
Advanced Robotic Manipulation Handout

CS327A (Spring 2017)

Solution Set #2

Problem 1 - Redundant robot control

The goal of this problem is to familiarize you with the control of a robot that is redundant with
respect to the task it is required to perform.

(a) Weighted instantaneous inverse kinematic solutions

Consider the PP robot shown below.

The masses for link 1 and link 2 are m1 = 10 kg and m2 = 5 kg respectively. Consider the task of
moving along the X0 axis. Answer the following questions:

i. Is the robot redundant with respect to the task? How many degrees of freedom does the task
require? How many degrees of freedom does the robot have?

Solution: The task requires 1 degrees of freedom (DOF) but the robot has 2. So it is indeed
redundant with respect to the task.

ii. Find A, the generalized co-ordinates mass matrix of the robot.

Solution: To find the mass matrix of the robot, we look its total kinetic energy in terms of
joint velocities.

KE = KE1 +KE2 =
1

2
m1ḋ

2
1 +

1

2
m2(ḋ1 + ḋ2)

2

=
1

2

(
(m1 +m2)ḋ

2
1 + 2m2ḋ1ḋ2 +m2ḋ

2
2

)
=

1

2

[
ḋ1 ḋ2

] [m1 +m2 m2

m2 m2

] [
ḋ1
ḋ2

]



Thus, we have

A =

[
m1 +m2 m2

m2 m2

]
iii. Let xee be the displacement of the end-effector along the X0 axis. Find the task Jacobian J

such that

ẋee = Jq̇, q =

[
d1
d2

]
Solution:

xee = d1 + d2

So, we have
J =

[
1 1

]
iv. Find J+ and [I−J+J ]. Then express the family of "instantaneous inverse kinematic" solutions

in terms of δxee and δq0:
δq = J+δxee + [I − J+J ]δq0

Solution:

J+ = JT
(
JJT

)−1
=

1

2

[
1
1

]
I − J+J =

[
1 0
0 1

]
− 1

2

[
1 1
1 1

]
=

1

2

[
1 −1
−1 1

]
The family of instantaneous inverse kinematic solutions for this choice of right inverse of J is
given by

δq =
1

2

[
1
1

]
δxee +

1

2

[
1 −1
−1 1

]
δq0

v. Find J# and [I − J#J ] where

J# = W−1JT (JW−1JT )−1, W =

[
w1 0
0 w2

]
.

Then express the family of weighted "instantaneous inverse kinematic" solutions in terms of
δxee and δq0:

δq = J#δxee + [I − J#J ]δq0

Solution:

J# = W−1JT
(
JW−1JT

)−1
=

1

w1 + w2

[
w2

w1

]
I − J#J =

[
1 0
0 1

]
− 1

w1 + w2

[
w2 w2

w1 w1

]
=

1

w1 + w2

[
w1 −w2

−w1 w2

]
The family of instantaneous inverse kinematic solutions for this choice of right inverse of J is
given by

δq =
1

w1 + w2

[
w2

w1

]
δxee +

1

w1 + w2

[
w1 −w2

−w1 w2

]
δq0



vi. Given a particular δxee and δq0 = 0, qualitatively compare the solutions δq obtained with J+

and J# when the latter is calculated with W = A.

Solution: We first obtain the inertia weighted pseudo-inverse,

J̄ = A−1JT
(
JA−1JT

)−1
=

[
0
1

]
The instantaneous inverse kinematic solution for this choice of right inverse of J when δq0 = 0
is given by

δq =

[
0
1

]
δxee

Comparing this to the solution using pseudo-inverse,

δq =
1

2

[
1
1

]
δxee

we notice that the pseudo-inverse causes the motion to be equally distributed over the two joints
where as the A-weighted generalized inverse causes only the second joint to be moved. This has
to do with the fact that moving the end-effector requires motion δxee on the massm2 irrespective
of whether or not mass m1 is moved. More generally, using the A-weighted generalized inverse
distributes the required end-effector motion on to the joints such that lightest links are moved
the most.

(b) Puma end-effector position control

Now let us investigate the control of task-redundant robots through joint torques. The PUMA(560)
arm is a 6-DOF manipulator you are probably familiar with through CS223A and the lecture slides.
With respect to the 3-DOF positioning task at the end-effector, the robot is redundant.

i. After following the instructions to upgrade the dependencies above, compile and run the source
file hw2/p1-main.cpp. Note the difference between this and the robot behavior in homework 1.

$ cd bin
$ pushd ../build && cmake -DCMAKE_BUILD_TYPE=Release .. && make && popd
$ ./hw2-p1 1

The robot should be in free fall under gravity when you run the starter code. This is because
we are using the dynamics simulation framework for this homework, but no control torques are
applied by default.

