Movie Segment
The Curiosity Mars Rover.
Steven Lee, Jet Propulsion Laboratory, 2010.

Trajectory Generation

Basic Problem:
Move the manipulator arm from some initial position \(\{T_A\}\) to some desired final position \(\{T_C\}\).
(May be going through some via point \(\{T_B\}\))

Trajectory :
Time history of position, velocity and acceleration for each DOF.

Constraints: Spatial, time, smoothness

Solution Spaces :
Joint space:
- Easy to go through via points
 (Solve inverse kinematics at all path points and plan)
- No problems with singularities
- Less calculations
- Can not follow straight line

Cartesian space:
- We can track a shape
 (for orientation : equivalent axes, Euler angles,..)
- More expensive at run time
 (after the path is calculated need joint angles in a lot of points)
- Discontinuity problems

Cartesian planning difficulties :
Initial and Goal Points are ____________.
Intermediate points (C) are ____________.
Approaching a singularity, some joint velocities go to ∞, causing deviation from the path.

Cartesian planning difficulties:

- Start point (A) and goal point (B) are reachable in joint space solutions.
- The middle points are reachable from below.

Actual planning in any space:

Assume one generic variable u (can be x, y, z, orientation - α, β, γ)

- Joint variables direction cosines

Candidate curves:

- Straight line (discontinuous velocity at path points)
- Straight line with blends
- Cubic polynomials (splines)
- Higher order polynomials (quintic,...) or other curves

Single Cubic Polynomial

\[\dot{\phi}(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 \]

Initial Conditions:

- $\phi(0) =$ \# ; $\phi(t_f) =$ \#.

Solution:

- $\ddot{\phi}(t) = 2a_2 + 6a_3 t$
- $\dot{\phi}(t) = 6a_3$ (constant)

\[\ddot{\phi}(t) = \phi_{\alpha} + \frac{3}{t_f}(\theta_f - \theta_0)t^2 + \left(-\frac{2}{t_f^3} \right) (\theta_f - \theta_0)t^3 \]
Cubic Polynomials with **via points**

- If we come to rest at each point
 use formula from previous slide
- For continuous motion (no stops)
 need velocities at intermediate points:

 \[
 \dot{\theta}(0) = \theta_0 \\
 \dot{\theta}(t_f) = \dot{\theta}_f
 \]

 Initial Conditions

 Solution:
 \[
 a_0 = \theta_0 \\
 a_1 = \theta_0 \\
 a_2 = \frac{3}{t_f^2} (\dot{\theta}_f - \dot{\theta}_0) - \frac{2}{t_f} \ddot{\theta}_0 + \frac{1}{t_f} \ddot{\theta}_f \\
 a_3 = -\frac{2}{t_f^3} (\theta_f - \theta_0) + \frac{1}{t_f^2} (\dot{\theta}_f + \dot{\theta}_0)
 \]

How to find \(\dot{\theta}_0, \dot{\theta}_f, \ldots \) (velocities at via points)

Three examples:

- if we know Cartesian linear and angular velocities
 \[
 \vec{v} = J^{-1}(\vec{\theta})
 \]
 use \(J \), \(\dot{\theta} \), \(\ddot{\theta} \)
- the system chooses reasonable velocities using heuristics (average of 2 sides etc.)
- the system chooses them for continuous velocity and acceleration

- ***Linear interpolation***

 Straight line

 \[
 \theta(t) = a_0 + a_1 t \\
 \theta(0) = \theta_0 \\
 \theta(t_f) = \theta_f
 \]

 2 conditions:
 \[
 \theta(t_0) = \theta_0 \\
 \theta(t_f) = \theta_f
 \]

 Discontinuous velocity - can not be controlled

- ***Linear interpolation***

 Parabolic blend

 \[
 \theta(t) = \frac{1}{2} a t^2 \\
 \theta(0) = \dot{\theta}_0 \\
 \theta(t_f) = \theta_f
 \]

 at blend regions

 \[
 \dot{\theta}(t) = a t \\
 \dot{\theta}(0) = \dot{\theta}_0 \\
 \dot{\theta}(t_f) = \dot{\theta}_f
 \]

