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ABSTRACT

Navigating information spaces is an essential part of oaryelay
lives, and in order to design efficient and user-friendlyimnfiation
systems, it is important to understand how humans navigade a
find the information they are looking for. We perform a lagle
study of human wayfinding, in which, given a network of linkes b
tween the concepts of Wikipedia, people play a game of finding
short path from a given start to a given target concept bypdotg
hyperlinks. What distinguishes our setup from other studfehu-
man Web-browsing behavior is that in our case people navigat
graph of connections between concepts, and that the exatbfjo
the navigation is known ahead of time. We study more than080,0
goal-directed human search paths and identify strategigsle use
when navigating information spaces. We find that human wayfin
ing, while mostly very efficient, differs from shortest pgih char-
acteristic ways. Most subjects navigate through high-ekedubs
in the early phase, while their search is guided by contarttifes
thereafter. We also observe a trade-off between simplaity ef-
ficiency: conceptually simple solutions are more commortéd
to be less efficient than more complex ones. Finally, we camsi
the task of predicting the target a user is trying to reach. dé/e
sign a model and an efficient learning algorithm. Such pita@ic
models of human wayfinding can be applied in intelligent siog
interfaces.

Categories and Subject DescriptorsH.5.4 Information Inter-
faces and Presentatioh Hypertext/Hypermedia-Navigation

General Terms: Algorithms, Experimentation, Human Factors.

Keywords: Navigation, browsing, information networks, Wikipe-
dia, Wikispeedia, human computation.

1. INTRODUCTION

There is no such thing as an isolated piece of knowledge.oBits
information are interconnected in giant networks, and veedaily
navigating and finding paths through such networks. Brogviie
Web is an important example, but by far not the only one: we fol
low leads in citation networks to find work that is related @ o
own research; when we reason or try to find explanations ®r th
phenomena around us, we are implicitly disentangling a owtw
of relations between concepts, with the goal of finding a pdth
connections between the ‘cause’ and the ‘effect’; and wastamtly
look things up in cross-referenced dictionaries and enpgdias,
be it in the form of books or online resources such as Wikipedi
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Figure 1: A human example path between the conceptsiK -
DIK and ALBERT EINSTEIN . Nodes represent Wikipedia arti-
cles and edges the hyperlinks clicked by the human. Edge lalse
indicate the order of clicks, the framed numbers the shortes
path length to the target. One of several optimal solutions
would be (DIK -DIK , WATER, GERMANY , ALBERT EINSTEIN ).

This last example is particularly interesting, since Wéda is
not just a regular website but a rich network representingdmu
knowledge as well as the connections between single piefces o
knowledge, by means of hyperlinks. This distinguishes Pékia-
browsing from navigation on typical Web resources. By otisgr
humans finding their ways between articles in Wikipedia, we a
watching them navigate a large information network, usimgjrt
mental maps of relationships in order to find the paths thahect
concepts.

There are two aspects—analytic and pragmatic—of this view o
human wayfinding in information networks.

From an analytic perspective, it is important to understahdt
strategies and clues people use to find paths in the Wikipefdia
mation network. In particular, as humans are navigatingrmé-
tion networks, they might switch between various strategiehe
interplay between the topical relatedness of concepts faadit-
derlying network structure could give us important insggabout
the methods used by efficient information seekers. Alsolatter
often face trade-offs: there may be wayfinding strategias dhe
safe but also inefficient; on the other hand, by trying to fintio
the shortest paths, the searcher might get lost more easily.

From a pragmatic perspective, there is useful informatiotieé
trail an information seeker has navigated so far, even befach-
ing the target. We see such trails playing an important mofgé
development of methods that can analyze the path taken sodar
provide information seekers with navigational aids. Onefuisdi-
rection for this is in predicting what piece of informatiametin-
formation seeker is trying to locate. Another is in autoweity
detecting if the user has gotten lost. Given that human atioig
of information networks is so ubiquitous, a better underditeg
of the methods according to which humans find connectingspath



would have applications in improving the design of inforioat
spaces [15], more intuitive and navigable link structui@s and
new intelligent information navigation systems [16].

Present work. These broad issues suggest a wide range of inter-
esting open questions. We take a step in this direction bypcem
tationally analyzing how people navigate to specific tapgetes in
the Wikipedia information network. As a tool we use the oalin
human-computation game Wikispeedia [24, 23], in which eiay
(i.e., information seekers) are given two random articled aim

to solve the task of navigating from one to the other by cfigki
as few hyperlinks as possible. Players have no knowledghkeof t
global network structure but must rely solely on the locébima-
tion they see on each page—the outgoing links connectinguhe
rent article to its neighbors—and on their expectationsiaitadich
articles are likely to be interlinked. In this respect, taskhumans
are trying to solve at each visited article is that of guegsihich of
the outgoing links to follow in order to eventually reach theget
article.

What makes our study unique is that we have been collecting de
tailed data on more than 30,000 instances of human wayfirding
an information network describing general human knowle(tlye
data came from around 9,400 distinct IP addresses). Thwsll
us to computationally analyze human wayfinding on a largkesca
Even more important, for every instance we know the staditig
cle and the given target article the user is trying to rea@nde, we
do not have to infer or guess the information need of the méor
tion seeker, but can base our methods on the ground trutraithst

To illustrate the dynamics of the Wikispeedia game, as well a
potential reasoning schemes and classes of strategiesibumight
use, Fig. 1 gives the example of a human path betweesténear-
ticle DIK-DIK and thetarget ALBERT EINSTEIN. (We call such a
pair amission) Note that using the browser’s back button is al-
lowed. In the example, the information seeker clicked fi@irec-
TRON to ATOM, but backed up after not finding the link to the tar-
get that he/she had expected there. We call the sequenadimg!
AToM and theback-clickthefull path, while referring to(DIK-DIK,
WATER, ELECTRON, QUANTUM MECHANICS, ALBERT EINSTEIN)
as theeffective path The shortest-path lengtiiSPL) from every
article to the target is shown in squares in the picture. Ifigkc
decreases the SPL, we callucrative. Note that, in the example,
not every click is lucrative; rather, the information seekekes
progress at first, but then orbits at a distance of 2 frIBERT
EINSTEIN, before finally gravitating towards it with the choice of
QUANTUM MECHANICS. We also emphasize the special role the
article onwATER plays in the example. It connects to many parts
of the network—hence we call itlBub—and marks the transition
between getting away from the animal kingdom and homing in on
the realm of physics.

