Graph Algorithms

Eric Roberts
CS 106B
February 25, 2015

Outline

1. A review of the `graphtypes.h` and `graph.h` interfaces
2. Depth-first and breadth-first search
3. Dijkstra’s shortest-path algorithm
4. Kruskal’s minimum-spanning-tree algorithm

The Node and Arc Structures

```c
struct Node; /* Forward references to these two types so */
struct Arc; /* that the C++ compiler can recognize them. */

/* Type: Node */
/* ----------- */
/* This type represents an individual node and consists of the */
/* name of the node and the set of arcs from this node. */
struct Node {
    string name;
    Set<Arc *> arcs;
};

/* Type: Arc */
/* ---------- */
/* This type represents an individual arc and consists of pointers */
/* to the endpoints, along with the cost of traversing the arc. */
struct Arc {
    Node *start;
    Node *finish;
    double cost;
};
```

Entries in the `graph.h` Interface

```c
// Template 
// template<typename NodeType,typename ArcType>
// class Graph {
// public:
//     Graph();
//     ~Graph();
//     void clear();
//     NodeType *addNode(string name);
//     NodeType *addNode(NodeType *node);
//     ArcType *addArc(string s1, string s2);
//     ArcType *addArc(NodeType *n1, NodeType *n2);
//     ArcType *addArc(ArcType *arc);
//     bool isConnected(NodeType *n1, NodeType *n2);
//     bool isConnected(string s1, string s2);
//     NodeType *getNode(string name);
//     Set<NodeType *> & getNodeSet();
//     Set<ArcType *> & getArcSet();
//     Set<ArcType *> & getArcSet(NodeType *node);
//};
```

Depth-First Search

- The traversal strategy of **depth-first search** (or DFS for short) recursively processes the graph, following each branch, visiting nodes as it goes, until every node is visited.
- The depth-first search algorithm requires some structure to keep track of nodes that have already been visited. Common strategies are to include a **visited** flag in each node or to pass a set of visited nodes, as shown in the following code:

```c
void depthFirstSearch(Node *start) {
    Node *n;
    while(n = visited(n), !visited(n)) {
        if (visited(n)) return;
        visited(n);
        for (Arc *a : n->arcs) {
            if (visited(a->finish)) continue;
            visited(a->finish);
        }
    }
}
```

Breadth-First Search

- The traversal strategy of **breadth-first search** (which you used on Assignment #2) proceeds outward from the starting node, visiting the start node, then all nodes one hop away, and so on.
- For example, consider the graph:

```
 n1  n2  n3  n4  n5  n6  n7
```
- Breadth-first search begins at the start node (n1), then does the one-hops (n2 and n6), then the two hops (n3, n5, and n7) and finally the three hops (n4).
Exercise: Depth-First Search
Construct a depth-first search starting from Hobbiton (HOB):

Exercise: Breadth-First Search
Construct a breadth-first search starting from Isengard (ISE):

Dijkstra’s Algorithm
• One of the most useful algorithms for computing the shortest paths in a graph was developed by Edsger W. Dijkstra in 1959.
• The strategy is similar to the breadth-first search algorithm you used to implement the word-ladder program in Assignment #2. The major difference are:
 – The queue used to hold the paths delivers items in increasing order of total cost rather than in the traditional first-in/first-out order. Such queues are called priority queues.
 – The algorithm keeps track of all nodes to which the total distance has already been fixed. Distances are fixed whenever you dequeue a path from the priority queue.

Shortest Path
Exercise: Dijkstra’s Algorithm
Find the shortest path from Hobbiton (HOB) to Lorien (LOR):

Kruskal’s Algorithm
• In many cases, finding the shortest path is not as important as minimizing the cost of a network as a whole. A set of arcs that connects every node in a graph at the smallest possible cost is called a minimum spanning tree.
• The following algorithm for finding a minimum spanning tree was developed by Joseph Kruskal in 1956:
 – Start with a new empty graph with the same nodes as the original one but an empty set of arcs.
 – Sort all the arcs in the graph in order of increasing cost.
 – Go through the arcs in order and add each one to the new graph if the endpoints of that arc are not already connected by a path.
• This process can be made more efficient by maintaining sets of nodes in the new graph, as described on the next slide.

Combining Sets in Kruskal’s Algorithm
• Implementing Kruskal’s algorithm requires you need to build a new graph containing the spanning tree. As you do, you will generate sets of disconnected trees, which are called forests.
• At the beginning of the process, every node is the graph is in a set all by itself. After that, you combine nodes together by choosing an arc and then taking one of the following actions:
 1. The nodes at the endpoints of the arc are in different sets. In this case, you include the edge in the spanning tree and combine the sets together.
 2. The endpoints are in the same set. In this case, there is already a path between these two nodes, which means that you don’t need this arc.

Exercise: Minimum Spanning Tree
Apply Kruskal’s algorithm to find a minimum spanning tree:

An Application of Kruskal’s Algorithm
• Suppose that you have a graph that looks like this:

• What would happen if you applied Kruskal’s algorithm for finding a minimum spanning tree, assuming that you choose the arcs in a random order?

The MazeMaker Application