Redundancy

Equations of Motion
Joint Space
\[A(q)\ddot{q} + b(q, \dot{q}) + g(q) = \Gamma \]
Operational Space
\[\Lambda(x)\ddot{x} + \mu(x, \dot{x}) + p(x) = F \]
Relationships
\[\Gamma = J^T F \]
\[(A\ddot{q} + b + g) = J^T (\Lambda\ddot{x} + \mu + p) \]
\[(A\ddot{q} + b) = J^T (\Lambda\ddot{x} + \mu) \]
Inertial forces

Non Redundancy
\[A\ddot{q} + b + g = \Gamma \] (joint dynamics)
\[J^{-T} \]
\[J^T \]
\[\Lambda\ddot{x} + \mu + p = F \] (Task dynamics)
Redundancy

\[A \ddot{q} + b + g = \Gamma \]
(joint dynamics)

\[J^T \]

projection

\[\Lambda \ddot{x} + \mu + p = F \]
(Task dynamics)

where

\[\bar{J} = A^{-1}J^T \Lambda \quad \text{and} \quad \Lambda^{-1} = J A^{-1}J^T \]

\(\bar{J} \): dynamically consistent generalized inverse

Redundancy

Joint/Task Displacements

\[\delta x = J \delta q \]

\[\delta q = J^* \delta x + \left[I - J^* J \right] \delta q_0 \]

Joint/Task Forces

\(\Gamma = J^T F \)

\(F = ? \)

However

different selections of \(J^* \) \((J = J J^* J) \)

would lead
to different solutions

Redundancy

\[\delta q = J^* \delta x + \left[I - J^* J \right] \delta q_0 \]

\(\Gamma = J^T F \)

Given \(F \), \(\Gamma \) is \((J^T F) \)

Given \(\Gamma \), what is \(F \)?

\(F = J^* \Gamma \) ?

Gravity Example

\[p = ? \]

\[p = J^* g \]

\[J^+ = J^T \left(J J^T \right)^{-1} \]
Gravity Example

\[p = ? \]
\[p = J^T g \]
\[J = A^{-1} J^T \Lambda \]

Redundancy

\[\delta q = J^w x + \left(I - J^w J \right) \delta q_0 \]
\[\delta w = \Gamma^T \delta q \]
\[\delta w = \delta w_1 + \delta w_2 \]
\[\left(J^w \Gamma \right)^T \delta x \]
\[\left(I - J^w J \right)^T \Gamma \delta q_0 \]
\[\Gamma = J^T \left(J^w \Gamma \right) + \left(I - J^T J^w \right) \Gamma \]

Decomposition

\[\Gamma = J^T \left[J^w \Gamma \right] + \left[I - J^T J^w \right] \Gamma \]

Virtual Displacement

\[\delta q = J^w x + \left(I - J^w J \right) \delta q_0 \]

Virtual Work

\[\delta w = \Gamma^T \delta q \]

Dynamic Constraints

\[A(q) \ddot{q} + b(q, \dot{q}) + g(q) = \Gamma \]
\[\Gamma = J^T F + \left[I - J^T J^w \right] \Gamma_0 \]
\[A \ddot{q} + (b + g) = J^T F + \left[I - J^T J^w \right] \Gamma_0 \]

\[\ddot{q} + A^{-1} \left(b + g \right) = A^{-1} J^T F + A^{-1} \left[I - J^T J^w \right] \Gamma_0 \]
\[J \dddot{q} + JA^{-1} \left(b + g \right) = JA^{-1} J^T F + JA^{-1} \left[I - J^T J^w \right] \Gamma_0 \]
\[J \dddot{q} = \dddot{x} - J \dddot{q} \]
\[\dddot{x} + \left[JA^{-1} \left(b + g \right) - J \dddot{q} \right] = \left(JA^{-1} J^T \right) F + JA^{-1} \left[I - J^T J^w \right] \Gamma_0 \]
\[\Lambda^{-1} \dddot{x}_n = 0 \]
Dynamic Consistency

\[\Gamma = J^T \Gamma + \left(I - J^T J \right) \Gamma_0 \]

Dynamic Constraint

\[JA^{-1} \left(I - J^T J \right) \Gamma_0 = 0 \]

\[\Lambda^{-1} \left(JA^{-1} J^T \right) -1 JA^{-1} = J^{\#} \]

\[\tilde{J}(q) \] is the Dynamically Consistent Generalized Inverse

Theorem (Consistency)

\[\tilde{J} \] is unique and \[\tilde{J} = A^{-1} J^T \Lambda \]

