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Abstract

We propose a novel probabilistic framework for learning
visual models of 3D object categories by combining appear-
ance information and geometric constraints. Objects are
represented as a coherent ensemble of parts that are con-
sistent under 3D viewpoint transformations. Each part is
a collection of salient image features. A generative frame-
work is used for learning a model that captures the relative
position of parts within each of the discretized viewpoints.
Contrary to most of the existing mixture of viewpoints mod-
els, our model establishes explicit correspondences of parts
across different viewpoints of the object class. Given a new
image, detection and classi�cation are achieved by deter-
mining the position and viewpoint of the model that maxi-
mize recognition scores of the candidate objects. Our ap-
proach is among the �rst to propose a generative proba-
bilistic framework for 3D object categorization. We test our
algorithm on the detection task and the viewpoint classi�-
cation task by using “car” category from both the Savarese
et al. 2007 and PASCAL VOC 2006 datasets. We show
promising results in both the detection and viewpoint clas-
si�cation tasks on these two challenging datasets.

1. Introduction
Imagine a busy street in downtown Rome or Beijing.

There might be cars coming from all possible directions,
pedestrians walking on the sidewalk, or scooters crossing
the street. The ability to interpret the scene, recognize the
objects within, estimate their locations and poses is crucial
if one wants to avoid obstacles, interact with other peo-
ple, and �nd a target location. However, what appears to
us as natural may become tremendously dif�cult for an
arti�cial vision system. How do we handle occlusions?
How do we deal with intraclass and pose variability of ob-
jects? Most of the current researches in object categoriza-
tion [7, 5, 9, 16, 1, 31] have focused on modeling object
intraclass variability in single views (within a small range
of planar rotations) or as a mixture of single view mod-

*indicates equal contributions

els [27, 33]. Very few methods have leveraged on the in-
trinsic geometric aspects of object categories.

In this paper, we introduce a generative probabilistic
framework for learning visual models of 3D object cate-
gories. Our approach is inspired by a number of recent
work for representing 3D object categories where appear-
ance information and geometric constraints are combined
(Sec.2). We represent an object as a coherent ensemble
of parts linked across different viewpoints (Sec.3). Each
part is represented by a distribution of characteristic ap-
pearance elements (codewords). A generative model is used
for learning the relative position of parts within each view-
point, as well as corresponding part locations across view-
points (Sec.4). Epipolar constraints are applied to ensure
that the con�guration of each part is consistent under view-
point transformations. This is one of the �rstgenerative
probabilistic 3D object models that incorporates such geo-
metric constraints in a principled way. Unlike other meth-
ods that focus on discriminative recognition of characteris-
tic patches, our model is able to generate a coherent distri-
bution of parts that are representative of the object class and
are consistent under viewpoint transformation (see Fig.1).
We have used this model to predict whether an object class
is present in the image or not, estimate the location of the
object as well as determine its viewpoint (Sec.5). Our ex-
periments show superior detection and viewpoint classi�ca-
tion results on the 3D Objects dataset [25], and comparable
results on PASCAL VOC 2006 datasets [6].

2. Previous Work
Researchers have done extensive work in single object

recognition from multiple poses. Notably, [3, 32, 8, 24]
have proposed methods for identifying and recognizing sin-
gle objects such as a cereal box or a Teddy bear, under arbi-
trary viewing conditions. These methods are successful due
to their reliance on the identi�cation of strong geometrical
constraints and highly discriminative object features. How-
ever, such constraints are not adequate in object categoriza-
tion problems in which shape and appearance variability of
each object class must be accounted for. Similar limitations



Figure 1.Viewpoint images generated from our learned 3D object modelfor the car category. Each image shows a mixture of randomly sampled parts as
well as their geometric con�gurations from the learned model, super-imposed on an image of a car in this viewpoint. The fully trained car category model
consists of 18 parts across all 32 discretized viewpoints onthe full viewing sphere of the object class. Each part is represented by a color coded bounding
box. Contrary to most of the mixture of viewpoints object models, the learned parts in our model are maintained across different viewpoints. This �gure is
best viewed in color under PDF magni�cation.

