Solutions to Problem Set #2

Problem 1: Binary search trees

Problem 2: Graph traversals
DFS from STAN: STAN, SRI, UTAH, BBN, CMU, NRL, HARV, MIT, RAND, UCLA
BFS from CMU: CMU, BBN, NRL, UTAH, MIT, HARV, RAND, SRI, UCLA, STAN

3. Minimum spanning trees

[Diagram of a minimum spanning tree with cities and weights]
4. Dijkstra’s algorithm

Fix distance to A at 0
Process the arcs out of A (D, B)
 Enqueue the path: A -> D (5)
 Enqueue the path: A -> B (1)
Dequeue the shortest path: A -> B (1)
Fix distance to B at 1
Process the arcs out of B (A, D, C)
 Ignore A because its distance is fixed
 Enqueue the path: A -> B -> D (3)
 Enqueue the path: A -> B -> C (2)
Dequeue the shortest path: A -> B -> C (2)
Fix distance to C at 2
Process the arcs out of C (B, D)
 Ignore B because its distance is fixed
 Enqueue the path: A -> B -> D (4)
Dequeue the shortest path: A -> B -> D (3)
A -> B -> D (3)

5. Expression trees

Parsing phase:

readE(y = 2 + (x - 3) * 5 , 0)
readT(y = 2 + (x - 3) * 5)
readE(y = 2 + (x - 3) * 5 , 1)
readT(y = 2 + (x - 3) * 5)
readE(y = 2 + (x - 3) * 5 , 2)
readT(y = 2 + (x - 3) * 5)
readE(y = 2 + (x - 3) * 5 , 0)
readT(y = 2 + (x - 3) * 5)
readE(y = 2 + (x - 3) * 5 , 2)
readT(y = 2 + (x - 3) * 5)
readE(y = 2 + (x - 3) * 5 , 3)
readT(y = 2 + (x - 3) * 5)

Evaluation phase:

IdentifierExp::eval(x) -> 11
ConstantExp::eval(3) -> 3
CompoundExp::eval((x - 3)) -> 8
ConstantExp::eval(5) -> 5
CompoundExp::eval(((x - 3) * 5)) -> 40
ConstantExp::eval(2) -> 2
CompoundExp::eval((2 + ((x - 3) * 5))) -> 42