ranking algorithm is
desirable, since in a real-world application making a closeenough
guess might often be nearly as good as predicting the exact target.

6. CONCLUSIONS
Finding paths connecting different concepts—like linkingcauses

to effects—is a task the human race has been performing for mil-
lennia. We formalize this task in a human-computation game of
wayfinding between the concepts of Wikipedia. We study more
than 30,000 goal-directed human search paths and identify aggre-
gate strategies people use when navigating information spaces. As
information spaces become more complex, it is increasinglyimpor-
tant to understand how humans navigate them and to assist them in
locating the desired information. This is the second focus of our pa-
per, where we build a predictive model of human wayfinding that
can be applied towards intelligent browsing interfaces.

The view of human wayfinding as a navigation task on Wiki-
pedia points to a broad range of interesting issues, and our goal
in this paper has been to start exploring the foundations forrea-
soning about these questions. We anticipate further investigations
in determining why people give up navigating and characterizing
unfinished wayfinding tasks. Given the insights we offer here, an-
other interesting direction is in automatically designinginforma-
tion spaces that humans find intuitive to navigate and identifying
individual links which could make the Wikipedia network easier to
navigate. Overall, we hope that this perspective can contribute to
the development of new functionality in the continuing evolution
of how we use and navigate the Web.
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