exist for representations based on aspect graphs [12].
Recently, a number of methods have brought new ideas

into the problem of representing object categories from
multiple views. Thomas et al. [30] have explored the
idea of linking features across multiple views. Kushal et
al. [14] propose to connect groups of features across views
which retain pairwise local geometrical transformations in
an MRF framework. Other methods [11, 34] propose to
represent the object category by using a rough 3D model,
on top of which the typical distribution of appearance el-
ement is learned. These methods have the advantage of
yielding a compact view-point invariant representation of
the object category, as opposed to [30, 14] but fail to ac-
commodate intra-class 3D shape variability. Except for [4],
none of the above models have the capability of generat-
ing spatial and appearance information of the object cate-
gory under arbitrary viewing conditions. The framework
presented in [25, 26] represents an object category as a col-
lection of view-invariant regions linked by transformations
that capture the relative change of pose among parts. The
model has the ability to generate unseen views, but achieves
limited accuracy in classi�cation due to the lack of an ex-
plicit background model.

Our method tries to overcome some of the limitations of
previous works. Unlike [30], but similar to [14, 25, 26]
our model parts are linked across views under af�ne trans-
formations. As opposed to [11, 34], we generalize on both
appearance and geometry. Unlike [30, 25, 26], our method
offers a principled way for learning a rigorous generative
model for 3D objects1.

3. Model Representation
Our proposed model learns a coherent part-based object

representation across instances and viewpoints of an object
class. In addition to being able to discover object parts that

1[14] is the only other reported 3D object class model that is probabilis-
tic in nature. The generative representation of our model differs from their
discriminative framework.

appear consistently across object instances, it can simul-
taneously establish part-level correspondences by exploit-
ing the underlying geometric structure across nearby view-
points (see Fig1).

3.1. The Generative Model
A generative graphical model (Fig.2 top left panel) illus-

trates the backbone of the model structure. We �rst intro-
duce the main representation of this model. We then de-
scribe in details on how epipolar geometry is introduced to
regularize the coherent representation of object parts across
different viewpoints. The bottom panel of Fig.2summarizes
the important variables in the model.

Imagine a generative process for sampling an object im-
age given a learned 3D model representation. We start with
sampling a particular viewpointv out of K possible 3D
views of this object. Givenv, we then sample an object part
type assignmentl for each image patch. For a robust 3D
representation of an object class, it is important to point out
that different viewpoints would render very different part
distributions (e.g. wheel parts are more likely to be ob-
served in a sideview of a car than a frontal view of a car).
Given a part type assignmentl for this patch, we sample
the image patch based on the appearance (y) distribution as
well as position (x) distribution.

We now introduce the generative process in a more math-
ematically rigorous way. In order to simplify the model de-
scription, we �rst assume that the different viewpoints of an
object class are af�ne aligned. In other words, viewpoints,
scales and orientations are �rst assumed to be matched. We
will relax this assumption once the generative model is de-
scribed. The overall model structure is a Dirichlet Process
(DP) Gaussian mixture. The choice of using DP is particu-
larly important to accommodate a variable number of object
part types per viewpoint. We start with an imagei .

1. Generate viewpointvi

� Draw viewpointvi � Uniform(� ). For a total ofK
viewpoints,� = 1 =K .
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position:x n = 1 : : : N i x 2 R2 x � N (� ) � � NW (� ) � = f �; m; W; � g
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� t � Beta (' )  = f  kt ; k = 1 : : : K; t = 1 : : : T g
st = ut

Q t � 1
j =1 (1 � u j )

viewpoint: v 1 v = 1 : : : K v � Mult (� ) N/A N/A

Figure 2. Top left: A graphical representation of our model. Nodes represent random variables, edges denote dependencies, and plates denote replicated
structure. Note that visual wordy, feature positionx, and viewpointv are observed during learning. The constraints described inSec.3.2are not captured
by the graphical model.Top right: Generation process of two particular viewpoints of a car.v is the viewpoint index of the object. Given a pair of images
from nearby viewpoints, part types assignmentl (color coded boxes) are sampled from the viewpoint speci�c spatial con�guration and enforced to satisfy
the part correspondences constraints (dashed arrows). Feature (colored crosses) positions and codewords are sampledgiven each partl and viewpointv.
Bottom: Summary of variables and their related parameters.