Solution: The solution code for all three parts of this problem are available under cs327a/hw2_sol
in p1-main-sol.cpp. To compile and run it, from within the cs327a/bin folder, run

$ git stash
$ git pull --rebase
$ git stash pop
$ pushd ../build && cmake -DCMAKE_BUILD_TYPE=Release .. && make && popd
$ ./hw2-p1-sol 1



ii. Implement the following PD controller in the area marked as "FILL ME IN". This controller
is designed to hold the end effector tip position stationary while providing some joint damping
to stabilize the simulation. Note that we do not compensate for Coriolis or centrifugal forces
as in practice, they tend to destabilize the controller due to estimation errors.

Γ = JTv (Λv(−kpx(x− xd)− kvxẋ) + p) +A(−kvj q̇)

where Jv is the linear velocity Jacobian at the end-effector tip, x is the end-effector tip position
and xd is the end-effector tip desired position, all calculated with respect to the base frame. Use
xd = [−0.15 0.81 0.58]T, kpx = 50, kvx = 20, kvj = 20. These values are already set for
you in the variables ee_des_pos, kpx, kvx and kvj respectively in the starter code.

Set your joint control torques tau as per the above control law in case PART1 of the switch
block. Run your code with a "1" argument to the executable as shown below

$ pushd ../build && cmake -DCMAKE_BUILD_TYPE=Release .. && make && popd
$ ./hw2-p1 1

What happens if you remove the joint damping? That is, what is the difference in observed
behavior between the above controller and the one below?

Γ = JTv (Λv(−kpx(x− xd)− kvxẋ) + p)

Solution: Without joint space damping, the robot’s motions in the null-space are visibly
faster. As a result there might be some motion at the end-effector while there is null space
motion, primarily due to centrifugal/Coriolis forces. But the end-effector PD controller is able
to compensate for it to some extent.

iii. Now, let us try performing some null-space (or self-) motions. First, lets use the following
pseudo-inverse based null-space torque controller. We control only the second joint position
while damping the motion on other joints and compensating for gravity.

Γ = JTv (Λv(−kpx(x− xd)− kvxẋ) + p) + [I − JTv J+T
v ](A(−kpj(q − qd)− kvj q̇) + g)

where

qd =



q1
−π

8 + π
8 sin 2πt

10
q3
q4
q5
q6


and t is time in seconds. xd is the same as the previous part. Use kpj = 50 (available as variable
kpj).

Set your joint control torques tau as per the above control law in case PART2 of the switch
block. Run your code with a "2" argument to the executable as shown below

$ pushd ../build && cmake -DCMAKE_BUILD_TYPE=Release .. && make && popd
$ ./hw2-p1 2



Does the end effector position remain stationary?

Solution: No, the end effector does not remain stationary even if the end-effector gains are
tuned up. As the pseudo-inverse based null-space torque projection does not decouple the self-
motion forces from the end-effector acceleration, we see a lot of motion at the end-effector. The
joint space damping kvj can be increased to some extent to stabilize the system, but we will
still get poor performance in self-motion tracking.

iv. Finally, let us try to perform the same null-space motion, but with the dynamically consistent
generalized Jacobian inverse.

Γ = JTv (Λv(−kpx(x− xd)− kvxẋ) + p) + [I − JTv J̄Tv ](A(−kpj(q − qd)− kvj q̇) + g)

where xd and qd are the same as the previous parts.

Set your joint control torques tau as per the above control law in case PART3 of the switch
block. Run your code with a "3" argument to the executable as shown below

$ pushd ../build && cmake -DCMAKE_BUILD_TYPE=Release .. && make && popd
$ ./hw2-p1 3

Now, does the end effector position remain stationary? Briefly explain why the dynamically
consistent generalized inverse works but the pseudo-inverse does not.

Solution: Indeed, with the dynamically consistent generalized inverse, the correct null-space
torque projection matrix (I − JTv J̄Tv ) is obtained and the robot is able to perform the required
self-motion without disturbing the end-effector position. As a result, the torques applied by
the self-motion PD controller are projected first into a subspace of joint torques that do not
produce any acceleration of the end-effector. This is by design of the dynamically generalized
inverse, which is the only generalized inverse with this property.

Problem 2 - Operational space trajectory tracking

In this problem, you will implement a full trajectory tracking controller on the KUKA-IIWA sim-
ulation model. Unlike the position-based controller you had implemented in homework 1, you will
need to control the robot through joint torques this time around.