Despite the lack of global knowledge, humans are good at con-

to the target thereafter. While approaching the targetjinca se-
ries of conceptually very related articles is safer androlftiemans’
preferred solution (cf. the example of Fig. 1), it is typlgaiot the
most efficient: we find that thinking ‘out of the box’ often als
information seekers to find shorter paths between concegitshe
risk of getting lost. A strategy that is both popular and ofseic-
cessful is to connect concepts in terms of their geographara-
monalities. In the above examplé)IK-DIK, AFRICA, EUROPE
GERMANY, ALBERT EINSTEIN) would have been such a solution.

Following this analysis, we formulate a task that captumeaes
of the key motivating issues discussed above. We show how in-
formation from a short prefix of the navigation path can beduse
to predict what the information seeker is looking for. Weiges
a ranking-based machine learning model and an efficientpara
ter estimation algorithm. Our method is informed by the dess
learned in our analysis and is trained on real human patheseXh
perimental evaluation shows that it can predict humangrided
targets with high accuracy.

Overall, our results provide insights into how people natég
and solve the task of wayfinding in information networks. rithe
practical perspective, our findings can be applied in ordenake
better sense of observed human search paths. Our perfamanc
on the target prediction task suggests that features ofritierly-
ing path can provide useful information beyond simply pc&dg
the next action of the user. We therefore think that resuflisuo
research can be incorporated into intelligent systems dilitée
human information browsing and navigation.

2. RELATED WORK

The work related to our explorations here can be separated in
three parts: Web click-trail analysis, systems that aiduseWeb
navigation, and decentralized search in networks. Nextngsly
review each of these three lines of related work.

Information retrieval has focused on analyzing Web-brogsi
click trails of millions of users mainly for the purpose offinoving
Web search results. Click trails can be used as endorsetogatsk
search results more effectively [4, 20], trail destinatpages can
themselves be used as search results [26], and the concge-of
portation can be used to navigate directly to the desiree [24j.
Similarly, large-scale studies of Web-page revisitatiattgrns [2]
focus on how often users revisit the same page, while iggorin
how people get there. In contrast, our work focuses on utatets
ing how people reach information by navigating through roeks.
Another important difference is that, in our case, we knoa/eR-
act target of human search and can thus quantitatively a@ahe
strategies people use when navigating information spasewell
as their efficiency.

Observational and laboratory studies have conducted svalé

necting the dots: the median human game path is only one click controlled experiments about users’ thought processesgiWeb

longer than the median optimal solution. We explain thisafby
showing that certain properties of Wikipedia’s hyperlitkusture
make it easily navigable. For instance, our Wikipedia grapiuse
a version containing about 4,000 articles and 120,000 [j&K$)
has a skewed degree distribution (median/mean/max de@f26/1
294) and contains a few high-degree hubs that contributeexye
thing being connected to everything else by short chaingligné
mean/max shortest-path length 3/3.2/9; note that thisasctise
although no ‘meta pages’, such as category indices, aréabiai
to players). This makes our network a typical ‘small worl@ur
analysis shows that people commonly find their way in it by fas
cating a hub and by constantly decreasing the conceptuahdis

search by having them think aloud as they search [14], andtabo
their interaction with Web information [18]. These studigawned
sophisticated descriptive models, like information s¢ghand in-
formation foraging [17], which uses the metaphor of how aigm
forage for food. Other analogies, such as orienteering gt
berrypicking [3], have also been used to describe userstrimd-
tion-seeking strategies. Systems like ScentTrails [16] guided
tours [22] have been proposed to create annotations toaitedic
where other users have navigated in the past, all with theaoa
helping people find information faster. Our present worked#
in two important ways: First, our goal is not to formulate arala
ogy for human wayfinding, but rather to analyze it computailty
using a large-scale collection of real search traces. Secomad-
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Figure 2: Distribution of game length, according to different
path-length metrics. Black circles: shortest possible pathsBlue
X’s: effective human paths (i.e., ignoring back-clicks)Red dots:
complete human paths (i.e., including back-clicks)Green plus
signs: complete human paths, corrected for drop-out rates.

[ path-length metric | mode | median | mean |

shortest possible paths 3 3 29
human, effective 4 4 49
human, incl. back-clicks 4 5 5.8
human, drop-out—corrected 4 6 8.9

Table 1: Summary statistics of the distributions of Fig. 2.

dress the task of predicting the actual target of human beant
just the next action [7].

The last line of related work can be traced back to Milgram’s
small-world experiment [13] and the algorithmic problendeten-
tralized search in networks [10]. Decentralized searclsiciens a
scenario in which a starting nodés trying to send a message to a
given target node by forwarding the message to one of its neigh-
bors, where the process continues in the same way until eignt
t is reached. This process has been investigated both exgrerim
tally as well as through simulations [6, 11, 1, 9, 19]. Eacimgaf
Wikispeedia may be considered an instance of decentradzaith
in a network, where players try to navigate between giver atal
target pages using only the local information provided andtir-
rent page (i.e., players can only follow hyperlinks of therent
page). In the small-world experiment, search is in a sensa ev
more decentralized, since each nhode—i.e., human—on therpat
dependently forwards the message and then forfeits coiifioile
in Wikispeedia the information seeker also has only locaividn
edge about the unknown network, he/she stays in controhall t
way and can thus form more elaborate strategies than in thte mu
person scenario. Moreover, as previous empirical studissarch
behavior had very few completed paths (e.g., only 384 [6B, w
work with more than 30,000 completed chains.

Our study is unique in several respects. We collected lacgée
data about human navigation in a network of real-world cptse
where we know the precise target node humans are trying threa
We focus on computationally investigating and modeling Haw
mans navigate information networks and what strategiesubke.
This allows us to build accurate predictive models of whére t
users are trying to navigate.

3. EFFICIENCY OF HUMAN SEARCH

The Wikipedia graph is an example of a ‘small world’ in which
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Figure 3: Distribution of game length for four specific missbns
with an optimal solution of 3 clicks. We recorded between 216
and 376 paths per mission. The gray curve shows the length
distribution for all games with an optimal solution of 3 clicks.