2. For each of then = 1 ; :::; N i feature patches of the
image, generate part type assignmentln

� Draw part type assignmentln � Mult(sk ), where
sk = f skt jt = 1 : : : 1g , andskt is computed from
skt = ukt

Q t � 1
m =1 (1 � ukm ), the expected part pro-

portion of part typet in viewpoint k. ukt is a global
parameter indicating the number of parts with typet
in viewpoint k, whereukt � Beta(' ). Note that the
Dirichlet Process model allows us to consider an in�-
nite number of possible part types per viewpoint.

3. For each of then = f 1; :::; N i g feature patches of
the image, generate the patch appearance (yn ) and
patch location (xn )

� Given viewpointvi and part type assignmentln , sam-
ple the patch locationxn � N (� kt ), where N (�)
indicates a Gaussian distribution.� kt is the global
parameter of the Gaussian distribution for part type
t and viewpointk. � kt is governed by a Gaussian-
Wishart distributionNW (� t ), the conjugate prior of
a Gaussian distribution, where� t consists of hyper-
parametersf � 0 ; m0 ; W0 ; � 0g.

� Given viewpointvi and part type assignmentln , sam-
ple the patch appearanceyn � Mult(� kt ), where
Mult(�) indicates a Multinomial distribution.� kt is
the global parameter of the Multinomial distribution
for part typet and viewpointk. � kt is governed by
a Dirichlet distributionDir (� t ), the conjugate prior
of a Multinomial distribution, where� t is the hyper-
parameter.

Putting all the observable variables (feature patchesX and
Y, viewpointsV ) and latent variables (part type assign-

mentsL ) together with their corresponding parameters, we
can write down the joint probability of this model.

P (X; Y; L; V; u ; � ; � ) =
IY

i

f P (vi j � )
N iY

n

P (l in jsv i )

�P (yin j � f v i ;l in g )P (x in j � f v i ;l in g )g

�
KY

k

1Y

t

f P (ukt j ' )P (� kt j � t )P (� kt j � t )g (1)

whereI is the total number of images, andN i is the number
of feature patches in imagei .

Af�ne transformation So far we have introduced the
model by assuming complete af�ne alignment of view-
points, scales and orientations. An important contribution
of our model is the ability to automatically �nd an af�ne
transformation across different viewpoints of object images
such that object recognition can be accomplished under ar-
bitrary view conditions. This is achieved by introducing the
af�ne transformation variableA for each image, as shown
in the top left panel of Fig.2. The transformationA op-
erates on the patch locationx to obtain the optimal patch
alignment for the model corresponding to viewpointv. The
modi�ed patch location probability becomes:

P(xj�; A ) = N (x; Â� + b;Â � ÂT ) (2)

whereA =
h
Â b

i
, � = f �; � g, � and� are the means and

the covariance matrices of the Gaussian distribution of the
reference object coordinate respectively. Sudderth et al [29]
have proposed a DP mixture model for 2D object classes by
allowing a translational transformation for different patches
of objects. But their model does not capture the 3D structure
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Figure 3.Example of learned parts from different viewpoints of the car model. Note that all parts are learned automatically. The �rst image column shows
image regions of the rear light part of a car model sampled from different viewpoints. The corresponding patch appearance distributions of the rear light
samples are shown to the left (only the top100 most likely codewords are displayed out of a total of1000 codewords.). We observe nearby viewpoints give
rise to more similar appearance distributions. The second and third image columns show samples of the side window part and rear wheel part under different
viewpoints. The fourth image column shows samples of the license plate part under different viewpoints. The corresponding patch appearance distribution
of license plates are displayed to the right of this column.

of an object class, nor does it encode part correspondences
across viewpoints.

