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1 Exploiting symmetries (Sec. 3.2)

Our definition of a triangle t = {e1,e2,e3} for an undirected signed graph G = (V,E,x) expresses
each triangle as an unordered set of edges. However, we implicitly impose an ordering on the
edges of t when we form xt = (xe1 ,xe2 ,xe3) because the vector xt is an ordered object. As this
ordering is arbitrary, d : {0,1}3→ R+ must be invariant to the order of its arguments, i.e., for any
permutation matrix π, d(xt) = d(xtπ). This requirement implies that there are only 4 possible values
that d can take on: d(0,0,0),d(1,0,0) = d(0,1,0) = d(0,0,1),d(0,1,1) = d(1,0,1) = d(1,1,0),
and d(1,1,1). We always use this restriction when learning or specifying d.

2 Extension of the model to directed graphs (Sec. 3.2)

We now describe the TRIANGLE BALANCE problem for a directed signed graph G = (V,E,x). Since
there is no global reference node, edge directionality does not influence the edge cost function
c(xe, pe) = λ1(1− pe)xe+λ0 pe(1−xe). However, when forming our triangle cost function, we now
distinguish between two basic types of triangles: acyclic and cyclic. Since each triangle t is specified
as an unordered set of edges, t is isomorphic to one of these basic types. We allow for different costs
for each triangle type/sign combination by extending the definition of d to take the triangle type,
σt ∈ {CYCLIC,ACYCLIC}, as an argument. Our overall objective is then

∑
e∈E

c(xe, pe)+
∑
t∈T

d(xt ,σt). (1)

Similarly to the undirected case, symmetries exist that d must take into account. When t is cyclical,
the order of the edges does not matter and the same symmetries as in the undirected case must
be obeyed. However, when t is acyclical each directed edge plays a different role in the triangle,
and order matters. As such, we will assume that xt is formed by always taking edges in the same
canonical order when t is acyclical. Moreover, d takes on 8 distinct values when its second argument
is ACYCLIC, yielding a total of 12 distinct values for d when G is directed.

3 NP-hardness of TRIANGLE BALANCE (Sec. 3.3)

We prove that TRIANGLE BALANCE is NP-hard for undirected graphs. It then follows immediately
that the problem is NP-hard for directed graphs, too, since every undirected graph can be expressed
as a directed graph,1 which implies that the directed case is at least as hard as the undirected case.

1For instance, by fixing some order v1, . . . ,vn on the vertices V = {v1, . . . ,vn} and representing an undirected
edge e = {vi,v j} as the directed edge (vi,v j) if i< j, and (v j,vi) otherwise.
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Further, in our problem formulation in Sec. 3.2 (Eq. 2) of the paper, the cost of an edge e, c(xe, pe), is
defined as a mere shortcut for λ1(1− pe)xe+λ0 pe(1−xe), where pe ∈ [0,1], λ1 ∈R+, and λ0 ∈R+

are free parameters associated with the problem instance, and xe ∈{0,1} is the optimization variable.
That is, an edge e’s cost of being positive (negative) is entirely determined by the sentiment model’s
output pe and λ1 (λ0). For ease of exposition, we will first assume that edge costs are defined
directly on a per-edge basis; i.e., each edge e has costs c(xe,e) associated immediately with it (for
xe ∈ {0,1}), without assuming parameters pe, λ1, and λ0. We write c1(e) for c(1,e), and c0(e) for
c(0,e). Having proved NP-hardness for this more general case, we will provide an argument why
NP-hardness even holds for the more special case where edge costs are constrained to be of the form
λ1(1− pe)xe +λ0 pe(1− xe).

The TRIANGLE BALANCE problem is therefore defined as follows.

Problem. TRIANGLE BALANCE

Instance.

• An undirected graph G = (V,E),
• a cost function c1 : E→ R, specifying the cost of each edge if it is positive,
• a cost function c0 : E→ R, specifying the cost of each edge if it is negative,
• a triangle cost function d : {0,1}3→R, where d(xt) = d(x1,x2,x3) defines the cost of

a triangle t whose edges have the signs xt = (x1,x2,x3).

