Hybrid Vigor

Using Heterogeneous HPC to Accelerate Chemical Biology

Imran Haque
Department of Computer Science
Stanford University

http://cs.stanford.edu/people/ihaque
http://folding.stanford.edu
E. coli protein ???
Which small molecules will a given protein bind?
What do these compounds do?

- inhibit penicillin binding proteins?
- kill bacteria?
- kill viruses?
What do these compounds do?

- inhibit penicillin binding proteins?
- kill bacteria?
- kill viruses?
bisphenol A
estrogen mimic

clavulanic acid
beta-lactamase inhibitor

levofloxacin
DNA gyrase inhibitor

methicillin
beta-lactam antibiotic

zidovudine
HIV RT inhibitor

penicillin G
beta-lactam antibiotic
Chemical Biology - Methods

- Experimental assays: expensive, labor-intensive

- Physical simulation?
OpenMM – High Performance

<table>
<thead>
<tr>
<th>Molecule</th>
<th># atoms</th>
<th>ns/day</th>
<th>speedup*</th>
<th>GFLOPS (GPU)</th>
<th>GFLOPS (x86)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fip35</td>
<td>544</td>
<td>576</td>
<td>128x</td>
<td>311</td>
<td>657</td>
</tr>
<tr>
<td>villin</td>
<td>582</td>
<td>529</td>
<td>136x</td>
<td>328</td>
<td>692</td>
</tr>
<tr>
<td>lambda</td>
<td>1254</td>
<td>202</td>
<td>255x</td>
<td>547</td>
<td>1153</td>
</tr>
<tr>
<td>α-spectrin</td>
<td>5078</td>
<td>17</td>
<td>735x</td>
<td>805</td>
<td>1702</td>
</tr>
</tbody>
</table>

(*comparing a GTX280 to a single core of a 3GHz Core 2 Duo using the AMBER code; Fermi is ~2x faster!)

http://simtk.org/home/openmm

(Beauchamp, OpenMM team, Pande)
OpenMM – Rapid Development

• Interface to Python
 – 8 lines to a customizable, high performance MD code
 – tweak to your heart’s content, but keep high performance

```python
import FF, Simulation
FField = FF.ForceField.LoadFromHDF("./Amber99.h5")
Conf = FF.Conformation.LoadFromPDB("Test","./state0.pdb")
Topo = FF.Topology.CreateTopologyFromConformation(Amber99,Conf)
Sim = Simulation.Simulation.CreateSimulation(FField,Topo,Conf,
                                          Temp=300.,Friction=1.0,TimeStep=0.002,GBSA=True,BondConstr=True)
Sim.Step(50000)
Conf["XYZ"] = Sim.GetXYZ()
Conf.SaveToPDB("Traj2.pdb")
```

• Custom Force classes
 – code in equations, rather than CUDA/OpenCL, with high performance

```cpp
map<string, CustomFunction*> functions;
functions["fn"] = new MyCustomFunction();
ParsedExpression exp = Parser::parse("cos(x)*fn(x/2)",functions);
```
Limitations of traditional parallel MD

- Parallelism by spatial decomposition
 - each CPU gets assigned atoms
 - calculates the force for “its” atoms
 - communication between boxes

- Challenge
 - how to break up the problem for billions of processors when you only have millions of atoms?
 - What do you do when you only have thousands?!?!?

- What about scaling to billions of processors?
 - can’t have # processors > # atoms
 - machine may not even run long enough to checkpoint/restart
How to think of MD simulations

YES!

No
A statistical approach to simulation

1. **Sample metastable states:**
 automatic algorithms to adaptively sample and identify metastable states via a kinetic clustering mechanism (avoid one/low dimensional R.C.’s)

2. **Build transition matrix:**
 use MD to sample transition probabilities (ideally adaptively -- which allows MSMs to be more efficient than very long runs)

3. **Use transition matrix:**
 transition matrix contains everything to predict structure, thermodynamics, and kinetics (built-in analysis via lumped MSM’s)

also see the work of: Caflisch, Chodera, Deuflhard, Dill, Hummer, Noé, Pande, Pitera, Singhal-Hinrichs, Roux, Schütte, Swope, Weber

http://simtk.org/home/msmbuilder
Shorter trajectories can be *more* efficient

Tests of a linear network:

- **simple, uncoupled**

black lines = iso-total simulation contours

fully uncoupled trajectories hit a limit: need to be long

(Bowman, Pande)
Shorter trajectories can be more efficient

Tests of a linear network

- simple, uncoupled
- fully uncoupled trajectories hit a limit: need to be long

Adaptive sampling allows lots of shorter trajectories to be more efficient: simulate only what you need.
Shorter trajectories can be *more* efficient