3.2. Constraining Generative Model Across View
points

Up to this point, for each viewpoint, object class are only
governed by the hyper-parameters� t , � t , and' , where� t

and � t control the appearance and position variability of
part typet, and' regulates the part type proportions in dif-
ferent viewpoints. When learning and �tting 3D object class
models, the number of possible transformations allowed for
the object part locations and appearances can be orders of
magnitude larger than those observed in 2D image based
object models. This poses a potentially detrimental prob-
lem for a model regulated only by these hyper-parameters.
In order to reduce the complexity of the parameter space, we
propose to take advantage of the geometrical relationships
regulating the appearance of 3D objects observed from mul-
tiple vantage points. The challenge here is to strike a good
balance between enforcing such relationships and maintain-
ing the ability to generalize well across instances within the
same object class. We propose to enforce the following con-
straints:

� Part appearance similarity constraints. It is reason-
able to assume that parts in nearby viewpoints share
similar appearance. For example, the front wheels in
the �rst row of images in Fig.1 are likely to have sim-
ilar distributions of visual words. When building the
model, we enforce corresponding parts to look simi-
lar by penalizing the sum of the square errors of the
difference of the visual word distributions in nearby
viewpoints. A similar approach is proposed by [20].
Fig. 3 illustrates the appearance similarities of corre-
sponding parts in different views.

� Part con�guration constraints via epipolar geome-
try. The 2D con�guration of object parts in the im-
age plane changes as the viewpoint varies. We can
use epipolar geometry [10] to constraint the 2D part
con�guration in images corresponding to nearby view-
points. More speci�cally, given images of a particu-
lar object instance taken from nearby viewpoints, we
obtain epipolar constraints via feature matching2. We
then apply these constraints on the locations of the
corresponding parts across nearby viewpoints during
model learning (Fig4). Each constraint is equivalent
to a linear constraint in part locations (see Sec.4.1 for
details).

Such constraints enable our model to capture the underlying
structure of a 3D object category across viewpoints. While
simple in nature, these constraints play an important role in
model learning, allowing much more accurate estimations
of number of parts, their locations and alignment. In the
next section, we describe how to incorporate these implicit
constraints during model learning.

4. Model Learning
Given the model representation in Fig.2, the goal of

learning3 is to infer the latent variables and estimate the hid-
den parameters by maximizing the log marginal probability

ln P (X; Y ) = ln
X

V;L

Z
P (X; Y; L; V; u ; � ; � ) du d� d� : (3)

In our current setting, we make the following assumptions
during the learning process: i) object bounding boxes are
provided; and ii) viewpoint labels are given to all images.

2In our current learning process, only one object instance (and its mul-
tiple examples across different viewpoints) is used for establishing this
constraint. About90% of the image pairs are automatically matched cor-
respondences. But about a dozen missed pairs are hand pruned.

3Due to space limitation, more detailed derivations can be found in an
accompanying technical report on the authors' website.



4.1. Updates of the Model Parameters
Computing the exact marginal distribution is intractable.

We employ variational EM to learn the model in the
stick-breaking representation [28]. Using the variational
distribution, we maximizeL (X; Y ), the lower bound of
ln P(X; Y ), and �t the variational parameters by coordi-
nate ascent. The mean-�eld variational distribution equa-
tions are

q(V; L; u ; � ; � ) = q(V; L )q(u ; � ; � ) (4)

q(V; L ) =
IY

i =1

q(vi j � i )
N iY

n =1

q(l in j � inv i ) (5)

q(u ; � ; � ) =
K;TY

k =1 ;t =1

q(ukt j  kt )q(� kt j � kt )q(� kt j � kt ) (6)

where� i is the variational multinomial parameter over the
K viewpoints,� inv i is the variational multinomial parame-
ter over the feature part type assignment, kt , � kt , and� kt

are the variational beta, the variational Dirichlet, the varia-
tional Gaussian-Wishart parameters of part typet in view-
pointk, and �nally T is the truncation number of part types
in our model [2].