Task. Find edge signs x ∈ {0,1}|E| of minimum cost

H(x) = HE(x)+HT (x), (2)
where the total cost H(x) is the sum of the total edge cost

HE(x) =
∑
e∈E

xec1(e)+(1− xe)c0(e) (3)

and the total triangle cost
HT (x) =

∑
t∈T

d(xt). (4)

Theorem 1. TRIANGLE BALANCE is NP-hard.

Proof. We prove NP-hardness by reduction from TWO-LEVEL SPIN GLASS, which is known to be
NP-hard and defined as follows [Bar82].

Problem. TWO-LEVEL SPIN GLASS

Instance.

• A two-level grid (cf. Fig. 1) Ḡ = (V̄ , Ē),
• an edge cost function c̄ : Ē→{−1,0,+1}.

Task. Find vertex signs x̄ ∈ {−1,+1}|V | of minimum cost

H̄(x̄) =−
∑

(u,v)∈Ē

c̄(u,v) x̄u x̄v. (5)
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Figure 1: A two-level grid [Bar82]. c© Sol LeWitt: Cubic-Modular Wall Structure, Black, 1966,
Museum of Modern Art, New York.
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Figure 2: Illustration of the reduction from TWO-LEVEL SPIN GLASS to TRIANGLE BALANCE.
(Dangling vertices with no incident blue or yellow edges not shown on right.)

As a matter of notation, for a graph G = (V,E), we assume some order v1, . . . ,vn on the vertices
V = {v1, . . . ,vn} and represent an undirected edge e = {vi,v j} as the pair (vi,v j) if i< j, and (v j,vi)
otherwise.

Here is a table of correspondences that motivates our reduction from TWO-LEVEL SPIN GLASS to
TRIANGLE BALANCE:

TWO-LEVEL SPIN GLASS TRIANGLE BALANCE
vertex labels edge labels

vertex costs (all-zero) edge costs
edge costs triangle costs

So the idea is to map vertices from the TWO-LEVEL SPIN GLASS instance to edges in the TRIANGLE
BALANCE instance, and edges in the TWO-LEVEL SPIN GLASS instance to triangles in the TRIANGLE
BALANCE instance. The reduction is illustrated in Fig. 2. Formally, we transform a TWO-LEVEL
SPIN GLASS instance (Ḡ = (V̄ , Ē), c̄) into a TRIANGLE BALANCE instance (G = (V,E),c1,c0,d) as
follows:
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V = V̄ ∪{v∗}, where v∗ /∈ V̄ (6)
E = {e ∈ Ē : c̄(e) 6= 0}∪{(v,v∗) : v ∈ V̄} (7)

c1(e) =


0 if e /∈ Ē
0 if e ∈ Ē and c̄(e) = +1
2|Ē|+1 if e ∈ Ē and c̄(e) =−1

(8)

c0(e) =


0 if e /∈ Ē
0 if e ∈ Ē and c̄(e) =−1
2|Ē|+1 if e ∈ Ē and c̄(e) = +1

(9)

d(x1,x2,x3) =

{
−1 if x1 + x2 + x3 ∈ {1,3}
+1 if x1 + x2 + x3 ∈ {0,2}

(10)

We need to prove that each optimal solution to the original problem induces an optimal solution to
the transformed problem, and vice versa. Our first observation is that, in the transformed problem,
there is

1. exactly one new edge (v,v∗) ∈ E \ Ē for each old vertex v ∈ V̄ (red edges in Fig. 2),
creating

2. exactly one new triangle {(v1,v2),(v1,v∗),(v2,v∗)} for each old non-zero edge (v1,v2)∈
E ∩ Ē.

Further, since every two-level grid Ḡ is triangle-free, the set of triangles in G corresponds exactly to
the set of non-zero edges in Ḡ.