Fig. 2 gives a good impression of how the paths found by hu-
mans compare to optimal solutions (summary statistics eflib-
tributions in the figure are provided in Table 1). The red bhews
the distribution of human path lengths (where clicks thatenater
undone and back-clicks are counted as regular clicks) evdfiec-
tive paths were used for the blue line. For each human game we
also computed an optimal solution, and the resulting patigtre
distribution is plotted as a black line. We make three olstéyus:

1. The variance in search time is much larger for human than
for optimal solutions. While the distribution of optimaltha
length is tight around 3 clicks, the human distribution ex-
poses a heavy tail.

2. Nonetheless, the effective paths found by humans (the blue
line in Fig. 2) are typically not much longer than shortest
paths. Both mode and median search times differ from op-
timal by just 1 click (3 vs. 4 clicks), mean search time by 2
clicks (2.9 vs. 4.9 clicks). (See Table 1.)

3. When considering full path length with undone and back-
clicks (the red line in Fig. 2), the mode search time is still 4
and the mean and median search times are 1 click more than
for effective paths (5 vs. 4, and 5.8 vs. 4.9 clicks). That is,
humans click back on average once every other game.

Two questions arise: First, what is the reason for the laage v
ance in human search time? Second, why is human searctostill s
efficient on average?

The first question permits two potential answers. Eitheresom
missions are inherently harder than others, or some infiioma
seekers are better than others. Some missions have lontier op
mal solutions than others, so necessarily some games ameirtty
harder. However, even when restricting ourselves to missif a
fixed SPL, the numbers stay virtually unchanged (e.g., fonem
with a SPL of 3 clicks, the mode/mean/median is 4/5/6.0, as op
posed to 4/5/5.8 for all games). Of course, even among missio
of a fixed SPL, some are harder for humans because the lerativ
links might be less obvious. To control such effects, wega&ur
missions—all of SPL 3—on the game website with increased fre
quency. This allows us to find out how different humans penfor
on the exact same task. The search time distributions fofotlre
frequent missions are plotted in Fig. 3. We see that for eaph-s

most pairs of nodes are connected by short chains, with a/mean rate mission there is considerable search time variante/smithat

median/max shortest-path length (SPL) across all pairs2i8/3.
A natural first question to ask is, How good are humans at fqndin
such short chains?

some missions allow for shorter games on average than offeis
leads us to conclude that both hardness of mission and thadili
skill play a roll in explaining the large search time varianc
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Figure 4. Drop-out rate as a function of path position (with

95% confidence intervals). At each step, players give up with
probability of around 10%.
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Figure 5: Link probability P(r) as a function of rank r. Given

Regarding the second question, too,—Why is human search sor consider all node pairs(u,v) such thatv is the node that is

efficient on average?—several answers are conceivablem@yé

r-th closest tou among all nodes. TherP(r) is defined as the

argue that the efficiency of observed games is caused by a samfraction of these nodes for whichu links to v. Blue: P(r). Red:

pling bias. In studies that collect data from human volurgeene
always faces the problem of participants dropping out leefior-
ishing the task assigned. In our case, this might result ifea b
towards observing shorter chains than what we would obdgyve
forcing participants to finish all tasks, since the longex game
takes, the more likely the subject is to give up at some pdtot.
instance, 54% of all games in our data set were cancelededffier
ishing. Fig. 4 shows that the drop-out r&g i.e., the probability
of giving up at tha-th step, is roughly constant at around 10%.

Using drop-out rates, we can correct for the aforementidniesi
and compute an ideal search time histogram, for the hypottet
case that participants never give up [6]. The result is shasvthe
green line in Fig. 2. Although longer games are more frequant
der the ideal than under the observed distribution, theibiigions
still look similar qualitatively, with mode 4 and a powermalike
tail. The median search time is only 1 click higher (6 vs. 6ld),
and mean search time rises by 3 clicks (8.9 vs. 5.8 clicks)cakie
clude that the observed human efficiency in Wikispeedia islapt
explicable by a sampling bias alone.

Instead, we conjecture that, even without knowing the set of

all existing links, the Wikipedia graph is efficiently nawigje for

humans because they have an intuition about what links to ex-

pect. Clearly, the probability of two articles linking toakeother is
higher the more related they are. This can lead to efficievigaa
tion even in the absence of global knowledge. In particlliden-

Nowell et al. [11] have shown analytically that short search times

(technically defined as polylogarithmic in the number of @g)ccan
be expected under their model of ‘rank-based friendshiiz’,, ¥
the probability of a node linking to its-th closest fellow node

decays as Ar. Intuitively, such a scenario is desirable because it

constitutes an appropriate mix of many short- and a few lamge
links. The latter are helpful for getting somewhat closémtarget,
while the former are necessary for fully reaching it.

We strive to investigate whether the Wikipedia graph sassfi
rank-based friendship. Humans may tap into all their kndgée
and reasoning skills during play, so itis hard to formaltzeitnode
distance measure. In the present analysis, we thereforsetpa
approximate the human by a standard text-based distancinsea
and define the similarity of two articles as the cosine ofrtiéi-
IDF vectors [12] (and distance as one minus similarity). . Big
plots the link probabilityP(r) as a function of rank. The black
line was added to show an ideal slope-af, as postulated by the
rank-based friendship model. Note that, althowfin) does not
fully follow a power law, the overall slope of the curve conuizse

P(r) +¢, with ¢ = 0.005 Black: ideal slope of—1 (not a fit; only
for orientation).

Also note the red, upper curve in Fig. 5: after adding a small
constante = 0.005 toP(r), the plot looks considerably more like
the required power law. We take this as an indication thaetie
slight underlinking in the Wikipedia graph: if every nodeKed to
even its furthest fellow nodes with a small background pbiba
ity ¢, then Wikipedia could become even more easily navigable (at
least under the TF-IDF distance measure).

4. ELEMENTS OF HUMAN WAYFINDING

In the previous section, we have argued that human searbb in t
Wikipedia network is made possible by the statistical progs of
its link structure. Next we turn our attention to a detail@edlgsis
of how people actually exploit these properties.

4.1 Anatomy of typical paths

In our analysis, we investigate how some key quantities tf ar
cles and clicks change as games progress from the start®wer
target article. To facilitate the analysis, we restrictsalves to all
games whose start and target articles are optimally coaddny
exactly 3 clicks and consider only effective paths.