In the following, we summarize the variational update
equations for each of the model parameters4. Particularly,
we show how the 3D structure constraints introduced in
Sec.3.2are applied to guide the variational distribution to-
wards convergence to the true posterior.

Spatial Parameters Updates Feature patch locationx is
governed by the Gaussian distribution of parameter� kt ,
whose variational parameters are consisted of� kt , mkt ,
Wkt and � kt . Here, mkt encodes the expected mean of
part centers, and the other parameters model the degree of
intra-class variation of the part center locations. The ex-
pected mean of part centersmkt and mk 0t across nearby
viewpoints are constrained by the epipolar geometry. In
our model, we capture the epipolar geometry between im-
age in viewpointk and image in viewpointk0 by using the
af�ne fundamental matrixFkk 0:[mkt ; 1]T Fkk 0[mk 0t ; 1] =
0, whereFkk 0 is estimated from the epipolar geometry be-
tween viewpointk andk0 using the reference instance5.

The variational parameters are then updated as follow:

� kt = � 0 + Nkt ; � kt = � 0 + Nkt (7)

W � 1
kt = W � 1

0 + Nkt � Skt + Nkt (xkt � m0)

+ � 0(mkt � m0)(mkt � m0)T (8)

where the suf�cient statistics of the spatial terms are:

Nkt =
X

i;n

� ik � inkt ; xkt = 1
N kt

P
i;n � ik � inkt x in (9)

4All hyper-parametersf �; �; �; ' g, exceptA , are �xed.
5We use a sinlge object instance with all viewpoints capturedas the

reference instance.

Skt =
1

Nkt

X

i;n

� ik � inkt (x in � xkt )( x in � xkt )T (10)

There is no close form update rule formkt andA i due to
the geometric constraints. Hence, we formulate the update
problem into a convex optimization problem with spare lin-
ear equality constraints, detailed in the technical report.

Appearance Parameters Updates As described in
Sec.3.2, our model enforces a feature patch appearance
similarity in nearby viewpointsk andk0. We de�ne a regu-
larized marginal likelihood as:

O(X; Y; G ) = (1 � � )L (X; Y ) � �R (G) (11)

R(X; Y; G ) =
1
2

X

t

X

( k;k 0) 2 E

WX

w

(� w
kt � � w

k 0t )
2 (12)

whereW is the total number of visual codewords,G is the
graph structure over the viewing sphere,E is the set of the
edges de�ned inG6, and� is the parameter that determines
the signi�cance of the regularization, whose value can range
from 0 to 1. The variational parameter updates then become

N ktw =
IX

i

N iX

n 2f y in = w g

� ik � inkt (13)

�̂ w
kt = � w

t + N ktw ; e� w
t =

1

K

KX

k

( �̂ kt ) (14)

where�̂ kt is the updated� kt when� is set to 0,e� is � kt when
� is set to 1, andNktw is the suf�cient statistics of the multi-
nomial distribution. We further de�ne� kt = (1 � � )e� + � �̂ .
Similar to [20], we update� in a greedy approach. Starting
from � = 0 , we use gradient descent algorithm to search
for � such thatO(X; Y; G) decreases.

Part Type Proportion Parameters Update The update
equations for the variational parameters of the part type are
straightforward.

 kt; 1 = 1 + Nkt ;  kt; 2 = ' +
P T

f = t +1 Nkf (15)

Part proportions in different viewpoints differ as the object
turns in the 3D space. It is therefore important for our model
to adopt the reordering approach [13] to adjust the propor-
tion of parts.

Latent Variables Updates Since viewpointv is provided
in training, � is �xed during learning. � has a close form
update rule. Please refer to the technical report for more
details.

6In this paper, G is a graph of eight nodes, indicating eight discretized
viewpoints. Each viewpoint, or node, has four neighboring viewpoints,
hence four Es.