Due to item 1, there is a one-to-one correspondence between labelings of the old (black in Fig. 2)
vertices V̄ and labelings of the new (red in Fig. 2) edges E \ Ē. Further, the old edge cost function
c̄ induces a labeling of the old (blue and yellow) edges E ∩ Ē. So, for each labeling x̄ of the old
vertices V̄ , we can define exactly one corresponding labeling x of the edges E of the transformed
problem:

x(u,v) =
{

x̄u if (u,v) ∈ E \ Ē, i.e., if v = v∗,
c̄(u,v) if (u,v) ∈ E ∩ Ē.

(11)

We will show below that x has cost H(x) = H̄(x̄). Also, any x′ that labels the old edges E ∩ Ē
differently than (11) will have cost H(x′) ≥ 2|Ē|+ 1− |Ē| = |Ē|+ 1 > H̄(x̄) = H(x), due to (10)
and the third case of (9), and because the cost H̄(x̄) in the original problem is never more than |Ē|.
Hence, any optimal solution x∗ must label the old edges E ∩ Ē as in (11), which means that each
optimal solution x̄∗ to the old problem is in a one-to-one correspondence with an optimal solution
x∗ to the transformed problem, and minx H(x) = H(x∗) = H̄(x̄∗) = minx̄ H̄(x̄).

To see that H(x) = H̄(x̄) for the x̄-to-x transformation of (11), first observe that the total edge cost
HE(x) (cf. (3)) is 0, since new edges are always free (case 1 of (9)) and old edges are free if they are
signed according to c̄ (case 2 of (9)).

Regarding the triangle cost HT (x) (cf. (4)), observe that a triangle (which always consists of one old
edge and two new edges) has an even number of negative edges if and only if its old edge is positive
and its two new edges are of the same sign, or its old edge is negative and its two new edges are
of opposite signs. Therefore (cf. (10)), the number of triangles with cost ±1 equals the number of
edges (u,v) of the original problem for which c̄(u,v) x̄u x̄v =∓1, or equivalently,−c̄(u,v) x̄u x̄v =±1.
So the total triangle cost HT (x) of the transformed problem equals the total cost H̄(x̄) of the original
problem (cf. (5)).

Adding edge and triangle costs, we obtain the total cost of the transformed problem as H(x) =
HE(x)+HT (x) = 0+ H̄(x̄) = H̄(x̄).

To conclude, we show that the problem is NP-hard even when we constrain the edge costs c(xe, pe)
to be of the form λ1(1− pe)xe +λ0 pe(1−xe), respectively, as assumed in Eq. 2 of the paper (cf. the
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discussion at the beginning of this section). In this case, instead of defining c1(e) and c0(e) for each
e ∈ E, we need to define pe for each e ∈ E, as well as λ1 and λ0. We define

pe =


1
2 if e /∈ Ē
1 if e ∈ Ē and c̄(e) = +1
0 if e ∈ Ē and c̄(e) =−1

λ1 = 2|Ē|+1,
λ0 = 2|Ē|+1.

Since c1(e) = c(1, pe) = λ1(1− pe) and c0(e) = c(0, pe) = λ0 pe, we can simply use the following
edge costs in the same proof as above:

c1(e) =


|Ē|+ 1

2 if e /∈ Ē
0 if e ∈ Ē and c̄(e) = +1
2|Ē|+1 if e ∈ Ē and c̄(e) =−1

(12)

c0(e) =


|Ē|+ 1

2 if e /∈ Ē
2|Ē|+1 if e ∈ Ē and c̄(e) = +1
0 if e ∈ Ē and c̄(e) =−1

(13)

The same proof as above will be valid, with the small difference that now the costs of the optimal so-
lutions to the TWO-LEVEL SPIN GLASS and TRIANGLE BALANCE instances will differ by a constant
|V̄ |(|Ē|+ 1

2 ), as there are |V̄ | edges in E \ Ē, each of which contributes a cost of |Ē|+ 1
2 .

A final remark: Although TRIANGLE BALANCE was defined for general triangle-cost functions d in
Eq. 1 of the paper, our reduction shows that even the special case of d that rewards triangles with an
even, and punishes triangles with an odd, number of negative edges is NP-hard. This is noteworthy
since it is the notion of social balance originally considered in sociology [Hei46].
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