Fig. 6 contains a graphical summary of the findings we aretabou
to discuss. Each subfigure tracks one quantity along ganis;pat
each curve is computed from all games of the same effectitre pa
length, the leftmost curve representing games of lengthe3next
one games of length 7, etc. (to avoid clutter, we considey onl
games of a maximum length of 8 clicks). Thkeaxes show the
human-path distance, i.e., the number of clicks to the tang¢he
effective path (i.e., paths may be thought of as running fieftrto
right), while they-axes represent the mean of the respective quan-
tity over all games, alongside 95% confidence intervals. Gdid
gray curves plot the given quantity for the average optirakitgon.
To compute it, we found an optimal solution for every humamega
instance and averaged. We refer to the figure inrr@md column
cas plot(r,c).

Making progress is easiest far from and close to the target.
Plot (1,1) shows how the shortest-path length (SPL) to the tar-
get changes as a function of human-path distance. Nedgstai
shorter the game, the steeper the curve. Additionally, aies
share a typical anatomy: with the first click, the informatseeker
gets significantly closer to the target on average, then tineec

to —1, which leads us to conclude that Wikipedia is conducive to flattens out and becomes steeper again towards the endgame. |

efficient navigation because its links represent an apatgpmix
of long- and short-range connections across concept space.

short games, the players blasts straight through to thettargak-
ing progress with nearly every step, while in long games tagqy
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Figure 6: The evolution of article properties along search pths,
for games of optimal length 3. Only games of between 3 and 8
clicks are shown. Each colored line represents games of the
same length. Thex-axis shows the distance-to-go to the target,
the y-axis the average value of the respective property (with
95% confidence intervals). The bold gray curve is computed
based on optimal solutions for the considered human paths.

goes through a phase of inefficient circling around the talbge
fore finally gravitating towards it. Another perspectivetiof same
phenomenon is afforded by pl®, 3), which shows the fraction of
times humans picked a lucrative link, i.e., one that led tlctoser
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Figure 7: Hub quality as a function of search time (with 95%
confidence intervals). Hub quality is defined as the degree tiie
second article, divided by the degree of the maximum-degree
neighbor of the start article.

that better information seekers pick better hubs, or (2) sbane
missions are easier because the start articles have linkstter
hubs. While the availability of good hubs certainly helpgy.F
demonstrates that the first alternative plays a role as Wl plot
the ratio de@up)/degus) of the degree of the second article and
that of the highest-degree neighbor of the start articlerayed
over all games of the respective length. The quantity dseewith
increasing game length, implying that better informatieeksers
tend to start games with relatively higher-degree hubs.

Let the term ‘lucrative degree’ stand for the number of oirtigo
links that decrease the SPL to the target. PloB) shows that,
just like the plain degree, the lucrative degree, too, iases sig-
nificantly with the first click—the hub article typically afs more
lucrative options than the start article. Also, the meamdtice de-
gree then decreases as the games continue (necessaciythene
are more articles far from the target than close to it). Weatcsee
a correlation between the hub’s lucrative degree and gangthe
However, the start article itself has higher lucrative @egdior very
short games than for longer ones, an indicator that somegarse
inherently easier than others, even if the optimal numbelioks

to the goal in terms of SPL. We observe a down-up pattern in the i held fixed. This certainly is a factor in the aforementbmeg-

curves: information seekers are more likely to make pragvath
the first click than with the second. Later on, in the endgastieks
become again ever more likely to be lucrative. In long garttes,

ative correlation between search time and hub degree: ri¢ thie
many good hubs it is easier to find one of them.
An interesting additional insight is afforded by lookingheiw

phases of progress in the opening and endgame are sepayated bine average of the ratio of lucrative degree and degree elsahg-

a phase of stagnation where the probability of picking a dodd
stays roughly constant, a manifestation of the circlingatffde-
scribed abové.

Hubs are crucial in the opening.The initial progress with the first
click is afforded by leaping to a ‘hub’ article, i.e., a higegree
node that is easily reachable from all over the graph andhhsit
connections to many regions of it. This makes sense inalytiv
since a good hub gives the information seeker more optioosrio
tinue the search, and is demonstrated by pl@t®), (1,3), and

ing games (cf(2,1)). The resulting quantity, which we call ‘lu-
crative ratio’, corresponds to the probability of gettidgser to the
target when randomly choosing an outgoing link. While bath d
gree and lucrative degree achieve their maximum with therskc
article, their ratio drops drastically between the first aadond ar-
ticles. From this we conclude that the second article is & tub,
in that it does not only have many outlinks leading closerhi® t
target, but has even more that lead further away from i,that it
has connections into many different regions of the graph.

(2,1). While the start article has an average degree of only about Conceptual distance to the target decreases steadiRlots(3, 1)

30 (cf. plot(1,2)), the first click leads to an article with an average

and(3,2) show that articles get ever more related textually to the

degree of between 80 and 100. After the sudden degree iecreas target as the latter is approached (in other words, textistnte

with the first click, the quantity decreases slowly as thegetis
approached.

Note that the shorter the game, the higher the degree of the hu
(and of any given position, for that matter). This could méan

1The fact that the probability is not 100% even when humans
achieve the optimal path length (the blue curve) is due tdabe
that players might have later undone clicks taken from ledic
along the effective path by means of the browser’s back butto
such that they may have taken suboptimal links while stthiia¢

ing the optimal effective path length.

decreases). We verify this using two distinct measures ntep-
tual relatedness, (1) the cosine of the TF-IDF vectors oftie
respective articles, as in Section 3, and (2) the numbergédsthat
have to be traversed in the category tree that comes with our W
kipedia version, in order to reach one article from the ofteate-
gory tree distance’). The fact that the conceptual distdodde
target decreases strictly along paths corroborates oyeaone
from Section 3 that humans approximately perform a deckzech
search using a distance measure between concepts. Aleahabt
the very intuition that the distance between concepts aloagath



and targets decreases was the origiaaon d'étreof the game of
Wikispeedia [24].

Big leaps first, followed by smaller stepsWhile plots(3,1) and
(3,2) track the textual distance between the current article hed t
target, plot(3,3) does so for the distance between the current and
the next articles. This ‘textual step size’ is monotonigalécreas-
ing: first, information seekers make big leaps, with adjaeeticles
being rather unrelated (e.g., when jumping to the hub);,tasthey
home in on the target, they straddle ever smaller ‘gaps’s pho-
gression is possible because Wikipedia’s link structuaeds off
long- versus short-range connections in a favorable maasdaid
out in our discussion of rank-based friendship in SectionVg
also see the aforementioned circling effect for long gangzsna
between the initial getting-away and the final homing-inthbitne
textual distance to the target and the textual step sizeatagas
the player stumbles around on the graph.