Tests of a linear network

- Simple, uncoupled
- Adaptive sampling allows lots of shorter trajectories to be *more* efficient: simulate only what you need

Black lines = iso-total simulation contours

Fully uncoupled trajectories hit a limit: need to be long

Number of Trajectories

(Bowman, Pande)
Adaptive Sampling – Parallel + Resilient

wall clock

FAH (~day)
- start: run some initial simulations

cluster (~hour)
- cluster data into microstates

cluster (~hour)
- lump microstates into macrostates

cluster (~minute)
- calculate state’s contribution to uncertainty

FAH (~day)
- start new simulations ~ uncertainty

final result: well-constructed MSM

Repeat until desired uncertainty.

Can overlap cluster steps with FAH!

Tightly-coupled parallelism
Loosely-coupled parallelism
Start: run some initial simulations

Iterative simulation minimizes state/transition uncertainty

Result: well-constructed MSM

Adaptive Sampling – Parallel + Resilient

Loosely-coupled parallelism

Tightly-coupled parallelism

MSM/adaptive sampling analysis

http://simtk.org/home/msmbuilder

(Singhal, Bowman, Haque, Pande)
Folding@home – Parallel + Resilient

Loosely-coupled parallelism

CPU clients:
~340,000 nodes
~370 TFLOPs

GPU clients:
~21,500 nodes
~4060 TFLOPs

PlayStation 3 clients:
~36,000 nodes
~2120 TFLOPs

Tightly-coupled parallelism

Assignment Server
(assigns nodes to work servers)

Folding@home Totals:
~400,000 nodes
6.55 PFLOPs sustained in MD

Molecular Dynamics
Analysis/ Adaptive Sampling

Control
MD Data

Work Servers
(assign MD work units to nodes, accept results)

Analysis Pipeline
(analyze trajectories, build MSMs, perform adaptive seeding)

Bio-X2 cluster
2,208 cores
14.1 TFLOPs

http://folding.stanford.edu
“Real” Chemistry: States and Rates

Figure from
Dobson, et al, Nature
MSMs let us compute states and rates

States defined *kinetically* – thermodynamically relevant!

http://simtk.org/home/msmbuilder
• Experimental assays: expensive, labor-intensive

• Physical simulation: expensive, slow, questionably accurate

• Is there an alternative to giant molecular dynamics simulations for large-scale/high-throughput work?
Chemical Databases

• A modern trend – giant **public** databases of chemical assay data
 – NCBI PubChem: 34,340 assays; 965,730 compounds
 – EBI ChEMBLdb: 8,054 targets; 600,625 compounds

• Companies releasing their internal databases

• Let’s learn from this data and make predictions – chemical informatics or data mining!
The Cheminformatics Gap

Computational analysis has not kept up with growth in chemical databases: the cheminformatics gap.
Not just a linear gap

• Chemical similarity comparison is a common bottleneck in chemical algorithms

• How many similarities for N molecules?
 – Virtual screening, k-means clustering: $O(N)$
 – Hierarchical clustering, network analysis: $O(N^2)$
 – LM hierarchical: $O(N^3)$

The gap is not just 10x-100x...
more like 100x – 1 million x!
The storage challenge

• Making an $O(N^2)$ method faster is not enough:

<table>
<thead>
<tr>
<th>Problem size</th>
<th>CPU time</th>
<th>Storage needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mols</td>
<td>1 ms</td>
<td>1 kB</td>
</tr>
<tr>
<td>10K mols</td>
<td>1 min</td>
<td>1 GB</td>
</tr>
<tr>
<td>100K mols</td>
<td>1 day</td>
<td>1 TB</td>
</tr>
<tr>
<td>10M mols</td>
<td>3 yr</td>
<td>1 PB</td>
</tr>
<tr>
<td>1B mols</td>
<td>30K yr</td>
<td>10K PB</td>
</tr>
</tbody>
</table>

• Computing on existing-scale datasets requires entire datacenters’ worth of storage.
A Modest Proposal

- Let’s calculate all the pairwise similarities for compounds in PubChem3D (N = 17M) based on 3D shape and 2D chemical similarity

- 3D: OpenEye ROCS: 150/sec/core = 30K cpu-yr
 2D: OpenEye LINGO: 1M/sec/core = 4.5 cpu-yr
 - 1 PB per matrix
A Modest Proposal

• Let’s calculate all the pairwise similarities for compounds in PubChem3D (N = 17M) based on 3D shape and 2D chemical similarity