The desired end-effector trajectory is identical to the one you implemented in homework 1:

xd = 0

yd = 0.5 + 0.1 cos
2πt

5

zd = 0.65− 0.05 cos
4πt

5

where t is time in seconds. The desired orientation trajectory is represented in Euler parameters as



λd = (λ0,d, λ1,d, λ2,d, λ3,d) where

λ0,d =
1√
2

sin

(
π

4
cos

2πt

5

)
λ1,d =

1√
2

cos

(
π

4
cos

2πt

5

)
λ2,d =

1√
2

sin

(
π

4
cos

2πt

5

)
λ3,d =

1√
2

cos

(
π

4
cos

2πt

5

)

(a) Desired operational space acceleration

Find ẍd, where xd = [xd yd zd λ0,d λ1,d λ2,d λ3,d]
T is the desired acceleration in operational space

coordinates.

Solution:

ẍd = 0

ÿd = −2π2

125
cos

2πt

5

z̈d =
4π2

125
cos

4πt

5

λ̈0,d = − π4

100
√

2
sin

(
π

4
cos

(
2πt

5

))(
sin

(
2πt

5

))2

− π3

25
√

2
cos

(
π

4
cos

(
2πt

5

))
cos

(
2πt

5

)
λ̈1,d = − π4

100
√

2
cos

(
π

4
cos

(
2πt

5

))(
sin

(
2πt

5

))2

+
π3

25
√

2
sin

(
π

4
cos

(
2πt

5

))
cos

(
2πt

5

)
λ̈2,d = − π4

100
√

2
sin

(
π

4
cos

(
2πt

5

))(
sin

(
2πt

5

))2

− π3

25
√

2
cos

(
π

4
cos

(
2πt

5

))
cos

(
2πt

5

)
λ̈3,d = − π4

100
√

2
cos

(
π

4
cos

(
2πt

5

))(
sin

(
2πt

5

))2

+
π3

25
√

2
sin

(
π

4
cos

(
2πt

5

))
cos

(
2πt

5

)

(b) Desired end-effector linear and angular accelerations

Give an expression for the linear and angular end-effector accelerations v̇ and ω̇ in terms of the
operational space position, velocity and acceleration.

Solution: The linear and angular end-effector accelerations are related to the operational space
acceleration through the E matrix.

ẍ = E

[
v̇
ω̇

]
+ Ė

[
v
ω

]



where

E =

[
Ep 0
0 Er

]

Ep =

1 0 0
0 1 0
0 0 1

 , Er =
1

2


−λ1 −λ2 −λ3
λ0 λ3 −λ2
−λ3 λ0 λ1
λ2 −λ1 λ0



Since Ep is constant, Ėp = 0. So we get

[
v̇
ω̇

]
= E+ẍ−

[
0

E+
R ĖRω

]
= E+ẍ.

since E+
R ĖRω = 0 for Euler parameters.

(c) Operational space controller design

Propose an operational space controller that meets the following requirements:

• Track the desired operational space trajectory with dynamically decoupled PD control and
feed-forward acceleration

• Damp the null-space motion, and

• Compensate for gravitational forces

Note that you do not need to compensate for Coriolis/centrifugal forces.

Solution: The following controller achieves the above goals:

Γ = JT0

(
Λ0

(
−kpx

[
xp − xpd
δφ

]
− kvx

([
v
ω

]
− E+ẋd

)
+

[
v̇d
ω̇d

])
+ p

)
+NT

0 (A(−kvj q̇) + g)

δφ = E+(xr − xrd)

where
N0 = I − J̄0J0

is the dynamically consistent generalized inverse of J0.

Note that the E+ matrix must be calculated here with the current values for the representation
co-ordinates x, not the desired values xd.



(d) Simulation

Compile the starter code located under hw2/p2-main.cpp as follows:

$ cd bin
$ pushd ../build && cmake -DCMAKE_BUILD_TYPE=Release .. && make && popd
$ ./hw2-p2

As with the previous problem, you should see the robot simply falling under the effect of gravity.

Now, implement your proposed controller in the area marked as "FILL ME IN" in hw2/p2-main.cpp.
The resulting motion should be identical to the motion you observed in homework 1.

Solution: The solution code for this problem is available under cs327a/hw2_sol in p2-main-sol.cpp.
To compile and run it, from within the cs327a/bin folder, run

$ git stash
$ git pull --rebase
$ git stash pop
$ pushd ../build && cmake -DCMAKE_BUILD_TYPE=Release .. && make && popd
$ ./hw2-p2-sol

Problem 3 - Unified motion and force control

In this problem, you will once again control the KUKA-IIWA arm to track a desired motion at its
end effector. However, certain directions will be controlled to apply open loop forces rather than
perform motions.