Clicks are most predictable far from and close to the target.Fi-
nally, consider plot2,2), which attempts to capture the agreement
between different humans. Consider a target artickor each ar-
ticle u, we define a click probability distribution oveis outlinks,
which counts for each outlink how often it was taken when hu-
mans were searching for the targdiwvith add-0.1 smoothing, to
mitigate the effect of zero counts). The entropy of thisrdistion
provides us with a measure of how predictable human clicés ar
lower entropy meaning higher predictability. We let thentén-
formation gain’ refer to the difference between the pridrepy of

the uniform click distribution before observing any clicksd the
posterior entropy given all game data. It measures how muarle m
predictable clicks at a given articleare after seeing the game data
than before. ‘Relative information gain’ is the ratio of@nmation
gain and prior entropy, or in other words, the percentageewlie-
crease in uncertainty afforded by observing the game datés T
quantity exposes a characteristic pattern, as shown in(pl@).
The relative information gain at the start article is tyflicaround
23% on average and much lower (around 10%) for the following

that shortest paths are often entirely different from hurpaths,

such that the second article itself is often one that humansrn
picked. Since the information gain is computed solely based
human paths, the entropy at the second article stays vefgromi
(i.e., information gain close to zero).

The curves for TF-IDF similarity to the target and to the next
article are qualitatively similar to those for human patimsthat
the distance values decrease as games progress. This 3 tihee t
fact that closeness in the Wikipedia graph is correlatet textual
similarity (cf. Fig. 5). Therefore, as the graph distancehte tar-
get decreases, so does the textual distance ((8ot3 and(3,2)).
Note, however, that the decrease is much more pronouncéuifor
man paths: humans explicitly navigate according to theestrif
articles, while the shortest-path finder does so only bexidus
implicitly constrained by the statistical properties oé thyperlink
graph.

4.2 Trade-off between similarity and degree

Given the findings of the previous section, degree and simila
ity seem to be the most important factors in human wayfinding i
Wikipedia. We hypothesize that humans navigate more slyong
according to degree in the early game phase, when finding & goo
hub is important, and more strongly according to textuallsirity
later on, in the homing-in phase. The goal of this sectioo st
this hypothesis.

We conduct the following experiment to gauge the trade-eff b
tween similarity and degree. Consider only the games witbpan
timal solution of 3 clicks. Then divide the set of all humaajéic-
tories into subsets according to the number of clicks takethb
player (the maximum length we consider is?8fach of these sub-
sets is divided into balanced training (70%) and test (3G8ts). 9~or
each training set and each path position in the trainingrsetrain
a logistic regression classifier, using two features (andrestant
bias term), representing degree and similarity to the targspec-
tively. The positive examples consist of all human clickatained
in the respective training set. The negative examples havet

article. The leap to the hub is much more predictable than the contrived (since we have no ground truth of clicks a humar wil

ways in which people continue from there. (This is compoande
by the fact that, given a start article, not all humans chabse

never make). We do so by randomly (with replacement) samplin
clicks that were never observed, until there are as manytineges

same hub, such that for each hub we have fewer samples than foithere are positive examples. Once the classifiers for albaen

the start article and the respective click distributiorystaore uni-
form, resulting in higher posterior entropy and thus lowdgoima-
tion gain.) As information seekers approach the targeir, behav-
ior becomes again more coherent and predictable, withrimgition
gain increasing.

Comparison of human with shortest paths.To conclude our dis-

cussion of typical human search paths, we compare them to the

optimal solutions found by a shortest-path algorithm (tblel lgray
curve in each plot). Most of the curves are qualitativelyiEim
to those for human paths, which follows from the structuai-c
straints imposed by the link graph. However, there are djadne
differences with respect to all quantities we investigakar in-
stance, for shortest paths, too, the average degree goeishuihev
first click, but this is purely statistically so because thersest-path
finder is more likely to pick high—betweenness-centralibdes,
which in turn tend to have high degree; note that nonetheless
hub has about 20 fewer outlinks than for optimal humans. The |
crative degree of the hub is about 3.5 for optimal soluti@umt by
humans, while it is and only 2 for solutions found by the sésirt
path finder.

The relative information gain is nearly zero for the second a
cle, much smaller than the 10% typical for humans. The re&son

tions of path length and path position have been trainednaeict
the resulting feature weights to infer how important eactiuee is
in humans’ click choice at each position.

Before presenting the results, we add some notes about the tw
features. When regression is used for the purpose of feahalg-
sis, itis important to have uncorrelated features. Therahtinoice
for similarity would be the TF-IDF cosine that we have alsedis
in previous sections of this paper. However, this simyanieasure
is highly correlated with degree: the higher a node’s degitee
higher its average TF-IDF similarity with all other artisle This
happens because high-degree articles are typically lordy)ang
articles are more likely to have some text overlap with thget
article. (The effect is noticeable even in the face of theylen
normalization implicit in cosine similarity.) On the coaty, no
such correlation with degree is exhibited by the categag ttis-
tance. We therefore adopt the latter to quantify similaiityour
regression analysis. To be able to compare the weights diturfes
that can take on very different values, we also have to nazmal
We do so by adopting a rank-based approach. Consider aleartic
and a given feature. The neighborswfet values from the inter-

2We use complete paths including back-clicks. However, avhil
back-clicks themselves are neglected, we do consider tivafd
clicks that the player undoes later on.
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Figure 8: Logistic regression weights for classifying huma vs.
non-human clicks (with standard errors). Green: textual simi-
larity. Red: degree. There is one plot per human path length;
the x-axes show path positions, thg-axes weights.

val [0,1], such that the highest-ranking neighbor, according to the

feature, gets value 1, and the lowest-ranking neighborevalu
Fig. 8 plots the resulting weights for the two features. Eher

one plot for each game length between 3 and 8. Xfhges show

path positions, and each data point represents one featightw

=
o

mean overhead
=}
[6)]

one group per target category

o

Figure 9: Overhead with respect to optimal solutions, for
single-category (red) and most popular multi-category (blue)
strategies, with one group per target category. Thegreen
bars show means over all games of the respective target cat-
egory. From left to right: PEOPLE, MUSIC, IT, LANGUAGE
AND LITERATURE , HISTORY, SCIENCE, RELIGION , DESIGN
AND TECHNOLOGY , CITIZENSHIP , ART, BUSINESS STUDIES
MATHEMATICS , EVERYDAY LIFE , GEOGRAPHY.

endgame strateggorresponding to an endganig,_»,Un_1,Un) iS
defined agC(un—2),C(un—1),C(un)), whereC(u) is u's top-level
category in the hierarchy that comes with our Wikipedia izgrs
For instance, the full category @fik-DIK is SCIENCHBIOLOGY/
MAMMALS , andC(DIK -DIK) = SCIENCE All 14 valuesC can take
on are listed in the caption of Fig. 9.