Non-redundant

\[\tilde{J} = J^{-1} \]

Velocity Force Duality

\[\delta q = J^{-1} \delta x \]

Non Red.

\[\delta q = \tilde{J} \delta x + \left[I - \tilde{J} J \right] \delta q_0 \]

\[\Gamma = J^T \Gamma \]

\[\Gamma = J^T F \]

\[\delta q = J^T F + \left[I - J^T J \right] \Gamma_0 \]

Task dynamics

\[\Lambda(q) \ddot{x} + \mu(q, \dot{q}) + p(q) = F \]

\[\Lambda = \left(JA^{-1} J^T \right)^{-1} \]

\[\mu(q, \dot{q}) = \tilde{J}^T b(q, \dot{q}) - \Lambda(q) \tilde{J}(q) \dot{q} \]

\[p(q) = \tilde{J}^T g(q) \]
Redundant Robot Control

Task Space: \(J^T \)
Null Space: \(N^T \) where \(N = I - JJ \)

Robot Control
\[
\Gamma = J^T F + N^T \Gamma_0
\]
\(\Gamma_1 \) \quad \(\Gamma_2 \)
dynamically decoupled

\(J^T J \): is a \(n \times n \) matrix of rank \(m_0 \)
it is Positive Semi-definite

The System is Stable, but not asymptotically stable
\[
\dot{q}^T D(q) \dot{q} = 0
\]

Stability
\[
\Gamma_{dis}^T \dot{q} \leq 0 \quad \text{for} \quad \dot{q} \neq 0
\]
\[
\Gamma_{dis} = -k_v J^T \dot{x} = -k_v J^T J \dot{q}
\]
\[
\dot{q}^T D(q) \dot{q} \geq 0 \quad ; \quad \dot{q} \neq 0
\]
\[
D(q) = k_v \left(J^T J \right)
\]

Asymptotic Stability
\[
\Gamma_{dis}^T \dot{q} < 0 \quad ; \quad \text{for} \quad \dot{q} \neq 0
\]
\[
\Gamma_{dis} = -k_v J^T J \dot{q} - k_v N^T \dot{q}
\]
\[
\Downarrow
\]
\[
D(q) = k_v \left(J^T J + N^T \right)
\]
Positive definite
\[
\dot{q}^T D(q) \dot{q} < 0 \quad \text{for} \quad \dot{q} \neq 0
\]
Kinematic Singularities

Joint Space Formulation
Find a pseudo-inverse J^+

Pseudo Inverse Solution

$$\Delta q_1 = \frac{l_1 + l_2}{l_2^2 (l_1 + l_2)^2} \delta y_1 \rightarrow \theta_2$$

Kinematic Singularities

The end-effector mobility locally decreases

Singularities
$S(q) = \det[J(q)] = S_1(q).S_2(q) \cdots S_n(q)$

Singular direction
$S_i = 0$ \hspace{0.5cm} Infinite effective mass
ζ_i \hspace{0.5cm} Infinite effective inertia

Singularity Neighborhood

$S(q) = S_1(q).S_2(q).S_3(q) \cdots S_n(q)$

Singularity S_i
$D_{S_i} = \{ q \mid |S_i(q)| \leq S_0 \}$

Singularity Neighborhood

$|S| \leq S_0$

Singularity Neighborhood

Approach

In D_{S_i}, the robot is treated as redundant w.r.t. motions in the subspace \perp to the singular direction

- Along Singular Directions:
 - Control in Null Space $\Gamma_{null-space}$

- In subspace \perp to singular direction
 - Control in sub-O-Space F_{sub-os}
Types of Singularities

Elbow Lock Wrist Lock Overhead Lock
Type 1 Type 2

Types of Singularities

Control Strategy
Type 1
Motion in Null Space
⇒ Motion along/about ζ_i
Control S_i

Type 2
Motion in Null Space
⇒ Only changes of ζ_i
Control ζ_i

Singularity Control

$$\Gamma = J_{\text{sub}}^T F_{\text{sub}} + N_{\text{sub}}^T \Gamma_s$$

where

$$N_{\text{sub}} = I - J_{\text{sub}} J_{\text{sub}}^T$$ and $$\Gamma_s = -\nabla V_i(S_i)$$

Moving to a singularity
Control $S_i(q)$ to reach $S_i = 0$

Moving out of a singularity
Control \dot{S}_i from zero to the desired Velocity at the singularity boundary