4.2. Implementation Details
We have described a principled framework for learning

each parameter of the generative model through variational
inference. In principle, all training images can be applied
simultaneously to jointly update these parameters. This re-
quires a joint estimation of af�ne transformations in every
EM iteration. The update is equivalent to solving a semidef-
inite programing problem whose complexity is quadratic to
the number of images. We therefore adopt an incremental
learning framework to curtail the amount of computation.

Neal and Hinton [22] provide a theoretical ground for in-
crementally learning of mixture models via suf�cient statis-
tics updates. At every iteration of the incremental learning,
we �x the suf�cient statistics of the parametersNk t, xkt ,
Skt , andNktw associated with the previously learned im-
ages in all later updates.

Initialization We initialize our model using one single
object instance (reference instance) across all viewpoints.
This can be done by applying an existing feature matching
algorithm in all pairs of the viewpoint images [35]. We then
apply variational EM learning to all the reference instance
training images.

Accurately learning part correspondences across view-
points is critical for the rest of the learning. To demonstrate
the importance of the additional constraints introduced in
Sec.3.2, we compare the initialized model with two sim-
pli�ed models – a basic DP Gaussian mixture model, and
a DP Gaussian mixture model with epipolar constraints but
no appearance constraints. Fig.5 demonstrates that the full
model shows the best part correspondence compared to the
two simpler versions. But epipolar constraint alone can al-
ready boost the correspondences signi�cantly. Fig.6 shows
examples of the resulting average images of the aligned
parts using the full model.

Incremental Update Given a new training image, we es-
timate its af�ne transformation with respect to the reference
instance in the corresponding viewpoint. The estimation
is done by solving a semi-de�nite programming problem.
Meanwhile, the rest of the model will be updated by adding
the suf�cient statistics of the new image. In this scheme, the
model estimates the af�ne transformation for one image at
a time.

Part Expansion Learned parts of an object class do not
overlap with each other. But given the learned geometric
con�gurations among parts, we can now further generate
additional object parts by linearly interpolating and extrap-
olating between nearby parts. Empirical experiments con-
�rm such expansion is helpful in object recognition tasks
when objects are embedded in cluttered background.

Figure 4. Image pairs show the candidate part correspondences (green
boxes) and the correct one (red box) in the left �gure across nearby view-
points given a part (red box) in the right �gure. In theleft image pair, our
full model enforces the candidate part correspondences in the left �gure
to belong to the epipolar line (the yellow line). In theright image pair, a
model without the epipolar constraints yield arbitrary part correspondence
locations in the left �gure. This, in turn, increases the likelihood of obtain-
ing erroneous part detections and correspondences, such asthe back wheel
of the car.

Figure 6. Average images of aligned parts across 15 instances.

5. Object Classi�cation, Detection and View-
point Recognition

Given an unknown image, we can use the learned model
to determine whether an instance of the object class is
present, and to estimate the corresponding viewpoint. In-
spired by the implicit shape model for object recognition
[16], we accomplish the task in the following steps:

� Extract features and propose candidate partsWe
use Hessian-Af�ne feature detector [21] , Maximally
stable extremal regions (MSER) [19] detector, and
canny edge detector [23] to detect locally adapted el-
liptical regions. A feature codebook of size 1000 is ob-
tained by vector quantizing the SIFT descriptors com-
puted over these detected regions [18].

Given a test image, we �rst detect a number of candi-
date parts for each of the learned parts in a particular
viewpoint and scale. This is done by running a scan-
ning window search method. The appearance similar-
ities of the candidate parts are evaluated against the
learned part model by using spatial pyramid match-
ing [15] as the similarity score.