We divide the set of all Wikispeedia games into subsets decor

The red curves are the degree and the green ones the siynilarit ing to target categories, such that all games with targetestfrom

weights. The weight of the bias term was omitted from thegplot

since it is not informative. Note that, for visibility’s sakwe do
not show the weights for the last click. There, similaritgbmes a
nearly perfect indicator for the target article, since thgét has
maximum similarity with itself, so the similarity featureets a
very large weight, and the interesting part of the plots \doyet
squished and hard to read.

Interpreting the plots, our expectation is confirmed. Bath-f
tures obtain positive weights everywhere, which means bt
high degree and high similarity with the target are charésttes
of the click choices made by humans. More interesting, asthyp

esized, degree dominates in the beginning of games, butnassga

progress, similarity becomes ever more important, sugergele-
gree starting with the second or third click. Furthermoimjlarity
starts dominating earlier in more efficient games.

the same category are placed in the same subset. For each tar-
get category, we observe between 29 and 104 distinct sieateg

out of the possible 3= 196. For all target categories, the dis-
tribution over strategies is highly non-uniform, with magmes
following one of only a few top strategies. As a consequefme,

each target category, the top 10 strategies typically cbgareen

60% and 90% of all games. Furthermore, the distributions axe
ticles within each category are also non-uniform; e.g., 1f%ll
instances 0fGEOGRAPHYare UNITED STATESand 6.1%UNITED
KINGDOM.

In 12 out of the 14 target categories, the most popular glyate
is the one that consists of the target category only, whictcale
the ‘simple’ strategy: people tend to approach the targeugh
articles from the same category as the target. In the renminio
categories, the simple strategy has very high rank, tos:second

We emphasize that the purpose of this experiment is an analy- most frequent when the target is froDESIGN AND TECHNOL-

sis of the fitted feature weights, not maximizing the accyafche
classifiers. Still, to justify our conclusions, we need towlthat the
classifiers perform better than chance (50%) on a statistisig-
nificant level. Evaluating the classifiers on the held-ost set, we
find that this is the case. Accuracy is similar for all gameytes. It
drops from around 90% for the first path position to about 6696 f

the second and then stays in the regime of between 55% and 65%.

When maximum accuracy is the goal, more powerful featuret) s
as TF-IDF cosine, perform better, but as mentioned eaféature
correlation does not permit us to use this feature in ourysisl

4.3 Endgame strategies

0oGY, and fourth most frequent when it is frorEOPLE In the
former case, the more frequent strategyGE OGRAPHY, GEOG-
RAPHY, DESIGN AND TECHNOLOGY); in the latter case, the three
more frequent strategies al6EOGRAPHY, GEOGRAPHY, PEO-
PLE), (GEOGRAPHY, CITIZENSHIP, PEOPLE), and(GEOGRAPHY,
HISTORY, PEOPLBE.

In these example§EOGRAPHYseems to play a prominent role.
And indeed this is a general property of human paths. To demon
strate this, we count, for each categoryow often articles from it
appear in endgames in which the targetasalso of categorg. We
find that GEOGRAPHY accounts for 20% of articles in endgames
of which GEOGRAPHYis not the target. The next most common

The main finding of the previous section is that in the opening categories according to this metric &8eIENCE(7.5%) andHis-
of games it is common to navigate through hubs. Next we take a TORY (5.1%). One might argue that certain categoriesagpeori

closer look at the strategies players adopt in endgamesgder to
home in on the target.

In the present analysis, we define@mgameas the last 3 arti-
cles (i.e., 2 clicks) of a path. To make sure the endgames algzmn
do not contain artifacts from the game openings, we considigr
games of a full length of at least 5 articles (i.e., 4 clické&je also
neglect all games above the length threshold of 20 articldse

more likely, since they contain more articles. We can carfec
this bias by considering the ratio of the above-introduceddency
and thea-priori category frequency, i.e., the number of articles in
the category, divided by the overall number of articles. Ha te-
sulting ranking,GEOGRAPHY s still top, now followed bycITI-
ZENSHIP (mostly about politics and culture) amELIGION. This
finding might imply that humans organize their knowledgerstty



according to geographical lines, and that they often aasocion-
cepts with their countries of origin.

whereP(u;) = 1/N is constant, witiN the number of articles (since
start articles are picked randomly). Note that we will worikhithe

Previously, we saw that simple single-category endgames ar prefix log-likelihood L(t|g; ©) :=logP(q|t; ©) instead.

typically most popular with players. Next, we investigatahef-
ficient they are compared to other, more complex stratedies.
| be the length (number of clicks) of a human game, Enthe
number of clicks in an optimal solution. We define tnerhead

of agame as¢l —1%)/I*, i.e., the percentage of the optimal solution

length that the information seeker needed extra. For eattaene

strategy, we compute the mean overhead over all games of that

strategy. As a baseline, we consider the mean overheadsaatos
games of the given target category. We find that the overhiethe o
simple strategy is on average (over the 14 target cateddrzd%

higher than that of the mean game; i.e., games using the esimpl

strategy are typically worse than average. Now considstead
of the simple strategy, the most frequent multi-categorsitegy.
Averaged across all target categories, its overhead is 188Hex

than that of the mean game; i.e., games using the most frequen

multi-category strategy are typically considerably betit@n aver-
age. Fig. 9 shows that this is not only true on average butdarln
every target category taken by itself. One of only threegmies
for which the simple strategy is, on the contrary, most edfitiis

GEOGRAPHY(the rightmost group in the bar chart). This is in tune

with our previous findings: SincBEOGRAPHYplays a prominent
role even when it is not the target, it makes sense that ivalfor
efficient paths when it is.