• 3D: OpenEye ROCS: 150/sec/core = 1.5 Jaguar-mth
 2D: OpenEye LINGO: 1M/sec/core = 30 Jaguar-sec
 – 13% of NCCS HPSS per matrix

• Let’s accelerate this with heterogeneous HPC!
 – High speed + high efficiency
 – Reliability? (See MemtestG80)
PAPER: GPU-Accelerated 3D Sim

- Use GPUs to accelerate 3D shape-only comparison: **100x speedup**

http://simtk.org/home/paper

SIML: GPU-Accelerated 2D Sim

- 2D similarity has poor internal parallelism
- Invented new GPU-appropriate algorithm for LINGO
- Run one LINGO per compute unit (>200/GPU)

3x speedup with new algorithm on CPU
82x speedup on GPU

A Humble Proposal

• Let’s calculate all the pairwise similarities for compounds in PubChem3D (N = 17M) based on 3D shape and 2D chemical similarity

• 3D: PAPER: 15K/sec/gpu = ~ 300 gpu-years
 2D: SIML: 91M/sec/gpu = ~ 4 gpu-weeks
 – 2D: 1 GPU is faster than reading solution from disk!

• We’re not quite there yet for 3D...
Many molecular similarity methods report similarity as a Tanimoto score. How can we use the mathematical structure of Tanimotos to gain insight into the metrics and calculate them faster?

Classical vector Tanimoto returns value in $[-1/3, 1]$ for a pair of vectors A, B in terms of their inner products

$$T_{AB} = \frac{\langle A, B \rangle}{\langle A, A \rangle + \langle B, B \rangle - \langle A, B \rangle}$$

Tanimoto equation can be rearranged to get inner product in terms of Tanimoto and vector magnitudes

$$\langle A, B \rangle = \frac{T_{AB}}{1 + T_{AB}} (\langle A, A \rangle + \langle B, B \rangle)$$

SCISSORS: Derivation

- Assume molecules can be represented as vectors in \mathbb{R}^N
- Simple assumptions on $\langle A, A \rangle$ and $\langle B, B \rangle$ get us $\langle A, B \rangle$

$$\langle A, B \rangle = \frac{2T_{AB}}{1 + T_{AB}}$$

- Given a matrix G of inner products, want matrix M with molecule vectors along rows

$$MM^T = G$$

- G is real-symmetric, so use eigenvalue decomposition

$$G = MM^T = VDV^T$$

$$M = VD^{\frac{1}{2}}$$

SCISSORS: The key

- Select a small number \(k \) of molecules (\(k \ll N \)) to act as a “basis set”
- Do all-pairs comparison on basis set and decompose to molecule matrix \(\mathbf{M} \)
- For each new “library” molecule \(\mathbf{x} \), run slow method only against basis set. Place inner products in a vector and solve for vector rep of \(\mathbf{x} \) by least-squares:
 \[
 \mathbf{M} \tilde{\mathbf{x}} = \mathbf{T}
 \]
- All-pairs: now only \(O(kN) \) slow computations!

Hardly Even a Request…

• 3D: Using PAPER+SCISSORS (basis size=2700)
 17M * 2700 / 15000 = 35 gpu-day +
 17M * 17M / 600M = 5 gpu-day
 274,000x speedup (vs 30 000 cpu-yr)

• 2D: Using SIML
 17M * 17M / 91M = 36 gpu-day
 40x speedup (vs 4.5 cpu-yr)

• Storage: 200M for SIML, 17GB for SCISSORS
 33,000 x reduction (3D)
 2.8M x reduction (2D)
Doing it Faster and Better

• Intensive reparameterization of chemical similarity “forcefields”: 14-20D derivative-free optimization

• High-speed similarity allows exhaustive calculation of all similarities -> explicit significance estimates

• Future work: integration of biological data into similarity networks to make predictions
Acknowledgments

Stanford
- Vijay Pande (PI)
- Paul Novick
- Greg Bowman
- Kyle Beauchamp
- Randy Radmer
- Mark Friedrichs
- Peter Eastman

Collaborators
- Del Lucent
- Pat Walters
- Kim Branson
- Erik Lindahl
- Anthony Nicholls
- Brian Cole
- Roger Sayle
Conclusions

• Statistical approach extends scalability and resilience of MD to the exascale and unifies simulation and analysis

• New hardware and software technologies allow us to bridge the cheminformatics gap and scale analysis to multi-million molecule datasets

• Large-scale methods enable statistically-rigorous analysis and new insights into chemical space

inhaque@cs.stanford.edu