The desired end-effector trajectory is identical to the one you implemented in homework 1 and the
previous problem, with the exception that we no longer desire a fixed motion along the x direction.
Instead, we require a force of 10N to be applied in the x direction while maintaining a zero moment
about the y and z axes.

yd = 0.5 + 0.1 cos
2πt

5

zd = 0.65− 0.05 cos
4πt

5

where t is time in seconds. The desired orientation trajectory is represented in Euler parameters as
λd = (λ0,d, λ1,d, λ2,d, λ3,d) where

λ0,d =
1√
2

sin

(
π

4
cos

2πt

5

)
λ1,d =

1√
2

cos

(
π

4
cos

2πt

5

)
λ2,d =

1√
2

sin

(
π

4
cos

2πt

5

)
λ3,d =

1√
2

cos

(
π

4
cos

2πt

5

)



The desired end effector forces are constant at

Fx,d = 10

My,d = 0

Mz,d = 0

As shown below, the forces are to be balanced by contact against a plane surface located at x = 0.05.

(a) Force, motion selection matrices

Find the selection matrices Ω and Ω̄ that separate the controlled force directions from the controlled
motion directions at the end-effector.

Solution: Since the desired forces are represented in the global frame for this problem, we can
write the selection matrices as constant matrices:

Ω =



0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 Ω̄ =



1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1



(b) Unified motion and force controller

Modify the controller from the previous problem to produce the desired response above. For con-
trolling the end-effector forces, use feedforward control only.

Solution: The unified force and motion controller with feedforward force control is given by:

Γ = JT0

(
Λ0Ω

(
−kpx

[
xp − xpd
δφ

]
− kvx

([
v
ω

]
− E+ẋd

)
+

[
v̇d
ω̇d

])
+ p+ Ω̄F0d

)
+NT

0 (A(−kvj q̇) + g)

where F0d = [Fx,d 0 0 0 My,d Mz,d]
T .



(c) Simulation

Compile the starter code located under hw2/p3-main.cpp as follows:

$ cd bin
$ pushd ../build && cmake -DCMAKE_BUILD_TYPE=Release .. && make && popd
$ ./hw2-p3

Implement your proposed controller in the area marked as "FILL ME IN" in hw2/p3-main.cpp. The
resulting motion should be identical to the motion you observed in homework 1 and the previous
problem, except the end effector should be flat against the given surface.

Solution: The solution code for this problem is available under cs327a/hw2_sol in p3-main-sol.cpp.
To compile and run it, from within the cs327a/bin folder, run

$ git stash
$ git pull --rebase
$ git stash pop
$ pushd ../build && cmake -DCMAKE_BUILD_TYPE=Release .. && make && popd
$ ./hw2-p3-sol

Problem 4 - Singularity control

Consider the manipulator shown below.



In the configuration θ1 = 0, θ2 = 90◦, θ3 = 0◦, the manipulator is at a singularity with respect to
the end-effector positioning task.

i. How many degrees of freedom does the end effector have in this configuration?

Solution: The end effector has only one degree of motion in this configuration to which both
joints 2 and 3 contribute.

ii. What is(are) the singular direction(s) in the {0} frame?

Solution: There are two singular directions in the given configuration, one in the Z0 direction
and the other in the Y0 direction.

iii. What is(are) the direction(s) orthogonal to the singular direction(s)?

Solution: X0 is the direction orthogonal to both singular directions for linear motion. In
addition, the end-effector can rotate about both Y0 and Z0 directions while in this configuration.

iv. What type(s) of singularity(ies) are present in this configuration?

Solution: There are two types of singularity present in this configuration. The elbow-lock
singularity with singular direction Z0 is of Type I since internal motions in the associated null
space can be directly used to move the end effector to the desired position along the singular
direction. The overhead-lock singularity with singular direction Y0 is of Type II since the end-
effector must be rotated along a direction orthogonal to the operational force vector to first
change the singular direction.

v. Briefly describe how you would control the robot close to this configuration in case you needed
the end-effector to be moved along the singular direction(s).

Solution: In the vicinity of the given configuration, we must control the robot in a different
way for each desired task direction. If the position task requires accelerations in the singular
directions, then the appropriate self-motion behavior must be employed. To accelerate along
the Z0 direction, a potential function must be constructed whose minimum corresponds to a
retracted arm position. Note that this can be achieved simultaneously along with a specified
X0 acceleration by motions on joints 2 and 3. To accelerate along the Y0 direction, a potential
function must be constructed whose minimum corresponds to joint 1 being at 90◦. The resulting
motion close to the singularity will be to change the singular direction to X0, thus allowing
unconstrained motion along Y0.