Our interpretation of these findings is that informationkses
face a trade-off between efficiency and simplicity. Whiksiching
the target through very related articles from the same oayeig
conceptually simple, the steps taken this way can be smaibeot
long the game. It often pays off to think out of the box—or timkh
in geographic terms.

5. TARGET PREDICTION

In the previous sections, we have conducted an in-deptlysisal
of how people navigate Wikipedia towards a given targetiexti
Our next goal is to apply the lessons learned, in order togdesi
a learning algorithm for predicting an information see&egrget,
given only a prefix of a few clicks. Our method explicitly takine
characteristic features of human search into account atndined
on real human trajectories.

In our analysis of humans, we saw that people trade off featur
differently at different steps. We mimic this by learningeparate
set of weights for each step, such tiat= (01,...,0¢_1) is in fact
a collection of weight vectors, wité; being the weights for step

We next propose and test two alternative models of click grob
bility P(ujt1|ui,t;©), each with its own model fitting algorithm.

Binomial logistic model. The first, simpler model is similar in
spirit to the regression of Section 4.2 (but using strongatures),
where we fit a model to predict whether humans would pick agive
link. The model specifies, for any given click tripley, ui+1,t) sep-
arately, the probability that a human would choos& Eormally,
we define thédinomial logistic modehs
T N

Pl alu t;0) = 2O Wtenl) )

Zvel“(ui)a(ei f(ui,v.t))

whereo(x) = (1+e%)~1; f(uj,ui,1,t) is a feature vector for the
click from u; to uj1 given target; andI'(u;) the set ofu;’'s neigh-
bors. The model paramete are fitted as in standard logistic
regression using gradient descent.

Learning-to-rank model. Since the task is to rank target candi-
dates, we also explore a different setup in which we®féxplicitly
to optimize a ranking objective we refer to asmulative recipro-
cal rank This metric is defined a&(r) := 2521 1/j, wherer is
the rank of the true target [25]. Minimizing this objectivaplies
ranking the true target as high as possible; additionaligpdative
reciprocal rank has the desirable property of putting monelea-
sis on the top of the ranking (e.g(20) — ¢(1) > ¢(120) — ¢(102)),
and is therefore a sensible choice for evaluating rankings.

Notice that, unlike assumed by the simplistic binomial $agi
tic model, humans really face a multinomial choice at eaelp.st
Therefore, we now represent click probabilities imaltinomial
logistic model:

eXF(ein(uiquFl?t))
ZVGF(Ui) exqarf(ui 7V7t))
Another advantage of this framework is that we may use other

P(Uiy1|ui,t;0) =

(©)

There are many potential use cases of such a method. For in-features in addition to the likelihood. Some important destde-

stance, an intelligent browsing interface could use therétym for
tracking the user’s goal and adapt accordingly, e.g., bgssiing
useful shortcuts, thus making human search more efficienenG
the scope of this paper, we evaluate our method only in thiegbn
of Wikipedia, but we believe it is general enough to extenditteer
search scenarios, if appropriate features are used.

Human Markov model. We cast our task as a ranking problem.

Given the observed path prefix rank all articles according to
how plausible they are as targets of the current search.eAtefrt
of our approach is a Markov model of human search, the pasmet
© of which are learned. To make the prediction, we order catdid
targetst according to a ranking functiog(t|g; ©), defined as the
likelihood oft given the prefixg, i.e., asP(q|t; ©).

Let g = (uy,...,ux) be a prefix ofk — 1 clicks. Given target
and model parametef®, the probability of seeingj is obtained
by multiplying the local click probabilities, and we aim tadi the
most likely target, i.e.,

k-1
argmaxP(qlt; ©) = argmap(uy) | [ P(uisa|uit;©), (1)
t t -1

pend on the entire prefix and cannot be encoded naturallythieto
Markov model (e.g., How often did the player not take a ditiedt

to the target although this was possible?), which consiolelys|o-
cal clicks. Thus, in the learning-to-rank setup, our finadkiag
functiong consists of a linear combination of prefix log-likelihood
and those additionadrefix-global featuresAs our prediction, we
select the targdtthat maximizeg, i.e.,

argtma>g(t|q: 0,8)= argtmawlFl(qJ) + ...+ BmPm(a,t), (4)

whereF; = L(t|g; ©), andF,, ..., Fy are the prefix-global features,
the details of which are provided below (note that they dod®st
pend onO).

We fit © and3 using an approach inspired by a method proposed
recently by Westoret al. [25]. The algorithm minimizes cumula-
tive reciprocal rank via stochastic gradient descent,gugimovel
sampling trick to speed up learning. In our case, this is seEary
since we would otherwise have to iterate over all target ickates

30ne might be tempted to phrase the problem as multinomial lo-
gistic regression instead, but this is not possible, siheediegree
of u; and hence the number of classes is variable.



(i.e., all articles) for every training example. We refee tfeader
to Westonret al’s paper regarding the details of the framework and
restrict ourselves to highlighting how we adapt their aiftyon:

The learning algorithm requires computing the derivatifego
with respect t® and3. While %g(t\q;@,ﬁ) = Fj(q,t) is obvi-
ous, %g(ﬂq;@,,@) is trickier. We forgo a derivation and simply
state that

o . o .
26, (to;©,8) Bla—&L(t\q,@)

B1 {f(ui-,uiu-,t)*zvgr(ui) P(vu.t;©) f(u -V-t)} .