� Object localization and viewpoint classi�cation by
mean-shift voting Our object detection algorithm is
similar to [16]. Given the spatial extent and the ap-
pearance similarity scores of the candidate parts, we
look up the relative position of the object center to the
object part in the learned spatial models. Each of the
candidate part proposes an object center in the image.
A mean-shift procedure is then applied to locate local
maxima of the possible object centers based on each
viewpoint model of the object class. Using this ap-
proach, we could handle multiple instance detection.
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Figure 7.Detection and viewpoint classi�cation using the Savarese et al.
dataset [25]. Left: confusion matrix of the viewpoint classi�cation.Cen-
ter: diagonal element of our average confusion matrix (red) compared
with the one from [25] (green). Right: binary object classi�cation and
detection result (ROC) (red) compared with the one from [25] (green).

We �rst test our model on the car dataset of the multi-
view object dataset proposed by [25]. We assess the per-
formances of our algorithm to localize cars and classify the
viewpoints of the car. The car dataset comprises 320 im-
ages from up to 10 object instances. Each instance com-
prises 8 angles, 2 heights and 2 distances, a total of 32
viewpoints. We train our 3D object class model by using
160 images from 5 object instances with known viewpoint
labels. The remaining 5 object instances are used as testing
images. Binary classi�cation result for car category is re-
ported in Fig7. Our model shows a superior performance
over [25]. We also show consistently higher classi�cation
results across 8 viewpoints7 compared to [25] (results in Fig
7, and examples in Fig.9 Top row).

We also conduct a car detection and viewpoint classi�-
cation experiment by using the more challenging PASCAL
VOC 2006 car dataset. We use the training data provided
by PASCAL and the multi-view object datasets. The object
class model is trained by assuming 8 different viewpoints
for cars. Fig.8(a) shows the car detection results of our
model compared with the other state-of-the-art algorithms.
Our algorithm performs on par with most of these discrim-
inative methods. In addition, we show for the �rst time
a quantitative viewpoint classi�cation results on the PAS-
CAL VOC 2006 car dataset. We test the performance of
the model in the PASCAL test images by collapsing the 8

7This is done on correctly detected cars.
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Figure 8.Experimental results of PASCAL VOC 2006 data.(a) Detec-
tion results measured in precision-recall curve of our model (red) com-
pared to [17] and the detection result of the PASCAL VOC 2006 chal-
lenge [6]-INRIA Douze , [6]-INRIA Laptev, [6]-TKK, [ 6]-Cambridge,
and [6]-ENSMP. Average precision (AP) scores are shown in the legends.
(b) Confusion table of the four viewpoint classi�cation task. The average
performance is62% across the diagonal of the confusion.

viewpoints into 4 views8. Fig.8(b) shows the confusion ta-
ble result of the 4-way viewpoint classi�cation task. Note
that there is a relatively large confusion between the front
and back view points. Besides the large visual similarity
between these two views, we attribute the low discrimi-
native ability of our model to the unbalanced training set
(PASCAL VOC 2006 cars), which contains a much larger
number of back-view car instances. Parts that are reliably
detected provide strong evidence for object detection and
viewpoint classi�cation. For example, our model can ro-
bustly detect car wheels, which signi�cantly contributes to
the detection of left and right views. The bottom 2 rows of
Fig.9 presents some sample recognition results.

6. Conclusions
We have proposed a rigorous generative model for learn-

ing the 3D structure of object classes. The model cap-
tures the geometric con�gurations of different parts of an
object class linked across different viewpoints. Epipolar
constraints are employed to ensure part consistencies when
training object parts. We test the model in a car detection
and car viewpoint classi�cation experiment. We are espe-

8PASCAL data provides viewpoint labeling of only 4 views: front,
right, left, back.
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Figure 9.Sample viewpoint classi�cation results. Proposed object detections are indicated by green bounding boxes. Text labels show the predicted
viewpoints. Smaller rectangles illustrate the supportingparts learned before part expansion. Thetop row shows results from the [25] dataset; and the
bottom 2 rows show results from the PASCAL VOC 2006 dataset. The last column shows examples of missed or incorrect detections.

cially encouraged to see the model's ability to perform satis-
fying viewpoint classi�cation once the objects are detected.
In the future, we plan to explore further the robustness and
discriminability of the model.
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