 Constant acceleration

 \[
 \ddot{\theta}(t) = \frac{1}{2} \ddot{\theta}_0 \\
 \ddot{\theta}(0) = \ddot{\theta}_0 \\
 \ddot{\theta}(t_f) = \ddot{\theta}_f
 \]

 at blend regions

 From continuous velocity:

 \[
 t_s = \frac{t_f - \frac{1}{2} (\dot{\theta}_0^2 - 4 \dot{\theta}_0 \theta_f)}{2 \dot{\theta}_0}
 \]

 where \(t = t_f - t_0 \)

 desired duration of motion

- ***Linear Interpolation with blends for several segments***

 Given:
 \[
 \text{positions } u_i, u_j, u_k, u_l, u_m, \]
 desired time durations \(t_{dij}, t_{djk}, t_{dkl}, t_{dlm} \)
 the magnitudes of the accelerations:

 \[
 \|\ddot{u}_i\|, \|\ddot{u}_j\|, \|\ddot{u}_k\|, \|\ddot{u}_l\|
 \]

 Compute:
 \[
 \text{blends times } t_1, t_f, t_k, t_j, t_m \\
 \text{straight segment times } t_{ij}, t_{jk}, t_{kl}, t_{lm} \\
 \text{velocities } u_i, u_j, u_k, u_l, u_m \\
 \text{signed accelerations} \]

 Formulas (6.30-6.41)

 System usually calculates or uses default values for accelerations.
 The system can also calculate desired time durations based on default velocities.
Inside segments
\[\ddot{u}_{jk} = \frac{u_k - u_j}{t_{djk}} \]
\[\ddot{u}_k = \text{sign}(\dot{u}_{kl} - \dot{u}_{jk})|\ddot{u}_k| \]
\[t_k = \frac{\dot{u}_{kl} - \dot{u}_{jk}}{\ddot{u}_k} \]
\[t_{jk} = t_{djk} - \frac{1}{2}t_j - \frac{1}{2}t_k \]

First segment
\[\ddot{u}_1 = \text{sign}(u_2 - u_1)|\ddot{u}_1| \]
\[t_1 = t_{d12} - \sqrt{t_{d12}^2 - \frac{2(u_2 - u_1)}{\ddot{u}_1}} \]
\[u_{12} = \frac{u_2 - u_1}{t_{d12} - \frac{1}{2}t_1} \]
\[t_{12} = t_{d12} - t_1 - \frac{1}{2}t_2 \]

Last segment
\[\ddot{u}_n = \text{sign}(u_{n-1} - u_n)|\ddot{u}_n| \]
\[t_n = t_{d(n-1)n} - \sqrt{t_{d(n-1)n}^2 - \frac{2(u_n - u_{n-1})}{\ddot{u}_n}} \]
\[\dot{u}_{(n-1)n} = \frac{u_n - u_{n-1}}{t_{d(n-1)n} - \frac{1}{2}t_n} \]
\[t_{(n-1)n} = t_{d(n-1)n} - t_n - \frac{1}{2}t_{n-1} \]

To go through the actual via points:
- Introduce “Pseudo Via Points”
- Use sufficiently high acceleration
- If we want to stop there, simply repeat the via point

Higher Order Polynomials
- For example if given:
- 6 conditions
- position (initial \(u_0 \), final \(u_f \))
- velocity \((\dot{u}_0, \dot{u}_f)\)
- acceleration \((\ddot{u}_0, \ddot{u}_f)\)

Use quintic: \(u(t) = a_0 + a_1t + a_2t^2 + a_3t^3 + a_4t^4 + a_5t^5 \)
and find \(a_i \) (i=0 to 5)

Use different functions (exponential, trigonometric,…)
Run Time Path Generation

- trajectory in terms of $\Theta, \dot{\Theta}, \ddot{\Theta}$ fed to the control system
- Path generator computes at path update rate
- In joint space directly:
 - cubic splines -- change set of coefficients at the end of each segment
 - linear with parabolic blends -- check on each update if you are in linear or blend portion and use appropriate formulas for u
- In Cartesian space:
 - calculate Cartesian position and orientation at each update point using same formulas
 - convert into joint space using inverse Jacobian and derivatives
 - find equivalent frame representation and use inverse kinematics function to find $\Theta, \dot{\Theta}, \ddot{\Theta}$

Trajectory Planning with Obstacles

- Path planning for the whole manipulator
 - Local vs. Global Motion Planning
 - Gross motion planning for relatively uncluttered environments
 - Fine motion planning for the end-effector frame
- Configuration space (C-space) approach
- Planning for a point robot
 - graph representation of the free space, quadtree
 - Artificial Potential Field method
- Multiple robots, moving robots and/or obstacles