Thatis, the likelihood gradient with respect to the weidhtgrefix
positioni is equal to the difference of the feature vector of click
and the expected feature vector under the current weghts

Features for learning. So far, we have only described the abstract
framework of our algorithms but have not yet discussed the co
crete features we use. As mentioned, our choice of featanes i
spired by the results of our study of human behavior: if wagies
features that capture the characteristics of human patasalgo-
rithms can learn weights to predict targets under which tens
prefix resembles human behavior most. Specifically, thes¢har
entries of the likelihood feature vectéfu;, uj,1,t) (recall that we
learn a separate weight vector for edch

1. TF-IDF(ui;1,t): as we have seen, articles become ever more

related to the target as human games proceed (Kig.%);

TF-IDF(u;,ui11): ‘textual step size’ is large at first and be-

comes ever smaller (Fig.(®,3));

. dedgui+1): humans commonly navigate through hubs in the
beginning, so we expect the weight for this feature to beslarg
for early and small for later steps

. degqui) x dequi,1): if uj already is a hub, there is no more

2.

need for the player to search for another one, which can be

captured by this interaction feature;

. TF-IDF(u;,t) x deguj+1): if the player is already close to
textually, finding a hub is less important;

. TF-IDF(u;,t) x TF-IDF(ui, ui+1): close tot, the step size is
typically also smaller;

. the indicator SPw;1,t) > SPL(u;,t): if a click increases
the shortest-path length tothen it is less likely to be chosen
by a player;

. |TE-IDF(u;,t) — TF-IDF(uj11,t)|+: a click is also less likely
if it decreases the textual similarity to

In the learning-to-rank approach, we additionally haveftiie
lowing prefix-global features (cf. (4)):

1. Number of times the player could have taken a direct link to
t yet did not;

2. Number of clicks through which the SPL tancreased;

3. Sum (over all clicks) of decreases in textual similarity.to

The last two prefix-global features are similar to likeliddeatures

7 and 8, but here they can modify the ranking function exiici
rather than merely via the likelihood term. We expected trst fi
prefix-global feature to receive a large negative weighiglen by
the intuition that humans would always go directly to thegéar
as soon as this is possible. However, a weight of nearly zero i
learned for this feature, which indicates that informatsaekers
often miss the best links because they do not expect themeammth
do not notice them in the often long article text. This emjztess
the usefulness of the task of target prediction: if the atgor can

accuracy cumulative reciprocal rank
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Figure 10: Performance of our target prediction algorithms,
for varying prefix lengths k (indicated by color). Left: accuracy
(higher is better). Right: cumulative reciprocal rank (lower is
better). Bold solid: multinomial ranking model. Thin solid:
binomial logistic regression.Dashed: TF-IDF baseline.
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Figure 11: Sibling precision of our target prediction algo-
rithms. Bold solid: multinomial ranking model. Thin solid:
binomial logistic regression.Dashed: TF-IDF baseline.

infer the intended target, it could highlight the most uséfiks so
they become more salient to the user.

Evaluation. For training our models, we use prefixes of 3 clicks,
taken from human games of at least 4 clicks. The weights ¢cgave
quickly for the multinomial ranking model, after seeing @/ finou-
sand examples, which takes only some minutes.

We also compare our algorithms to a baseline that simply pre-
dicts as the target the article with the largest TF-IDF ity to
the last article of the prefix.

We use a test set not seen during training to evaluate the algo
rithms on two tasks: (1) given a prefix= (uy, ..., Ux) and a choice
of two targets, pick the true targetthe false target is picked ran-
domly from the set of articles that ever occurred as targalave
the same SPL fromy ast; (2) givenq, rank the set ofill articles
such that the true target is ranked high. The second task ¢ mu
harder but also more useful than the first; e.g., if the methad
be implemented for an intelligent browsing tool, reasoadatgets
must be picked from all candidates, not just from a set of two.

In the first task, we use accuracy as a metric; in the second, we
measure ranking loss according to cumulative reciproc#{, rine
objective we also use for training. While this captures nagkjual-
ity objectively, it might be overly strict; e.g., if = WINE, then
predictingBeeRis much better than, sagASOLINE. We account
for this by measuring ‘sibling precision@, which is the same as
precision@n, with the difference that not ontybut all articles from
the same category asire counted as relevant (we use the leaves of
the hierarchy of our Wikipedia version as categories).

We vary two parameters of the test prefixdés:the number of
articles in the prefix; and, the length of the entire human path. The
results are summarized in Fig. 10 and 11. In all plots, thd bolid



line represents the multinomial ranking (MR) model, the tholid
line the binomial logistic regression (BLR) model, and tlaslded
line the TF-IDF baseline. First note that MR is at least asdgoo
as, and often better than, both BLR and TF-IDF according ényev
metric. Now consider Fig. 10. As expected, our methods work
better when prefixes are longer (cf. the order of the boldesj)rand
when full paths are shorter (cf. the slopes of the curves}ably,
on the task of picking the correct one of two targets, MR acse
an accuracy of 80% when 3 clicks are seen, regardless of aiheth
the entire game is 4, 5, or 6 clicks long. Interestingly, @iBLR
has higher accuracy on the binary task, the simple TF-IDElras
achieves better ranking performance. We take this as acatudi
that MR combines the better properties of both.

Finally, consider Fig. 11, which shows sibling precisiom@-or
the sake of brevity, we display only the cdse- 4, but in relative
terms the results are the same for all prefix lengths. Thei-prec
sion@30 of MR is 20% fon = 5, which means that 6 of the top 30
targets are of the same category as the true target, whenen® se
clicks and the full game has 1 more click. Even when there B¢ 2
more clicks, we still see 5 (3) top-ranked articles that &my ¢lose
to the true target (for comparison, in a random ranking, ipiec
is only 1% on average). This property of the ranking algaonitis
desirable, since in a real-world application making a claseugh
guess might often be nearly as good as predicting the exaetta

6. CONCLUSIONS

Finding paths connecting different concepts—Ilike linkaagises
to effects—is a task the human race has been performing fer mi
lennia. We formalize this task in a human-computation gafme o
wayfinding between the concepts of Wikipedia. We study more
than 30,000 goal-directed human search paths and idenfifiea
gate strategies people use when navigating informatiocespas
information spaces become more complex, itis increasiingbor-
tant to understand how humans navigate them and to asgistithe
locating the desired information. This is the second fodusiopa-
per, where we build a predictive model of human wayfinding tha
can be applied towards intelligent browsing interfaces.

The view of human wayfinding as a navigation task on Wiki-
pedia points to a broad range of interesting issues, and @air g
in this paper has been to start exploring the foundationsdar
soning about these questions. We anticipate further iigagins
in determining why people give up navigating and charaziteyi
unfinished wayfinding tasks. Given the insights we offer hare
other interesting direction is in automatically designinfprma-
tion spaces that humans find intuitive to navigate and ifiéng
individual links which could make the Wikipedia network eago
navigate. Overall, we hope that this perspective can dartito
the development of new functionality in the continuing exmn
of how we use and navigate the Web.
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